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Chromatic Number

A graph G = (V ,E ) is a set V together with a symmetric irreflexive
relation E ⊆ V 2.

A vertex coloring of size κ is a map c : V → κ satisfying
x E y =⇒ c(x) 6= c(y).
The chromatic number χ(G ) is the minimal cardinality of a vertex coloring.
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Example - Shift Graph

For a cardinal κ and integer n ≥ 1, the shift graph Shn(κ) is the graph
whose set of vertices is (κn)<, increasing n-tuples of ordinals less than κ.
We put an edge between (s0, . . . , sn−1) and (t0, . . . , tn−1) if for every
1 ≤ i ≤ n − 1, si = ti−1

or vice-versa.

Erdös-Rado: χ (Shn(in−1(κ)+)) ≥ κ+.
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Taylor’s Conjecture

Conjecture (Taylor)

For any graph G with χ(G ) ≥ ℵ1 and cardinal κ there exists a graph H
with χ(H) ≥ κ such that G and H share the same finite subgraphs.
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Strong Taylor’s Conjecture

Conjecture (Taylor, Erdös-Hajnal-Shelah)

For any graph G with χ(G ) ≥ ℵ1 there exists a natural number n such
that G contains all finite subgraphs of Shn(ω).

Strong =⇒ Regular
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What is Known

Taylor’s conjecture is consistently false and consistently true if we
replace χ(G ) ≥ ℵ1 with χ(G ) ≥ ℵ2 (Komjáth-Shelah)

Strong version was refuted by Hajnal-Komjáth.
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Enter Model Theory

Theorem (H.-Kaplan-Shelah)

1 If G is ω-stable then the strong conjecture holds (i.e., with > ℵ0).

2 If G is superstable then the strong conjecture holds (with > 2ℵ0).

3 if G is stable then the strong conjecture holds (with > 22ℵ0 ).

We prove this in two papers:
First paper: (1), (2) and (3’ = for graphs interpretable in stationary stable
theories)
Second paper: (3)
Examples: ω-stable: Shsym

n (ω), superstable: ultraflat (⇐ planar), stable:
superflat.
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The Key: EM-Models

The key model theoretic part of the proofs is that every sufficiently large
saturated extension of the model is an EM-model:

Handwavy Definition: =⇒
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Very Rough Outline of the Proof

1 Assume χ(G ) > i2(ℵ0).

2 Find a saturated extension G ≺ G = {ai ,η : i < 2ℵ1 , η ∈ (λαi )<},
where αi < ℵ1.

3 Consider the map B = {(i , η) : i < 2ℵ1 , η ∈ (λαi )<}� G. Induce B
with a graph structure: (B,R). Note χ(B) > i2(ℵ0).
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Outline, cont.

4

Proposition

Let G = (V ,E ) be a graph, let H be a graph that contains all finite
subgraphs of Shk(ω), for some k, and t : H → G is a homomorphism of
graphs, then there exists some n ≤ k such that G contains all finite
subgraphs of Shn(ω).
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Outline, cont.

5 B =
⋃

i<2ℵ1 Bi , where Bi = {(i , η) : η ∈ (λαi )<}. So there exists an
i < 2ℵ1 with χ(Bi ) > i2(ℵ0).

6 Hence can consider the induced graph: ((λαi )<,R).

7 Let P = {otp(ā, b̄) : (ā, b̄) ∈ R}. By using indiscernibility,
R =

⋃
p∈P Rp, where Rp = {(c̄ , d̄) : otp(c̄ , d̄) = p ∨ otp(d̄ , c̄) = p}.

Hence there exists p ∈ P with χ((λαi )<,Rp) > i2(ℵ0).
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Outline - end

Theorem (H.-Kaplan-Shelah)

Let α be an ordinal, (θ,<) an infinite ordinal with |α|+ + ℵ0 < θ. Let
ā 6= b̄ ∈ (θα)< be some fixed sequences.
Let G = ((θα)<,Rā,b̄). If χ(G ) > i2(ℵ0) then G contains all finite
subgraphs of Shm(ω) for some m ∈ N.

(where
Rā,b̄ = {(c̄ , d̄) ∈ ((θᾱ)<)2 : otp(c̄ , d̄) = otp(ā, b̄)∨otp(c̄ , d̄) = otp(b̄, ā)}.)
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Further directions

1 Simplicity? (NIP?)

2 Find precise\better bounds (on n, on i2(ℵ0)).

Theorem (H.-Kaplan-Levi-Shelah)

Let G = (V ,E ) be an ω-stable graph with χ(G ) ≥ ℵ1. If U(G ) ≤ 2 then
G contains all finite subgraphs of Shn(ω) for some n ≤ 2.
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Thank You.
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