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The Peterzil-Steinhorn Theorem

Section 1

The Peterzil-Steinhorn theorem in o-minimal groups
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The Peterzil-Steinhorn Theorem

The Peterzil-Steinhorn theorem

Let M = (M,+, <, ·, . . .) be an o-minimal expansion of RCF.

Let (G , ·) be a definable group in M.

Suppose G is not definably compact.

Theorem (Peterzil-Steinhorn)

There is a definable subgroup H ≤ G such that

dim(H) = 1.

H is not definably compact.

H is abelian.

H is torsion-free.

Will Johnson Non-compact p-adic definable groups July 28, 2021 3 / 40



The Peterzil-Steinhorn Theorem

The Peterzil-Steinhorn theorem

Let M = (M,+, <, ·, . . .) be an o-minimal expansion of RCF.

Let (G , ·) be a definable group in M.

Suppose G is not definably compact.

Theorem (Peterzil-Steinhorn)

There is a definable subgroup H ≤ G such that

dim(H) = 1.

H is not definably compact.

H is abelian.

H is torsion-free.

Will Johnson Non-compact p-adic definable groups July 28, 2021 3 / 40



The Peterzil-Steinhorn Theorem

The Peterzil-Steinhorn theorem

Let M = (M,+, <, ·, . . .) be an o-minimal expansion of RCF.

Let (G , ·) be a definable group in M.

Suppose G is not definably compact.

Theorem (Peterzil-Steinhorn)

There is a definable subgroup H ≤ G such that

dim(H) = 1.

H is not definably compact.

H is abelian.

H is torsion-free.

Will Johnson Non-compact p-adic definable groups July 28, 2021 3 / 40



The Peterzil-Steinhorn Theorem

The Peterzil-Steinhorn theorem

Let M = (M,+, <, ·, . . .) be an o-minimal expansion of RCF.

Let (G , ·) be a definable group in M.

Suppose G is not definably compact.

Theorem (Peterzil-Steinhorn)

There is a definable subgroup H ≤ G such that

dim(H) = 1.

H is not definably compact.

H is abelian.

H is torsion-free.

Will Johnson Non-compact p-adic definable groups July 28, 2021 3 / 40



The Peterzil-Steinhorn Theorem

µ-types and µ-stabilizers

Two complete types p, q ∈ SG (M) are infinitesimally close if there
are realizations a |= p, b |= q with a · b−1 infinitesimal over M.

µ-types are the equivalence classes.

G (M) acts on µ-types.

The µ-stabilizer Stabµ(p) is the stabilizer of p’s µ-type.

Fact (Peterzil-Starchenko)

If p is a definable type, then Stabµ(p) is a definable subgroup of G .
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The Peterzil-Steinhorn Theorem

The refined form of Peterzil-Steinhorn

Let G be a non-compact definable o-minimal group.

Let C : [0,+∞)→ G be a curve tending to infinity.

Let p be the “type at infinity” on C .

Theorem (Peterzil-Steinhorn)

Stabµ(p) is 1-dimensional, torsion free, and non-compact.

Peterzil and Starchenko later analyzed Stabµ(p) when dim(p) > 1.
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The Peterzil-Steinhorn Theorem

Stabµ as the “tangent line at infinity”

Suppose (G ,+) is abelian, for simplicity.

Suppose C is a non-compact curve in G and p is the type at infinity.

If t ∈ G , then t ∈ Stabµ(p) means. . .

For distant x ∈ C , the point x + t is close to C .

For distant x ∈ C , the translate C − x is close to t.

Idea

Locally, Stabµ(p) is the “limit” of the set C − x as x →∞ along C .
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The Peterzil-Steinhorn Theorem

The proof outline

Fix a curve C in G tending to infinity, and let p be the type at infinity.

(Easy) Stabµ(p) is a definable subgroup of dimension ≤ 1.

(Hard) Stabµ(p) is not definably compact.

In particular, it’s non-trivial and infinite.
Dimension 1.

(Easy) Stabµ(p) is abelian and torsion-free.
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The Peterzil-Steinhorn Theorem

The hard part

1 Draw an annulus A around 0 ∈ G .

2 Suppose x ∈ C and x ≈ ∞.

3 C − x goes from x − x = 0 (inside) to
∞− x =∞ (outside).

4 Therefore C − x crosses A.

5 As x →∞, the set (C − x) ∩ A
converges to Stabµ(p) ∩ A.

6 Therefore Stabµ(p) ∩ A 6= ∅.

7 As A was arbitrary, Stabµ(p) is
unbounded, non-compact.

Connectedness plays a key role.

A

0

C - x

∞
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A p-adic Peterzil-Steinhorn

Section 2

p-adic analogues of the Peterzil-Steinhorn theorem
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A p-adic Peterzil-Steinhorn

The setting

M is a p-adically closed field, i.e., M ≡ Qp.

(G , ·) is a definable (not interpretable!) group.

G is not definably compact.

Definition

G is nearly abelian if there is a definably compact definable subgroup
K ≤ G with [G ,G ] ⊆ K .
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A p-adic Peterzil-Steinhorn

Main results

Theorem (J., Yao)

If G is nearly abelian and not definably compact, then there is a
1-dimensional definable subgroup H ≤ G that is not definably compact.

We probably don’t need the “nearly abelian” assumption, above.

Theorem (J., Yao)

If M is ℵ1-saturated and p ∈ SG (M) is definable, 1-dimensional, and
unbounded, then Stabµ(p) is a 1-dimensional type-definable group.
If G is nearly abelian, then Stabµ(p) is unbounded.

Stabµ(p) is a countable intersection of definable groups.
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A p-adic Peterzil-Steinhorn

Next directions

1 Extend to non-abelian groups.

2 Analyze abelian definable groups.

3 Generalize to groups in P-minimal structures, dp-minimal fields.
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Definable compactness

Section 3

Definable compactness
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Definable compactness

Definable compactness in o-minimal definable manifolds

Work in an o-minimal structure (M, <,+, ·, . . .).

Definition

An n-dimensional definable manifold is a definable topological space
covered by finitely many open subsets, each definably isomorphic to an
open set in Mn.

Fact (Pillay)

Every definable group is a definable manifold in a canonical way.
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Definable compactness

Definable compactness in o-minimal definable manifolds

Definition (Peterzil-Steinhorn)

A definable manifold X is definably compact if for every definable
continuous function f : [0,+∞)→ X , the limit limt→+∞ f (t) exists.

If M = R, this agrees with regular compactness

In general, this behaves like compactness. . .
I A product of two definably compact sets is definably compact.
I A continuous image of a definably compact set is definably compact.
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Definable compactness

Definable compactness in p-adic definable manifolds

Work in (M,+, ·) |= pCF.

Definition

An n-dimensional definable manifold is a definable topological space
covered by finitely many open subsets, each definably isomorphic to an
open set in Mn.

Fact (Pillay)

Every definable group is a definable manifold in a canonical way.
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Definable compactness

Definable compactness in p-adic definable manifolds

Definition (wrong)

A definable manifold X is definably compact if whenever U is a
punctured neighborhood of 0 and f : U → X is definable and continuous,
limt→0 f (t) exists.

This definition doesn’t work in the o-minimal setting, because maybe
limx→0− f (x) 6= limx→0+ f (x).

It doesn’t work in pCF either.
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Definable compactness

Definable compactness via directed families

Let X be a definable topological space in any structure.

Definition (Fornasiero)

X is definably compact if the following holds. Suppose

F is a definable family of sets

Every A ∈ F is a non-empty closed subset of X .

F is downwards-directed:

∀A,B ∈ F ∃C ∈ F : C ⊆ A ∩ B

Then
⋂
F 6= ∅.

A filtered intersection of a definable family of non-empty closed
sets is non-empty.
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Definable compactness

Definable compactness via directed families

Examples

If X is compact, then X is definably compact.

In R, the set (−1, 1) isn’t definably compact, because of the family of
closed subsets [a, 1) as a→ 1.

If the structure is NSOP, then any set D with the discrete topology is
definably compact.

C[[t]] is definably compact with its usual topology.
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Definable compactness

Definable compactness via directed families

Fact (Andújar Guerrero, Thomas, Walsberg)

In an o-minimal setting, definable compactness via directed families agrees
with definable compactness via curve completion.

Fact

In any setting, definable compactness satisfies the usual properties:

1 Products of compact sets are compact.

2 Continuous images of compact sets are compact.

3 Closed subsets of compact sets are compact.

4 Compact sets in Hausdorff spaces are closed.
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Definable compactness

Definable compactness in p-adic manifolds

Proposition

A subset of Mn is definably compact iff it is closed and bounded.

Let X be a p-adic definable manifold. The following are equivalent:

1 X is definably compact.

2 If U is a punctured neighborhood of 0 and f : U → X is definable and
continuous, then f (t) has a cluster point as t → 0.

3 Every 1-dimensional definable type in X specializes to a point of X .
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Proving p-adic Peterzil-Steinhorn

Section 4

Adapting Peterzil-Steinhorn to the p-adics
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Proving p-adic Peterzil-Steinhorn

Back to the (p-adic) Peterzil-Steinhorn theorem

Fix M |= pCF and a definable group (G , ·).

(G , ·) is canonically a definable manifold.

Assume G is not definably compact.

Take an unbounded curve C , and an unbounded type p on C .
I p will be 1-dimensional and definable.

Goal: understand Stabµ(p).

Will Johnson Non-compact p-adic definable groups July 28, 2021 24 / 40



Proving p-adic Peterzil-Steinhorn

Back to the (p-adic) Peterzil-Steinhorn theorem

Fix M |= pCF and a definable group (G , ·).

(G , ·) is canonically a definable manifold.

Assume G is not definably compact.

Take an unbounded curve C , and an unbounded type p on C .
I p will be 1-dimensional and definable.

Goal: understand Stabµ(p).

Will Johnson Non-compact p-adic definable groups July 28, 2021 24 / 40



Proving p-adic Peterzil-Steinhorn

Back to the (p-adic) Peterzil-Steinhorn theorem

Fix M |= pCF and a definable group (G , ·).

(G , ·) is canonically a definable manifold.

Assume G is not definably compact.

Take an unbounded curve C , and an unbounded type p on C .
I p will be 1-dimensional and definable.

Goal: understand Stabµ(p).

Will Johnson Non-compact p-adic definable groups July 28, 2021 24 / 40



Proving p-adic Peterzil-Steinhorn

Back to the (p-adic) Peterzil-Steinhorn theorem

Fix M |= pCF and a definable group (G , ·).

(G , ·) is canonically a definable manifold.

Assume G is not definably compact.

Take an unbounded curve C , and an unbounded type p on C .

I p will be 1-dimensional and definable.

Goal: understand Stabµ(p).

Will Johnson Non-compact p-adic definable groups July 28, 2021 24 / 40



Proving p-adic Peterzil-Steinhorn

Back to the (p-adic) Peterzil-Steinhorn theorem

Fix M |= pCF and a definable group (G , ·).

(G , ·) is canonically a definable manifold.

Assume G is not definably compact.

Take an unbounded curve C , and an unbounded type p on C .
I p will be 1-dimensional and definable.

Goal: understand Stabµ(p).

Will Johnson Non-compact p-adic definable groups July 28, 2021 24 / 40



Proving p-adic Peterzil-Steinhorn

Back to the (p-adic) Peterzil-Steinhorn theorem

Fix M |= pCF and a definable group (G , ·).

(G , ·) is canonically a definable manifold.

Assume G is not definably compact.

Take an unbounded curve C , and an unbounded type p on C .
I p will be 1-dimensional and definable.

Goal: understand Stabµ(p).

Will Johnson Non-compact p-adic definable groups July 28, 2021 24 / 40



Proving p-adic Peterzil-Steinhorn

What goes wrong over the p-adics?

1 0 and ∞ have infinitely many “sides.”
I The type p isn’t generated by a single definable family of formulas

analogous to {(x > a) : a ∈ R}.
I Not a big problem.

2 No DCC for definable groups.
I Makes Stabµ(p) be type-definable rather than definable.
I We must assume M is mildly saturated.

3 Curves aren’t connected, or eventually connected.
I Messes up the annulus-crossing argument.
I The principal difficulty.
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Proving p-adic Peterzil-Steinhorn

The Distant Islands configuration

The annulus-crossing argument doesn’t work if

C consists of infinitely many “islands”

The diameter of the islands is bounded.

The distance between the islands goes to
infinity in the limit.
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Proving p-adic Peterzil-Steinhorn

From large gaps to infinite dp-rank

Let M = (R,+, <, 2N).

M is NIP (Günaydın and Hieronymi)

M does not have finite dp-rank.
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Proving p-adic Peterzil-Steinhorn

Idea

If

X = {1, 2, 3, 4, 5}
Y = {10, 20, 30, 40, 50}

Z = {100, 200, 300, 400, 500}

then this map is injective:

X × Y × Z → R
(x , y , z) 7→ x + y + z

Why?

Elements of Y are far apart relative to the size of elements of X .

Elements of Z are far apart relative to the size of elements of Y .
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Proving p-adic Peterzil-Steinhorn

Idea

Suppose S1, . . . ,Sn are definable sets in, say, an ordered abelian
group (R, <,+, . . .).

Suppose for x ∈ Si and distinct y , y ′ ∈ Si+1, we have |y − y ′| � |x |.
Then there is an injection

S1 × · · · × Sn → R

(x1, . . . , xn) 7→ x1 + · · ·+ xn

If the Xi are definable and infinite, then

dp-rk(R) ≥
n∑

i=1

dp-rk(Si ) ≥ n.
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Proving p-adic Peterzil-Steinhorn

From big gaps to infinite dp-rank

Let M = (R,+, <, 2N).

1 Go to a monstrous elementary extension M∗ = (R∗,+, <, 2N∗
) � M.

2 Recursively build S0,S1,S2, . . ., where
I Si is an infinite, bounded, convex segment of 2N∗

.
I Any distinct x , y ∈ Si+1 have |x − y | � (any element of Si ).

3 For any n, the following map is injective

S0 × · · · × Sn → R∗

(x0, . . . , xn) 7→ x0 + · · ·+ xn.

4 So dp-rk(M∗) ≥ n.

5 n was arbitrary, so dp-rk(M∗) ≥ ℵ0.
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Proving p-adic Peterzil-Steinhorn

From big gaps to infinite dp-rank

Something similar works in our case.

1 Because pCF is dp-minimal, G is dp-finite.

2 If the Distant Islands configuration occurs, then dp-rk(G ) is infinite,
contradiction!

3 If the Distant Islands configuration doesn’t occur, then the
annulus-crossing argument works.

However, we must assume G is nearly abelian ([G ,G ] is bounded).
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The non-abelian case

Section 5

Towards the non-abelian case
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The non-abelian case

What we expect

By mixing together. . .

1 The nearly abelian case,

2 Baldwin-Saxl for NIP groups,

3 Some representation theory and Lie theory,

4 Induction on dimension,

. . . we think we can prove the following:

Theorem(?)

Let G be a definable group in a model of pCF. If G is not definably
compact, then G has a one-dimensional definable subgroup that is not
definably compact.

Note: we now abandon µ-stabilizers.
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The non-abelian case

Proof sketch

Goal

If G is non-compact, then G has a non-compact 1-dimensional subgroup.

Lies are marked with (∗).

“G is definably compact” is a definable property, so∗ we may work in
the standard model Qp.

Take a counterexample G minimizing dim(G ).

Lemma(?)

G is definably simple: if H is a definable normal subgroup, then H = 1 or
H = G .∗
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The non-abelian case

Proof sketch

Lemma(?)

G is definably simple: if H is a definable normal subgroup, then H = 1 or
H = G .∗

Otherwise 0 < dim(H) < dim(G ).∗

If H is non-compact, then H has a non-compact 1-dimensional
subgroup by minimality, contradiction!

H is compact and G/H is non-compact∗.

dim(G/H) < dim(G ), so dim(G/H) has a 1-dimensional
non-compact subgroup G ′/H.

G ′ is non-compact; if dim(G ′) < dim(G ) we get a contradiction.

dim(G ′) = dim(G ), so G ′ = G .∗

G/H is 1-dimensional, so∗ it’s abelian.

G is nearly abelian; use the nearly abelian case.
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The non-abelian case

Proof sketch

So far: G is definably simple.∗.

Consider the adjoint action of G on TeG ∼= Qn
p

ad : G → GLn(Qp)

It’s trivial or injective.∗

If it’s trivial, then G is abelian∗; use the abelian case.

If it’s injective, then G is a semisimple∗ group of matrices.

A representation-theoretic argument of Gopal Prasad shows∗

G unbounded =⇒ there is g0 ∈ G with gZ
0 unbounded

Let A be the center of the centralizer of g0.

dim(A) > 0 and A is non-compact abelian; use the abelian case.
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The dp-minimal case

Section 6

Towards dp-minimal fields
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The dp-minimal case

Dp-minimal fields

We expect most of our results to generalize to groups definable in
dp-minimal fields and valued fields.

Definition

A structure M is dp-minimal if dp-rk(M) = 1.

Example

RCF, ACF, pCF, ACVF are dp-minimal theories.

New complications:

Minor problem(?): no Skolem functions

Major problem: definable compactness is broken
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The dp-minimal case

Definable compactness in ACVF

Let O be the valuation ring in a model K |= ACVF.

O is not definably compact.

∅ =
⋂
γ>0

{x ∈ O : 0 < v(x) < γ}

No infinite subset of K is definable compact.
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The dp-minimal case

Γ-compactness

Let (K , v) be a dp-minimal valued field with valuation group Γ.

Definition

A definable topological space X is Γ-compact if the following holds. Let
{Fγ}γ∈Γ be a definable family of non-empty closed subsets of X . Suppose
that

γ1 < γ2 =⇒ Fγ1 ⊇ Fγ2

Then
⋂
γ∈Γ Fγ 6= ∅.

Γ-compactness seems to have all the good properties.
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