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1. Loewner chains in several complex variables

1. Loewner chains in several complex variables

Definition
f : Bn × [0,∞)→ Cn is an univalent subordination chain if:

(i) f (·, t) ≡ ft is univalent (holomorphic and injective) on Bn,
f (0, t) = 0, t ≥ 0.

(ii) f (Bn, s) ⊆ f (Bn, t), 0 ≤ s ≤ t <∞.

Definition
An univalent subordination chain f (z, t) is said to be an
A-normalized univalent subordination chain (A-Loewner chain) if
Df (0, t) = etA, t ≥ 0, where A ∈ L(Cn); f (z, t) = etAz + · · · , z ∈ Bn,
t ≥ 0.
A normalized Loewner chain (Loewner chain) f (z, t) is an
In-Loewner chain. Thus, f (z, t) = etz + · · · , z ∈ Bn, t ≥ 0.
If, in addition , {e−t ft}t≥0 is a normal family (i.e. locally uniformly
bounded family), then {ft}t≥0 is called a normal Loewner chain.
R(ft ) :=

⋃
t≥0 ft (Bn) → the Loewner range of (ft )t≥0, ft := f (·, t).

A mapping f ∈ H(Bn) is normalized if f (0) = 0 and Df (0) = In.
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1. Loewner chains in several complex variables

• H(Bn) =
{

f : Bn → Cn
∣∣ f is holomorphic

}
.

• S(Bn) := {h ∈ H(Bn) : h univalent ,h(0) = 0,Dh(0) = In}.
• S(Bn) is closed but is not compact for n ≥ 2.

I. Graham, H. Hamada, G. K, Canad. J. Math. (2002): The family S0(Bn) of mappings
in S(Bn) which admit parametric representation:

S0(Bn) :=
{

f ∈ S(Bn) : ∃ f (z, t) Loewner chain such that

{e−t f (·, t)}t≥0 normal family and f = f (·,0)
}
.

S1(Bn) :=
{

f ∈ S(Bn) : ∃ f (z, t) Loewner chain such that

f = f (·,0),
⋃
t≥0

ft (Bn) = Cn}.
SR(Bn) :=

{
f ∈ S(Bn) : f (Bn) is a Runge domain in Cn}.

A(Bn) :=
{

Φ ∈ Aut(Cn) : Φ|Bn ∈ S(Bn)
}
.
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1. Loewner chains in several complex variables

n = 1

• S(B1) is a compact family (i.e. closed and normal).
• S0(B1) = S1(B1) = SR(B1) = S.
• every Loewner chain is a normal Loewner chain.
• for every Loewner chaina {ft}t≥0 we have: R(ft ) = C;
• {ft}t≥0 is a Loewner chain if and only if {ft}t≥0 is a normalized
solution of the Loewner differential equation associated to a Herglotz
vector field p : U× [0,∞)→ C:

∂f
∂t

(z, t) = f ′(z, t)p(z, t), a.e. t ≥ 0, ∀ z ∈ U.

• f ∈ S(B1) if and only if there is a Loewner chain {ft}t≥0: f = f0.

aft = f (·, t).
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1. Loewner chains in several complex variables

A(Bn) ( S1(Bn); S0(Bn) ( S1(Bn) ( SR(Bn) = A(Bn) ( S(Bn), n ≥ 2.
• I. Graham, H. Hamada, G.K, 2002: S0(Bn) ( S(Bn), n ≥ 2.
• I. Graham, G.K, J.A. Pfaltzgraff, 2005: S1(Bn) ( S(Bn), n ≥ 2.
• L. Arosio, F. Bracci, E.F. Wold, 2013: S1(Bn) ⊆ SR(Bn).
• P. Gumenyuk, 2015: S1(Bn) ( SR(Bn), n ≥ 2.
• J.E. Fornaess, E. F. Wold, 2018: S̃1(B3) ( S(B3).

In Cn, n ≥ 2, there exists f ∈ S(Bn) which cannot be embedded as
the first element of a Loewner chain f (z, t) such that {e−t f (·, t)}t≥0
is a normal family on Bn. (I. Graham, H. Hamada, G.K, 2002).
In Cn, n ≥ 2, there exist Loewner chains f (z, t) such that⋃

t≥0 ft (Bn) = Cn, but which are not normal, that is {e−t f (·, t)}t≥0
is not a normal family on Bn. (I. Graham, H. Hamada, G.K, 2002).
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1. Loewner chains in several complex variables

Let f ∈ S(Bn). If there is a Loewner chain f (z, t) such that
f = f (·,0) and

⋃
t≥0 f (Bn, t) = Cn, then f (Bn) is a Runge domain

(L. Arosio, F. Bracci, E.F. Wold, 2013).
In Cn, n ≥ 2, there exist mappings f ∈ S(Bn) which cannot be
embedded as the first element of a Loewner chain f (z, t) with⋃

t≥0 f (Bn, t) = Cn (L. Arosio, F. Bracci, E.F. Wold, 2013).

In dimension n ≥ 2, the Loewner differential equation

∂f
∂t

(z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ Bn,

does not have a unique normalized univalent solution f (z, t)
(I.Graham, G.K, J.A. Pfaltzgraff, 2005; P. Duren, I. Graham, H.
Hamada, G.K, 2011)
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1. Loewner chains in several complex variables

Notations
For A ∈ L(Cn), we denote by

|V (A)| := max{|〈A(z), z〉| : ‖z‖ = 1},

m(A) := min{Re 〈A(z), z〉 : ‖z‖ = 1},

k+(A) := max{Re λ : λ ∈ σ(A)},

where σ(A) is the spectrum of A.
• k+(A)-the upper exponential index (Lyapunov index) of A.
• |V (A)|-the numerical radius of the operator A.

The Carathéodory family NA(Bn)

NA :=
{

h ∈ H(Bn) : h(0) = 0,Dh(0) = A,Re 〈h(z), z〉 > 0, z ∈ Bn \ {0}
}
,

M := NIn =
{

h ∈ H(Bn) : h(0) = 0,Dh(0) = In,Re 〈h(z), z〉 > 0, z 6= 0
}
.
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1. Loewner chains in several complex variables

• I. Graham, H. Hamada, G. K, Canad. J. Math. (2002)

Theorem
Let A ∈ L(Cn) be s.t. m(A) > 0. If f (z) = Az +

∑∞
m=2 Pm(z) ∈ NA, then

(i) |V (Pm)| ≤ 2|V (A)| and ‖Pm(z)‖ ≤ 4m|V (A)| for m ≥ 2 and ‖z‖ = 1.
(ii) m(A)r(1− r)/(1 + r) ≤ ‖f (z)‖ ≤ 4|V (A)|r/(1− r)2 for ‖z‖ = r < 1.

Theorem
If A ∈ L(Cn) with m(A) > 0, then NA is a compact subset of H(Bn).

Theorem
F. Bracci, M. Elin, D. Shoikhet, J. Nonlinear Convex Anal, 2014:
If f ∈ NIn , then ‖f (z)‖ ≤ r

[
1 + 8 r(1−r log 2)

(1−r)2

]
, ‖z‖ = r < 1.

Open problem
Find the sharp growth result and sharp coefficient bounds for the
Carathéodory family NA(Bn) in dimension n ≥ 2.
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1. Loewner chains in several complex variables

F. Bracci, CMFT (2015): shearing process; F. Bracci, O. Roth,
2016 I. Graham, H. Hamada, G.K, M.K, 2016 (coefficient bounds
for NA(Bn), m(A) > 0);

Theorem

Let h = (h1,h2) : B2 → C2 be given by

h(z) = (z1 + q1
0,2z2

2 + · · · , z2 + q2
2,0z2

1 + · · · ), z = (z1, z2) ∈ B2.

If h = (h1,h2) ∈M, then |q1
0,2| ≤

3
√

3
2 (sharp estimate), and h[c] ∈M,

where
h[c](z) =

(
z1 + q1

0,2z2
2 , z2

)
, z = (z1, z2) ∈ B2.

Gabriela Kohr , Mirela Kohr (UBB Cluj) Loewner chains and approximation properties 11 / 35



1. Loewner chains in several complex variables

Example

• If f ∈ H(Bn) is normalized locally univalent on Bn, then the following
conditions are equivalent:
(i) f ∈ S∗(Bn) (i.e. f is biholomorphic and e−t f (Bn) ⊆ f (Bn) for t ≥ 0);
(ii) f (z, t) = et f (z) is a Loewner chain on Bn × [0,∞).
(iii) <〈[Df (z)]−1f (z), z〉 > 0, for all z ∈ Bn \ {0}.

Example

• Let A ∈ L(Cn,Cn) be such that Re 〈A(z), z〉 > 0, z 6= 0. If f ∈ H(Bn)
is normalized locally univalent on Bn, then the following conditions are
equivalent:
(i) f is spirallike with respect to A (i.e. f is biholomorphic on Bn and
e−tAf (Bn) ⊆ f (Bn) for t ≥ 0);
(ii) f (z, t) = etAf (z) is A-univalent subordination chain on Bn × [0,∞).
(iii) <〈[Df (z)]−1Af (z), z〉 > 0, for all z ∈ Bn \ {0}.

• ∃ spirallike mapping f s.t. f is not in S0(Bn). Then we introduced the family S0
A(Bn).
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1. Loewner chains in several complex variables

Lemma

If f (z, t) is an univalent subordination chain, then there exists a transition mapping
v = v(·, s, t) associated with f (z, t), such that

f (·, s) = f (v(·, s, t), t), 0 ≤ s ≤ t <∞,

and (vs,t ) is the evolution family associated to f (z, t). Moreover,

(i) v(·, s, t) is univalent on Bn and v(z, s, s) = z, z ∈ Bn, s ≥ 0.

(ii) ‖v(z, s, ·)‖ is decreasing on [s,∞), for all z ∈ Bn and s ≥ 0.

(iii) Semigroup property: v(z, s, u) = v(v(z, s, t), t , u), 0 ≤ s ≤ t ≤ u <∞.

• S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of
Domains in Banach Spaces, Imperial College Press, London, 2005.

Definition

A mapping h : Bn × [0,∞)→ Cn is a Herglotz vector field if
(i) h(·, t) ∈ H(Bn), h(0, t) = 0, and Re 〈h(z, t), z〉 ≥ 0, z ∈ Bn, t ≥ 0;
(ii) h(z, ·) is measurable on [0,∞) for z ∈ Bn.
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1. Loewner chains in several complex variables

I. Graham, H. Hamada, G.K., M.K., J. Anal. Math. (2008);
L. Arosio; M. Voda (2011).

Theorem

Let A ∈ L(Cn) be such that m(A) > 0. Also let h : Bn × [0,∞)→ Cn

satisfy the following conditions:
(i) h(·, t) ∈ NA for t ≥ 0;
(ii) h(z, ·) is measurable on [0,∞) for each z ∈ Bn.
Then for each z ∈ Bn and s ≥ 0, the initial value problem

(2.1)
∂v
∂t

= −h(v , t), a.e. t ≥ s, v(z, s, s) = z,

has a unique solution v = v(z, s, t) such that v(·, s, t) is a univalent
Schwarz mapping, v(z, s, ·) is Lipschitz continuous on [s,∞) locally
uniformly with respect to z ∈ Bn and Dv(0, s, t) = exp(−A(t − s)).

h(z, t)-Herglotz vector field (generating vector field).
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1. Loewner chains in several complex variables

Theorem
Let A ∈ L(Cn) be such that k+(A) < 2m(A). Also let h(z, t) = Az + · · ·
be a Herglotz vector field and let vs,t (z) = v(z, s, t) be the Lipschitz
continuous solution on [s,∞) of (2.1). Then the limit

(2.2) lim
t→∞

etAvs,t (z) = f (z, s)

exists locally uniformly on Bn for s ≥ 0. Moreover, f (z, t) = etAz + · · ·
is an A-univalent subordination chain and {e−tAf (·, t)}t≥0 is a normal
family on Bn and

⋃
t≥0 ft (Bn) = Cn. In addition, f (z, ·) is locally

Lipschitz continuous on [0,∞) locally uniformly w.r.t. z ∈ Bn, and

(2.3)
∂f
∂t

(z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀ z ∈ Bn.

The A-univalent subordination chain f (z, t) given by (2.2) is called
the canonical solution of the Loewner differential equation (2.3).

• The above uniqueness result (about the canonical solution) and the relation (2.2) do
not hold if k+(A) = 2m(A).
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1. Loewner chains in several complex variables

• P. Duren, I. Graham, H. Hamada, G. Kohr, Math. Ann., 347, 411–435, 2010.

• g(z, t)-standard solution of the Loewner PDE (2.3) if g(·, t) ∈ H(Bn), g(0, t) = 0 and
Dg(0, t) = etA for t ≥ 0, g(z, ·) is locally Lipschitz continuous on [0,∞) locally
uniformly with respect to z ∈ Bn, and g(z, t) is a solution of (2.3).
• When a standard solution coincides with the canonical solution?

Theorem
Let A ∈ L(Cn) be such that k+(A) < 2m(A). If
f = f (z, t) : Bn × [0,∞)→ Cn is a standard solution of the Loewner
PDE (2.3), i.e.,

∂f
∂t

(z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀ z ∈ Bn,

then f (·, s) = f (v(·, s, t), t), where v(·, s, t) is the solution of (2.1). If
{e−tAf (·, t)}t≥0 is a normal family on Bn, then f (z, t) is an A-univalent
subordination chain, and coincides with the canonical solution of (2.3).
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1. Loewner chains in several complex variables

Every univalent solution f (z, t) = etAz + · · · of the Loewner PDE
(2.3) is an A-univalent subordination chain.

Theorem

Let A ∈ L(Cn) be such that k+(A) < 2m(A). If f (z, t) = etAz + · · · , then
f (z, t) is an A-univalent subordination chain if and only if f (z, t) is a
univalent solution of the Loewner differential equation

∂f
∂t

(z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀ z ∈ Bn,

associated with a Herglotz vector field h : Bn × [0,∞)→ Cn.

• The uniqueness result about the canonical solution and the
relation (2.2) do not hold if k+(A) = 2m(A) (Duren, Graham,
Hamada, G.K, 2010).
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1. Loewner chains in several complex variables

Theorem

If f (z, t) = etz + · · · is a Loewner chain such that {e−t f (·, t)}t≥0 is a
normal family on Bn, then

⋃
t≥0 ft (Bn) = Cn and

et‖z‖
(1 + ‖z‖)2 ≤ ‖f (z, t)‖ ≤ et‖z‖

(1− ‖z‖)2 , z ∈ Bn, t ≥ 0.

• There exist Loewner chains f (z, t) which do not satisfy this growth
result and {e−t f (·, t)}t≥0 is not a normal family on Bn, for n ≥ 2.

Example

Let g(z, t) =
(

et z1
(1−z1)2 , et z2

(1−z2)2

)
for z = (z1, z2) ∈ B2, t ≥ 0. Then g(z, t) is a Loewner

chain, and if Φ(z) = (z1, z2 + z2
1 ), then Φ ∈ Aut(C2) and f (z, t) := Φ(g(z, t)) is a

Loewner chain such that ‖f (r , 0)‖ > r/(1− r)2 for r ∈ (0, 1), and {e−t f (·, t)}t≥0 is not
a normal family on B2.
• f (z, t) and g(z, t) 7→ the same Loewner PDE
•
⋃

t≥0 ft (B2) =
⋃

t≥0 gt (B2) = C2.
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1. Loewner chains in several complex variables

• P. Duren, I. Graham, H. Hamada and G.K, Math. Ann. (2010)

Theorem
Let A ∈ L(Cn) be such that k+(A) < 2m(A). Let h(z, t) = Az + · · · be a
Herglotz vector field, and let f (z, t) = etAz + · · · be the canonical
solution of the Loewner PDE (2.3), i.e.

∂f
∂t

(z, t) = Df (z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ Bn,

and let g(z, t) be a standard solution of (2.3). If {e−tAg(·, t)}t≥0 is a
normal family on Bn, then there exists Ψ ∈ L(Cn) such that
g(z, t) = Ψ(f (z, t)) for z ∈ Bn and t ≥ 0.

Corollary

Let A ∈ L(Cn) be such that k+(A) < 2m(A). The canonical solution
f (z, t) = etAz + · · · of the Loewner PDE (2.3) is the unique normalized
univalent Loewner chain solution such that {e−tAf (·, t)}t≥0 is a normal
family on Bn, and R(ft ) :=

⋃
t≥0 f (Bn, t) = Cn.
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1. Loewner chains in several complex variables

• How does look a standard solution in terms of the canonical solution?

P. Duren, I. Graham, H. Hamada and G.K., Math. Ann. (2010)

Theorem

Let A ∈ L(Cn) be such that k+(A) < 2m(A). If g(z, t) = etAz + · · · is a
Loewner chain, then there exist a unique Loewner chain
f (z, t) = etAz + · · · such that {e−tAf (·, t)}t≥0 is a normal family, and a
unique entire univalent mapping Φ (Φ is an automorphism of Cn or a
Fatou-Bieberbach map) such that g(·, t) = Φ(f (·, t)), t ≥ 0.

L. Arosio (2011); M. Vodă (2011) (resonances).
L. Arosio, F. Bracci, E.F. Wold, Solving the Loewner PDE in
complete hyperbolic starlike domains of Cn. Adv. Math. 242,
209–216 (2013).
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1. Loewner chains in several complex variables

• P. Duren, I. Graham, H. Hamada, G. Kohr: Solutions for the generalized Loewner
differential equation in several complex variables, Math. Ann., 347 (2010).

1 Every normal Loewner chaina (gt )t≥0 satisfies: R(gt ) = Cn.
2 For every Loewner chain (gt )t≥0 there exists a unique normal

Loewner chain {ft}t≥0 and a unique biholomorphic mapping
Φ : Cn → R(ft ) such that gt = Φ ◦ ft , for all t ≥ 0.
If R(gt ) = Cn, then Φ is an automorphism of Cn. If R(gt ) 6= Cn,
then Φ is a Fatou-Bieberbach mapping.

3 (gt )t≥0 is Loewner chain if and only if (gt )t≥0 is a normalized
solution of the Loewner differential equation associated to a
Herglotz vector field h : Bn × [0,∞)→ Cn:

∂g
∂t

(z, t) = Dg(z, t)h(z, t), , a.e. t ≥ 0, ∀z ∈ Bn.

agt := g(·, t).
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2. Parametric representation on the unit ball

2. Parametric representation on the unit ball

Definition
Let f ∈ H(Bn) be such that f (0) = 0, Df (0) = In. Also let A ∈ L(Cn) be
such that k+(A) < 2m(A). We say that f has A-parametric
representation if there exists mapping h : Bn × [0,∞)→ Cn such that

(i) h(·, t) ∈ NA(Bn), t ≥ 0;
(ii) h(z, ·) is measurable on [0,∞), z ∈ Bn

such that f (z) = limt→∞ etAv(z, t) locally uniformly on Bn, where
v = v(z, t) is the unique Lipschitz continuous solution on [0,∞) of the
initial value problem

∂v
∂t

= −h(v , t), a.e. t ≥ 0, v(z,0) = z, ∀z ∈ Bn.

S0
A(Bn) := {f ∈ S(Bn) : f has A-parametric representation}

S0(Bn) := S0
In (Bn) (usual parametric representation).
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2. Parametric representation on the unit ball

I. Graham, H. Hamada, G.K., M.K., 2008:

Theorem

Let f ∈ S(Bn) and A ∈ L(Cn) with k+(A) < 2m(A). Then f ∈ S0
A(Bn) if

and only if there exists an A-univalent subordination chain f (z, t) such
that {e−tAf (·, t)}t≥0 is a normal family on Bn and f = f (·,0).

Corollary
Let f ∈ S0(Bn) = S0

In (Bn). Then

‖z‖
(1 + ‖z‖)2 ≤ ‖f (z)‖ ≤ ‖z‖

(1− ‖z‖)2 , z ∈ Bn.

These estimates are sharp.

Theorem

S0
A(Bn) is a compact family for A ∈ L(Cn) with k+(A) < 2m(A).

• This compactness result does not hold if k+(A) = 2m(A) (Duren et al. 2010).
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3. Runge properties and Loewner chains

3. Rungeness and approximation properties

H. Hamada, M. Iancu, G.K, S. Schleissinger (2017-2018).
Aut(Cn) =

{
Φ : Cn → Cn : Φ is an automorphism of Cn},

A(Bn) =
{

Φ
∣∣
Bn : Φ ∈ Aut(Cn),Φ(0) = 0,DΦ(0) = In}.

Definition
Let D1 ⊆ D2 ⊆ Cn be domains. Then (D1,D2) is called a Runge pair if
O(D2) is dense in O(D1), where O(Dj) is the family of holomorphic
functions of Dj into C, for j = 1,2. A domain D ⊆ Cn is called Runge if
(D,Cn) is a Runge pair.

Remark
(i) A domain D ⊆ C is Runge if and only if D is simply connected.
(ii) Every starlike domain D ⊆ Cn is Runge (A. El Kasimi, Complex
Var. Theory Appl., 1988).
(iii) Every spirallike domain D ⊆ Cn with respect to A ∈ L(Cn) with
m(A) > 0 is Runge (H. Hamada, Adv. Math., 2015).
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3. Runge properties and Loewner chains

• J. Wermer, 1959: There is a biholomorphic mapping F : U2 → C2

such that F (U2) is not Runge, and thus the Runge property is not an
invariant property with respect to biholomorphic maps.

• E. Fornaess Wold, 2008: For n ≥ 2, there is a Fatou-Bieberbach
mapping ψ : Cn → Cn such that ψ(Cn) is not Runge.

• Every automorphism of Cn preserves the Runge property.

• E. Andersén, L. Lempert, On the group of holomorphic
automorphisms of Cn, Invent. Math., 110 (1992), 371–388.
• F. Forstnerič, J.P. Rosay, Approximation of biholomorphic mappings
by automorphisms of Cn, Invent. Math. 112 (1993) 323–349.

Theorem
Let n ≥ 2, D ⊆ Cn be a starlike domain w.r.t. the origin, and let
f : D → Cn be a biholomorphic mapping. Then f (D) is a Runge
domain if and only if there is a sequence of automorphisms of Cn

which converges to f , locally uniformly on D.
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3. Runge properties and Loewner chains

• H. Hamada, Approximation properties on spirallike domains of Cn,
Adv. Math., 268 (2015), 467–477.

Theorem
Let n ≥ 2. Let D ⊆ Cn be a spirallike domain with respect to A with
k+(A) < 2m(A), and let f : D → Cn be a biholomorphic mapping. Then
f (D) is a Runge domain if and only if there is a sequence of
automorphisms of Cn which converges to f , locally uniformly on D.

• L. Arosio, F. Bracci, E. Fornaess Wold, Adv. Math., 2013:

Theorem
Every Loewner chain (ft )t≥0 satisfies: (fs(Bn), ft (Bn)) is a Runge pair,
0 ≤ s ≤ t . In particular, if R(ft ) :=

⋃
t≥0 ft (Bn) = Cn, then ft (Bn) is a

Runge domain in Cn, for all t ≥ 0.

• S0(Bn) ( S1(Bn) ⊆ SR(Bn), n ≥ 2.
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3. Runge properties and Loewner chains

SR(Bn) =
{

f ∈ S(Bn) : f (Bn) is Runge
}

.

S0
A(Bn) =

{
f ∈ S(Bn) : ∃ A-normal Loewner chain (ft ), f = f0

}
.

S1
A(Bn) =

{
f ∈ S(Bn) : ∃ A-Loewner chain (ft )

with R(ft ) = Cn such that f (·, 0) = f
}

A(Bn) =
{

Φ|Bn : Φ ∈ Aut(Cn), Φ(0) = 0, DΦ(0) = In}.

• For n = 1: S0 = S1 = SR = S and A = {id}.
• For n ≥ 2: S0(Bn) ( S1(Bn) ⊆ SR(Bn).
• If f ∈ SR(Bn) ∩C1(Bn), then f ∈ S1(Bn) (an application of the variational method due
to Bracci, Graham, Hamada, G.K., 2016).

• L. Arosio, F. Bracci, E.F. Wold, Proc. Amer. Math. Soc. (2015):
Let n ≥ 2 and A ∈ L(Cn), k+(A) < 2m(A). Then

A(Bn) ( S1
A(Bn) ⊆ SR(Bn) = A(Bn) ( S(Bn).

• S. Schleissinger (2014); H.Hamada (2015): S0
A(Bn) ⊆ SR(Bn).
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3. Runge properties and Loewner chains

• H. Hamada, Adv. Math., 2015: A-spirallike domains in Cn are Runge
domains, for all A ∈ L(Cn), m(A) > 0.

H. Hamada, M. Iancu, G. K, S. Schleissinger (2018):

Theorem
Let A ∈ L(Cn) be such that k+(A) < 2m(A), and let n ≥ 2. Then
S0

A(Bn) = S0
A(Bn) ∩ A(Bn). In particular, S0(Bn) = S0(Bn) ∩ A(Bn).

S∗(Bn) = S∗(Bn) ∩ A(Bn).

Theorem

If n ≥ 2, then K (Bn) = K (Bn) ∩ A(Bn).

H. Hamada, M. Iancu, G.K (2018):

If n ≥ 2 and m(A) > 0, then S0
A(Bn) = S0

A(Bn) ∩ A(Bn).
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3. Extreme points, support points and parametric representation

4. Extreme points, support points and parametric
representation

Definition
Let X be a locally convex topological vector space and let E ⊆ X .
(i) A point x ∈ E is called an extreme point of E (x ∈ ex E) provided
x = ty + (1− t)z, where t ∈ (0,1), y , z ∈ E , implies x = y = z. That is,
x ∈ E is an extreme point of E if x is not a proper convex combination
of two points in E .
(ii) A point w ∈ E is called a support point of E (w ∈ supp E) if
<L(w) = maxy∈E <L(y) for some continuous linear functional
L : X → C such that <L is nonconstant on E .

• X := H(Bn); ex S0
A(Bn) 6= ∅ and supp S0

A(Bn) 6= ∅ for k+(A) < 2m(A).
• J. Muir, T.J. Suffridge (2006): extreme points for K (Bn).
• I. Graham, G.K and J.A, Pfaltzgraff (2005): extreme and support
points of compact subsets of S(Bn) generated by extension operators.
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3. Extreme points, support points and parametric representation

I. Graham, H. Hamada, G.K, M.K (2010-2014):

Theorem 1

Let f ∈ ex S0(Bn). Also, let f (z, t) be a Loewner chain such that
f = f (·,0) and {e−t f (·, t)}t≥0 is a normal family on Bn. Then
e−t f (·, t) ∈ ex S0(Bn) for t ≥ 0.

Theorem 2

Let f ∈ supp S0(Bn) and f (z, t) be a Loewner chain s.t. f = f (·,0) and
{e−t f (·, t)}t≥0 is a normal family on Bn. Then ∃ t0 > 0 s.t.
e−t f (·, t) ∈ supp S0(Bn) for 0 ≤ t < t0.

• If no bounded map in S0
A(Bn) is a support point of S0

A(Bn), then
Theorem 2 holds for all t ∈ [0,∞).
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3. Extreme points, support points and parametric representation

Conjecture 1 (2010)

There are no bounded support/extreme points of S0(Bn) for n ≥ 2.

• S. Schleissinger, Proc. AMS, 2014 (Runge pairs in Cn):

Theorem

If f ∈ supp S0(Bn) then e−t f (·, t) ∈ supp S0(Bn) for t ≥ 0.

• F. Bracci, CMFT, 2015: in higher dimensions, there exist bounded
support points for the family S0(Bn).

Theorem

If f = (f1, f2) ∈ S0(B2), then |a1
0,2| ≤

3
√

3
2 , where a1

0,2 = ∂2f1
∂z2

2
(0). The

above bound is sharp and equality holds for

F (z) =
(

z1 +
3
√

3
2

z2
2 , z2

)
, z = (z1, z2) ∈ B2.

In particular, F is a bounded support point of S0(B2).

• Is it true that F ∈ ex S0(B2)?
• Characterize all bounded support points of S0(B2).
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3. Extreme points, support points and parametric representation

• I. Graham, H. Hamada, G.K., M.K., Math. Ann., 2014:

Theorem

Let A ∈ L(Cn) be such that k+(A) < 2m(A). Also let f ∈ supp S0
A(Bn)

(resp. f ∈ ex S0(Bn)) and let f (z, t) be an A-normalized univalent
subordination chain such that f = f (·,0) and {e−tAf (·, t)}t≥0 is a
normal family on Bn. Then e−tAf (·, t) ∈ supp S0

A(Bn) (respectively
e−tAf (·, t) ∈ ex S0

A(Bn)) for t ≥ 0.

• Extension to higher dimensions of results due to R. Pell, 1980;
W.E. Kirwan, 1980, and Kirwan and Schober, 1982, for n = 1 (the
family S).
• Extension of Schleissinger’s result, 2014.
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Open problems

Open problems

Is it true that S(Bn) = S̃1(Bn) for n ≥ 2?

Characterize exNA and suppNA in dimension n ≥ 2, where
k+(A) < 2m(A). Connections with ex S0

A(Bn) and supp S0
A(Bn).

Find connections between ex S0(Bn) (resp. supp S0(Bn)) and exM
(resp. suppM).

If f ∈ ex S0(Bn), is it true that f is unbounded on Bn, n ≥ 2?

Characterize the extreme/support points of other compact subsets
of S0(Bn) (for example, the families of convex and starlike
mappings).
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Open problems

Question

Let f ∈ S0(Bn) and let (ft ) be a Loewner chain such that f = f0. Also,
let h = h(z, t) be the associated Herglotz vector field of (ft ).

(i) Is it true that h(·, t) ∈ exM(Bn) for a.e. t ∈ [0,∞) if and only if
f ∈ ex S0(Bn)?

(ii) If h(·, t) ∈ suppM(Bn) for a.e. t ≥ 0, is it true that f ∈ supp S0(Bn)?

O. Roth, 2016: If f ∈ supp S0(Bn), then h(·, t) ∈ suppM(Bn) for
a.e. t ≥ 0.

Characterize all bounded support points of S0(Bn), for n ≥ 2.
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Open problems

Thank you for your attention!
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