Chromatic Numbers of Stable Graphs Workshop on Trends in Pure and Applied Model Theory

Yatir Halevi

Fields Institute for Research in Mathematical Sciences

July 27, 2021

Joint work with Itay Kaplan and Saharon Shelah

Yatir Halevi (Fields)

Chromatic Numbers of Stable Graphs

July 27, 2021 1 / 14

A graph G = (V, E) is a set V together with a symmetric irreflexive relation $E \subseteq V^2$.

(日) (四) (日) (日) (日)

A graph G = (V, E) is a set V together with a symmetric irreflexive relation $E \subseteq V^2$. A vertex coloring of size \varkappa is a map $c : V \to \varkappa$ satisfying $x E y \implies c(x) \neq c(y)$.

イロト イポト イヨト イヨト 二日

A graph G = (V, E) is a set V together with a symmetric irreflexive relation $E \subseteq V^2$. A vertex coloring of size \varkappa is a map $c : V \to \varkappa$ satisfying $x E y \implies c(x) \neq c(y)$. The chromatic number $\chi(G)$ is the minimal cardinality of a vertex coloring.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example - Shift Graph

For a cardinal κ and integer $n \ge 1$, the shift graph $Sh_n(\kappa)$ is the graph whose set of vertices is $(\kappa^{\underline{n}})_{<}$, increasing *n*-tuples of ordinals less than κ . We put an edge between (s_0, \ldots, s_{n-1}) and (t_0, \ldots, t_{n-1}) if for every $1 \le i \le n-1$, $s_i = t_{i-1}$

Erdös-Rado: $\chi(\operatorname{Sh}_n(\beth_{n-1}(\kappa)^+)) \ge \kappa^+$.

July 27, 2021 3 / 14

< □ > < □ > < □ > < □ > < □ > < □ >

Conjecture (Taylor)

For any graph G with $\chi(G) \ge \aleph_1$ and cardinal κ there exists a graph H with $\chi(H) \ge \kappa$ such that G and H share the same finite subgraphs.

(日) (四) (日) (日) (日)

Conjecture (Taylor, Erdös-Hajnal-Shelah)

For any graph G with $\chi(G) \ge \aleph_1$ there exists a natural number n such that G contains all finite subgraphs of $Sh_n(\omega)$.

< □ > < 同 > < 回 > < 回 > < 回 >

Conjecture (Taylor, Erdös-Hajnal-Shelah)

For any graph G with $\chi(G) \ge \aleph_1$ there exists a natural number n such that G contains all finite subgraphs of $Sh_n(\omega)$.

 $\mathsf{Strong} \Longrightarrow \mathsf{Regular}$

< □ > < 同 > < 回 > < 回 > < 回 >

What is Known

▶ ৰ ≣ ▶ ≣ ৩৫৫ July 27, 2021 6/14

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

• Taylor's conjecture is consistently false

A D N A B N A B N A B N

What is Known

 Taylor's conjecture is consistently false and consistently true if we replace χ(G) ≥ ℵ₁ with χ(G) ≥ ℵ₂ (Komjáth-Shelah)

< □ > < 同 > < 回 > < 回 > < 回 >

What is Known

- Taylor's conjecture is consistently false and consistently true if we replace χ(G) ≥ ℵ₁ with χ(G) ≥ ℵ₂ (Komjáth-Shelah)
- Strong version was refuted by Hajnal-Komjáth.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (H.-Kaplan-Shelah)

< □ > < □ > < □ > < □ > < □ >

Theorem (H.-Kaplan-Shelah)

1 If G is ω -stable then the strong conjecture holds (i.e., with $> \aleph_0$).

Theorem (H.-Kaplan-Shelah)

- **1** If G is ω -stable then the strong conjecture holds (i.e., with $> \aleph_0$).
- **2** If G is superstable then the strong conjecture holds (with $> 2^{\aleph_0}$).

< (17) > < (17) > <

Theorem (H.-Kaplan-Shelah)

- **1** If G is ω -stable then the strong conjecture holds (i.e., with $> \aleph_0$).
- 2 If G is superstable then the strong conjecture holds (with $> 2^{\aleph_0}$).
- § if G is stable then the strong conjecture holds (with $> 2^{2^{\aleph_0}}$).

A (10) < A (10) </p>

Theorem (H.-Kaplan-Shelah)

- **1** If G is ω -stable then the strong conjecture holds (i.e., with $> \aleph_0$).
- **2** If G is superstable then the strong conjecture holds (with $> 2^{\aleph_0}$).
- § if G is stable then the strong conjecture holds (with $> 2^{2^{\aleph_0}}$).

We prove this in two papers:

< (日) × < 三 × <

Theorem (H.-Kaplan-Shelah)

- **1** If G is ω -stable then the strong conjecture holds (i.e., with $> \aleph_0$).
- 2 If G is superstable then the strong conjecture holds (with $> 2^{\aleph_0}$).
- § if G is stable then the strong conjecture holds (with $> 2^{2^{\aleph_0}}$).

We prove this in two papers: First paper: (1), (2) and (3' = for graphs interpretable in stationary stable theories)

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (H.-Kaplan-Shelah)

- **1** If G is ω -stable then the strong conjecture holds (i.e., with $> \aleph_0$).
- 2 If G is superstable then the strong conjecture holds (with $> 2^{\aleph_0}$).
- § if G is stable then the strong conjecture holds (with $> 2^{2^{\aleph_0}}$).

We prove this in two papers: First paper: (1), (2) and (3' = for graphs interpretable in stationary stable theories) Second paper: (3)

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (H.-Kaplan-Shelah)

- **1** If G is ω -stable then the strong conjecture holds (i.e., with $> \aleph_0$).
- **2** If G is superstable then the strong conjecture holds (with $> 2^{\aleph_0}$).
- § if G is stable then the strong conjecture holds (with $> 2^{2^{\aleph_0}}$).

We prove this in two papers: First paper: (1), (2) and (3' = for graphs interpretable in stationary stable theories) Second paper: (3) Examples: ω -stable: $Sh_n^{sym}(\omega)$, superstable: ultraflat (\Leftarrow planar), stable: superflat.

イロト イボト イヨト イヨト

The Key: EM-Models

The key model theoretic part of the proofs is that every sufficiently large saturated extension of the model is an EM-model:

< □ > < 同 > < 回 > < 回 > < 回 >

The Key: EM-Models

The key model theoretic part of the proofs is that every sufficiently large saturated extension of the model is an EM-model:

Handwavy Definition: \implies

Very Rough Outline of the Proof

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Very Rough Outline of the Proof

- Assume $\chi(G) > \beth_2(\aleph_0)$.
- Sind a saturated extension G ≺ G = {a_{i,η} : i < 2^{ℵ1}, η ∈ (λ^{αi})_<}, where α_i < ℵ₁.

< □ > < 同 > < 回 > < 回 > < 回 >

Very Rough Outline of the Proof

- Assume $\chi(G) > \beth_2(\aleph_0)$.
- **②** Find a saturated extension G ≺ G = {a_{i,η} : i < 2^{ℵ1}, η ∈ (λ^{α_i})_<}, where α_i < ℵ₁.
- Consider the map $B = \{(i, \eta) : i < 2^{\aleph_1}, \eta \in (\lambda^{\underline{\alpha_i}})_<\} \twoheadrightarrow \mathcal{G}$. Induce B with a graph structure: (B, R). Note $\chi(B) > \beth_2(\aleph_0)$.

< □ > < 同 > < 回 > < 回 > < 回 >

4

Proposition

Let G = (V, E) be a graph, let H be a graph that contains all finite subgraphs of $Sh_k(\omega)$, for some k, and $t : H \to G$ is a homomorphism of graphs, then there exists some $n \le k$ such that G contains all finite subgraphs of $Sh_n(\omega)$.

• $B = \bigcup_{i < 2^{\aleph_1}} B_i$, where $B_i = \{(i, \eta) : \eta \in (\lambda^{\underline{\alpha_i}})_<\}$. So there exists an $i < 2^{\aleph_1}$ with $\chi(B_i) > \beth_2(\aleph_0)$.

July 27, 2021 11 / 14

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- $B = \bigcup_{i < 2^{\aleph_1}} B_i$, where $B_i = \{(i, \eta) : \eta \in (\lambda^{\underline{\alpha}_i})_<\}$. So there exists an $i < 2^{\aleph_1}$ with $\chi(B_i) > \beth_2(\aleph_0)$.
- Hence can consider the induced graph: $((\lambda \underline{\alpha}_i)_{<}, R)$.

イロト イポト イヨト イヨト 二日

- $B = \bigcup_{i < 2^{\aleph_1}} B_i$, where $B_i = \{(i, \eta) : \eta \in (\lambda^{\underline{\alpha}_i})_<\}$. So there exists an $i < 2^{\aleph_1}$ with $\chi(B_i) > \beth_2(\aleph_0)$.
- Hence can consider the induced graph: $((\lambda \underline{\alpha_i})_{<}, R)$.
- Let $P = \{ \operatorname{otp}(\bar{a}, \bar{b}) : (\bar{a}, \bar{b}) \in R \}$. By using indiscernibility, $R = \bigcup_{p \in P} R_p$, where $R_p = \{(\bar{c}, \bar{d}) : \operatorname{otp}(\bar{c}, \bar{d}) = p \lor \operatorname{otp}(\bar{d}, \bar{c}) = p \}$. Hence there exists $p \in P$ with $\chi((\lambda^{\underline{\alpha_i}})_{<}, R_p) > \beth_2(\aleph_0)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (H.-Kaplan-Shelah)

Let α be an ordinal, $(\theta, <)$ an infinite ordinal with $|\alpha|^+ + \aleph_0 < \theta$. Let $\bar{a} \neq \bar{b} \in (\theta^{\underline{\alpha}})_<$ be some fixed sequences. Let $G = ((\theta^{\underline{\alpha}})_<, R_{\bar{a},\bar{b}})$. If $\chi(G) > \beth_2(\aleph_0)$ then G contains all finite subgraphs of $Sh_m(\omega)$ for some $m \in \mathbb{N}$.

(where $R_{\bar{a},\bar{b}} = \{(\bar{c},\bar{d}) \in ((\theta^{\bar{\alpha}})_{<})^2 : \operatorname{otp}(\bar{c},\bar{d}) = \operatorname{otp}(\bar{a},\bar{b}) \vee \operatorname{otp}(\bar{c},\bar{d}) = \operatorname{otp}(\bar{b},\bar{a})\}.)$

< □ > < □ > < □ > < □ > < □ > < □ >

Further directions

• Simplicity? (NIP?)

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

- Simplicity? (NIP?)
- **2** Find precise\better bounds (on *n*, on $\beth_2(\aleph_0)$).

A D N A B N A B N A B N

- Simplicity? (NIP?)
- Solution Find precise better bounds (on n, on $\beth_2(\aleph_0)$).

Theorem (H.-Kaplan-Levi-Shelah)

Let G = (V, E) be an ω -stable graph with $\chi(G) \ge \aleph_1$. If $U(G) \le 2$ then G contains all finite subgraphs of $Sh_n(\omega)$ for some $n \le 2$.

< □ > < □ > < □ > < □ > < □ > < □ >

Thank You.

・ロト ・四ト ・ヨト ・ヨト