Extremal results, approximation properties, and related problems associated with the Loewner differential equation in \mathbb{C}^n

Gabriela Kohr , Mirela Kohr

Faculty of Mathematics and Computer Science Babeş-Bolyai University Cluj-Napoca, Romania

Based on joint work with Ian Graham (Toronto), Hidetaka Hamada (Fukuoka), and Mihai Iancu (Cluj-Napoca)

The Loewner differential equation on the unit ball in Cⁿ

• I. Graham, H. Hamada, **G. K.**, M. K.: *Asymptotically spirallike mappings in several complex variables*, J. Anal. Math., **105**, 267-302 (2008).

• P. Duren, I. Graham, H. Hamada, **G. K.**: Solutions for the generalized Loewner differential equation in several complex variables, Math. Ann., **347**, 411-435 (2010).

• Extremal problems for univalent mappings with parametric representation on \mathbb{B}^n

• I. Graham, H. Hamada, **G. K.**, M. K. : *Extremal properties associated with univalent subordination chains in* ℂ^{*n*}, Math. Ann., **359**, 61–99 (2014).

Variation of Loewner chains in higher dimensions

• F. Bracci, I. Graham, H. Hamada, **G. K.**, *Variation of Loewner chains, extreme and support points in the class S*⁰ *in higher dimensions,* Constructive Approx., **43** (2016), 231–251.

• I. Graham, H. Hamada, **G. K.**, M. K., *Support points and extreme points for mappings with A-parametric representation in* ℂ^{*n*}, J. Geom. Anal., **26** (2016), 1560–1595.

• Approximation properties by automorphisms of \mathbb{C}^n and quasiconformal diffeomorphisms in \mathbb{C}^n

• H. Hamada, M. Iancu, **G. K.**, S. Schleissinger, *Approximation properties of univalent mappings on the unit ball in* ℂ^{*n*}, J. Approx. Theory, **226** (2018), 14–33.

• H. Hamada, M. Iancu, **G. K.**, Approximation of univalent mappings by automorphisms and quasiconformal diffeomorphisms in \mathbb{C}^n , 2020.

1. Loewner chains in several complex variables

Definition

 $f:\mathbb{B}^n imes [0,\infty) o \mathbb{C}^n$ is an univalent subordination chain if:

(i) $f(\cdot, t) \equiv f_t$ is univalent (holomorphic and injective) on \mathbb{B}^n , $f(0, t) = 0, t \ge 0$.

(ii)
$$f(\mathbb{B}^n, s) \subseteq f(\mathbb{B}^n, t), 0 \le s \le t < \infty$$
.

Definition

- An univalent subordination chain f(z, t) is said to be an *A*-normalized univalent subordination chain (*A*-Loewner chain) if $Df(0, t) = e^{tA}, t \ge 0$, where $A \in L(\mathbb{C}^n)$; $f(z, t) = e^{tA}z + \cdots, z \in \mathbb{B}^n$, $t \ge 0$.
- A normalized Loewner chain (Loewner chain) f(z, t) is an I_n -Loewner chain. Thus, $f(z, t) = e^t z + \cdots, z \in \mathbb{B}^n, t \ge 0$.
- If, in addition, $\{e^{-t}f_t\}_{t\geq 0}$ is a normal family (i.e. locally uniformly bounded family), then $\{f_t\}_{t>0}$ is called a normal Loewner chain. Gabriela Kohr, Mirela Kohr (UBB Cluj) Loewner chains and approximation properties 4/35

- $H(\mathbb{B}^n) = \{ f : \mathbb{B}^n \to \mathbb{C}^n | f \text{ is holomorphic } \}.$
- $S(\mathbb{B}^n) := \{h \in H(\mathbb{B}^n) : h \text{ univalent }, h(0) = 0, Dh(0) = I_n\}.$
- $S(\mathbb{B}^n)$ is closed but is not compact for $n \ge 2$.

I. Graham, H. Hamada, G. K, Canad. J. Math. (2002): The family $S^0(\mathbb{B}^n)$ of mappings in $S(\mathbb{B}^n)$ which admit parametric representation:

$$\begin{split} S^{0}(\mathbb{B}^{n}) &:= \big\{ f \in S(\mathbb{B}^{n}) : \exists f(z,t) \text{ Loewner chain such that} \\ \{ e^{-t}f(\cdot,t) \}_{t \geq 0} \text{ normal family and } f = f(\cdot,0) \big\}. \\ S^{1}(\mathbb{B}^{n}) &:= \big\{ f \in S(\mathbb{B}^{n}) : \exists f(z,t) \text{ Loewner chain such that} \\ f = f(\cdot,0), \bigcup_{t \geq 0} f_{t}(\mathbb{B}^{n}) = \mathbb{C}^{n} \big\}. \\ S_{R}(\mathbb{B}^{n}) &:= \big\{ f \in S(\mathbb{B}^{n}) : f(\mathbb{B}^{n}) \text{ is a Runge domain in } \mathbb{C}^{n} \big\}. \\ \mathcal{A}(\mathbb{B}^{n}) &:= \big\{ \Phi \in \operatorname{Aut}(\mathbb{C}^{n}) : \Phi|_{\mathbb{B}^{n}} \in S(\mathbb{B}^{n}) \big\}. \end{split}$$

n = 1

- $S(\mathbb{B}^1)$ is a compact family (i.e. closed and normal).
- $S^0(\mathbb{B}^1) = S^1(\mathbb{B}^1) = S_R(\mathbb{B}^1) = S$.
- every Loewner chain is a normal Loewner chain.
- for every Loewner chain^{*a*} $\{f_t\}_{t\geq 0}$ we have: $R(f_t) = \mathbb{C}$;
- $\{f_t\}_{t\geq 0}$ is a Loewner chain if and only if $\{f_t\}_{t\geq 0}$ is a *normalized* solution of the Loewner differential equation associated to a Herglotz vector field $p : \mathbb{U} \times [0, \infty) \to \mathbb{C}$:

$$\frac{\partial f}{\partial t}(z,t) = f'(z,t)p(z,t), \quad \text{ a.e. } t \ge 0, \ \forall z \in \mathbb{U}.$$

• $f \in S(\mathbb{B}^1)$ if and only if there is a Loewner chain $\{f_t\}_{t \ge 0}$: $f = f_0$.

 $^{a}f_{t}=f(\cdot,t).$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $\mathcal{A}(\mathbb{B}^n) \subsetneq S^1(\mathbb{B}^n); \ S^0(\mathbb{B}^n) \subsetneq S^1(\mathbb{B}^n) \subsetneq S_R(\mathbb{B}^n) = \overline{\mathcal{A}(\mathbb{B}^n)} \subsetneq S(\mathbb{B}^n), \ n \ge 2.$

- I. Graham, H. Hamada, G.K, 2002: $S^{0}(\mathbb{B}^{n}) \subsetneq S(\mathbb{B}^{n}), n \geq 2$.
- I. Graham, G.K, J.A. Pfaltzgraff, 2005: $S^1(\mathbb{B}^n) \subsetneq S(\mathbb{B}^n)$, $n \ge 2$.
- L. Arosio, F. Bracci, E.F. Wold, 2013: $S^1(\mathbb{B}^n) \subseteq S_R(\mathbb{B}^n)$.
- P. Gumenyuk, 2015: $S^1(\mathbb{B}^n) \subsetneq S_R(\mathbb{B}^n), n \ge 2$.
- J.E. Fornaess, E. F. Wold, 2018: $\widetilde{S}^1(\mathbb{B}^3) \subsetneq S(\mathbb{B}^3)$.
 - In Cⁿ, n ≥ 2, there exists f ∈ S(Bⁿ) which cannot be embedded as the first element of a Loewner chain f(z, t) such that {e^{-t}f(·, t)}_{t≥0} is a normal family on Bⁿ. (I. Graham, H. Hamada, G.K, 2002).
 - In \mathbb{C}^n , $n \ge 2$, there exist Loewner chains f(z, t) such that $\bigcup_{t\ge 0} f_t(\mathbb{B}^n) = \mathbb{C}^n$, but which are not normal, that is $\{e^{-t}f(\cdot, t)\}_{t\ge 0}$ is not a normal family on \mathbb{B}^n . (I. Graham, H. Hamada, G.K, 2002).

- Let $f \in S(\mathbb{B}^n)$. If there is a Loewner chain f(z, t) such that $f = f(\cdot, 0)$ and $\bigcup_{t \ge 0} f(\mathbb{B}^n, t) = \mathbb{C}^n$, then $f(\mathbb{B}^n)$ is a Runge domain (L. Arosio, F. Bracci, E.F. Wold, 2013).
- In \mathbb{C}^n , $n \ge 2$, there exist mappings $f \in S(\mathbb{B}^n)$ which cannot be embedded as the first element of a Loewner chain f(z, t) with $\bigcup_{t>0} f(\mathbb{B}^n, t) = \mathbb{C}^n$ (L. Arosio, F. Bracci, E.F. Wold, 2013).

• In dimension $n \ge 2$, the Loewner differential equation

 $\frac{\partial f}{\partial t}(z,t) = Df(z,t)h(z,t), \quad \text{ a.e. } t \ge 0, \, \forall z \in \mathbb{B}^n,$

does not have a unique normalized univalent solution f(z, t) (I.Graham, G.K, J.A. Pfaltzgraff, 2005; P. Duren, I. Graham, H. Hamada, G.K, 2011)

Notations

For $A \in L(\mathbb{C}^n)$, we denote by

$$V(A)|:=\max\{|\langle A(z),z\rangle|:||z||=1\},$$

$$m(A) := \min\{\operatorname{Re} \langle A(z), z \rangle : \|z\| = 1\},\$$

 $k_+(A) := \max\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\},\$

where $\sigma(A)$ is the spectrum of *A*.

- $k_+(A)$ -the upper exponential index (Lyapunov index) of A.
- |V(A)|-the numerical radius of the operator A.

The Carathéodory family $\mathcal{N}_{\mathcal{A}}(\mathbb{B}^n)$

 $\mathcal{N}_{\mathcal{A}} := \left\{ h \in \mathcal{H}(\mathbb{B}^n) : h(0) = 0, Dh(0) = \mathcal{A}, \operatorname{Re} \langle h(z), z \rangle > 0, z \in \mathbb{B}^n \setminus \{0\} \right\}$

 $\mathcal{M} := \mathcal{N}_{I_n} = \big\{ h \in H(\mathbb{B}^n) : h(0) = 0, Dh(0) = I_n, \operatorname{Re} \langle h(z), z \rangle > 0, z \neq 0 \big\}.$

• I. Graham, H. Hamada, G. K, Canad. J. Math. (2002)

Theorem

Let $A \in L(\mathbb{C}^n)$ be s.t. m(A) > 0. If $f(z) = Az + \sum_{m=2}^{\infty} P_m(z) \in \mathcal{N}_A$, then (i) $|V(P_m)| \le 2|V(A)|$ and $||P_m(z)|| \le 4m|V(A)|$ for $m \ge 2$ and ||z|| = 1. (ii) $m(A)r(1-r)/(1+r) \le ||f(z)|| \le 4|V(A)|r/(1-r)^2$ for ||z|| = r < 1.

Theorem

If $A \in L(\mathbb{C}^n)$ with m(A) > 0, then \mathcal{N}_A is a compact subset of $H(\mathbb{B}^n)$.

Theorem

F. Bracci, M. Elin, D. Shoikhet, J. Nonlinear Convex Anal, 2014: If $f \in \mathcal{N}_{I_n}$, then $||f(z)|| \le r \left[1 + 8 \frac{r(1-r\log 2)}{(1-r)^2}\right]$, ||z|| = r < 1.

Open problem

Find the sharp growth result and sharp coefficient bounds for the Carathéodory family $\mathcal{N}_{\mathcal{A}}(\mathbb{B}^n)$ in dimension $n \ge 2$.

F. Bracci, CMFT (2015): shearing process; F. Bracci, O. Roth, 2016 I. Graham, H. Hamada, G.K, M.K, 2016 (coefficient bounds for *N_A*(ℝⁿ), *m*(*A*) > 0);

Theorem

Let
$$h = (h_1, h_2) : \mathbb{B}^2 o \mathbb{C}^2$$
 be given by

$$h(z) = (z_1 + q_{0,2}^1 z_2^2 + \cdots, z_2 + q_{2,0}^2 z_1^2 + \cdots), \ z = (z_1, z_2) \in \mathbb{B}^2.$$

If $h = (h_1, h_2) \in \mathcal{M}$, then $|q_{0,2}^1| \le \frac{3\sqrt{3}}{2}$ (sharp estimate), and $h^{[c]} \in \mathcal{M}$, where

$$h^{[c]}(z) = (z_1 + q_{0,2}^1 z_2^2, z_2), \quad z = (z_1, z_2) \in \mathbb{B}^2.$$

Example

• If $f \in H(\mathbb{B}^n)$ is normalized locally univalent on \mathbb{B}^n , then the following conditions are equivalent:

(*i*) $f \in S^*(\mathbb{B}^n)$ (i.e. *f* is biholomorphic and $e^{-t}f(\mathbb{B}^n) \subseteq f(\mathbb{B}^n)$ for $t \ge 0$); (*ii*) $f(z,t) = e^t f(z)$ is a Loewner chain on $\mathbb{B}^n \times [0,\infty)$. (*iii*) $\Re \langle [Df(z)]^{-1}f(z), z \rangle > 0$, for all $z \in \mathbb{B}^n \setminus \{0\}$.

Example

• Let $A \in L(\mathbb{C}^n, \mathbb{C}^n)$ be such that Re $\langle A(z), z \rangle > 0, z \neq 0$. If $f \in H(\mathbb{B}^n)$ is normalized locally univalent on \mathbb{B}^n , then the following conditions are equivalent:

(*i*) *f* is spirallike with respect to *A* (i.e. *f* is biholomorphic on \mathbb{B}^n and $e^{-tA}f(\mathbb{B}^n) \subseteq f(\mathbb{B}^n)$ for $t \ge 0$); (*ii*) $f(z,t) = e^{tA}f(z)$ is *A*-univalent subordination chain on $\mathbb{B}^n \times [0,\infty)$.

(iii) $\Re \langle [Df(z)]^{-1} Af(z), z \rangle > 0$, for all $z \in \mathbb{B}^n \setminus \{0\}$.

• \exists spirallike mapping *f* s.t. *f* is not in $S^0(\mathbb{B}^n)$. Then we introduced the family $S^0_A(\mathbb{B}^n)$.

Lemma

If f(z, t) is an univalent subordination chain, then there exists a **transition mapping** $v = v(\cdot, s, t)$ associated with f(z, t), such that

 $f(\cdot, s) = f(v(\cdot, s, t), t), \ 0 \le s \le t < \infty,$

and $(v_{s,t})$ is the evolution family associated to f(z, t). Moreover,

- (i) $v(\cdot, s, t)$ is univalent on \mathbb{B}^n and $v(z, s, s) = z, z \in \mathbb{B}^n, s \ge 0$.
- (*ii*) $||v(z, s, \cdot)||$ is decreasing on $[s, \infty)$, for all $z \in \mathbb{B}^n$ and $s \ge 0$.
- (iii) Semigroup property: $v(z, s, u) = v(v(z, s, t), t, u), \quad 0 \le s \le t \le u < \infty.$

• S. Reich and D. Shoikhet, Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces, Imperial College Press, London, 2005.

Definition

A mapping $h : \mathbb{B}^n \times [0, \infty) \to \mathbb{C}^n$ is a **Herglotz vector field** if (i) $h(\cdot, t) \in H(\mathbb{B}^n)$, h(0, t) = 0, and Re $\langle h(z, t), z \rangle \ge 0$, $z \in \mathbb{B}^n$, $t \ge 0$; (ii) $h(z, \cdot)$ is measurable on $[0, \infty)$ for $z \in \mathbb{B}^n$. 1. Loewner chains in several complex variables

I. Graham, H. Hamada, **G.K.**, M.K., J. Anal. Math. (2008); L. Arosio; M. Voda (2011).

Theorem

Let $A \in L(\mathbb{C}^n)$ be such that m(A) > 0. Also let $h : \mathbb{B}^n \times [0, \infty) \to \mathbb{C}^n$ satisfy the following conditions: (i) $h(\cdot, t) \in \mathcal{N}_A$ for $t \ge 0$; (ii) $h(z, \cdot)$ is measurable on $[0, \infty)$ for each $z \in \mathbb{B}^n$. Then for each $z \in \mathbb{B}^n$ and $s \ge 0$, the initial value problem

(2.1)
$$\frac{\partial v}{\partial t} = -h(v,t), \text{ a.e. } t \ge s, v(z,s,s) = z,$$

has a unique solution v = v(z, s, t) such that $v(\cdot, s, t)$ is a univalent Schwarz mapping, $v(z, s, \cdot)$ is Lipschitz continuous on $[s, \infty)$ locally uniformly with respect to $z \in \mathbb{B}^n$ and $Dv(0, s, t) = \exp(-A(t - s))$.

• *h*(*z*, *t*)-**Herglotz vector field** (generating vector field).

Theorem

Let $A \in L(\mathbb{C}^n)$ be such that $k_+(A) < 2m(A)$. Also let $h(z, t) = Az + \cdots$ be a Herglotz vector field and let $v_{s,t}(z) = v(z, s, t)$ be the Lipschitz continuous solution on $[s, \infty)$ of (2.1). Then the limit

(2.2)
$$\lim_{t\to\infty} e^{tA} v_{s,t}(z) = f(z,s)$$

exists locally uniformly on \mathbb{B}^n for $s \ge 0$. Moreover, $f(z, t) = e^{tA}z + \cdots$ is an *A*-univalent subordination chain and $\{e^{-tA}f(\cdot, t)\}_{t\ge 0}$ is a normal family on \mathbb{B}^n and $\bigcup_{t\ge 0} f_t(\mathbb{B}^n) = \mathbb{C}^n$. In addition, $f(z, \cdot)$ is locally Lipschitz continuous on $[0, \infty)$ locally uniformly w.r.t. $z \in \mathbb{B}^n$, and

(2.3)
$$\frac{\partial f}{\partial t}(z,t) = Df(z,t)h(z,t), \ a.e.\ t \ge 0, \ \forall \ z \in \mathbb{B}^n.$$

 The A-univalent subordination chain f(z, t) given by (2.2) is called the canonical solution of the Loewner differential equation (2.3). • P. Duren, I. Graham, H. Hamada, G. Kohr, Math. Ann., 347, 411-435, 2010.

• g(z, t)-standard solution of the Loewner PDE (2.3) if $g(\cdot, t) \in H(\mathbb{B}^n)$, g(0, t) = 0 and $Dg(0, t) = e^{tA}$ for $t \ge 0$, $g(z, \cdot)$ is locally Lipschitz continuous on $[0, \infty)$ locally uniformly with respect to $z \in \mathbb{B}^n$, and g(z, t) is a solution of (2.3).

• When a standard solution coincides with the canonical solution?

Theorem

Let $A \in L(\mathbb{C}^n)$ be such that $k_+(A) < 2m(A)$. If $f = f(z, t) : \mathbb{B}^n \times [0, \infty) \to \mathbb{C}^n$ is a standard solution of the Loewner PDE (2.3), *i.e.*,

$$\frac{\partial f}{\partial t}(z,t) = Df(z,t)h(z,t), \quad a.e. \quad t \ge 0, \, \forall \, z \in \mathbb{B}^n,$$

then $f(\cdot, s) = f(v(\cdot, s, t), t)$, where $v(\cdot, s, t)$ is the solution of (2.1). If $\{e^{-tA}f(\cdot, t)\}_{t\geq 0}$ is a normal family on \mathbb{B}^n , then f(z, t) is an A-univalent subordination chain, and coincides with the canonical solution of (2.3).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Every univalent solution $f(z, t) = e^{tA}z + \cdots$ of the Loewner PDE (2.3) is an *A*-univalent subordination chain.

Theorem

Let $A \in L(\mathbb{C}^n)$ be such that $k_+(A) < 2m(A)$. If $f(z, t) = e^{tA}z + \cdots$, then f(z, t) is an A-univalent subordination chain if and only if f(z, t) is a univalent solution of the Loewner differential equation

$$\frac{\partial f}{\partial t}(z,t) = Df(z,t)h(z,t), \quad a.e. \quad t \ge 0, \, \forall \, z \in \mathbb{B}^n,$$

associated with a Herglotz vector field $h : \mathbb{B}^n \times [0, \infty) \to \mathbb{C}^n$.

• The uniqueness result about the canonical solution and the relation (2.2) do not hold if $k_+(A) = 2m(A)$ (Duren, Graham, Hamada, G.K, 2010).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem

If $f(z,t) = e^t z + \cdots$ is a Loewner chain such that $\{e^{-t}f(\cdot,t)\}_{t\geq 0}$ is a normal family on \mathbb{B}^n , then $\bigcup_{t\geq 0} f_t(\mathbb{B}^n) = \mathbb{C}^n$ and

$$\frac{e^t \|z\|}{(1+\|z\|)^2} \le \|f(z,t)\| \le \frac{e^t \|z\|}{(1-\|z\|)^2}, \, z \in \mathbb{B}^n, \, t \ge 0.$$

• There exist Loewner chains f(z, t) which do not satisfy this growth result and $\{e^{-t}f(\cdot, t)\}_{t\geq 0}$ is not a normal family on \mathbb{B}^n , for $n \geq 2$.

Example

Let $g(z,t) = \left(\frac{e^t z_1}{(1-z_1)^2}, \frac{e^t z_2}{(1-z_2)^2}\right)$ for $z = (z_1, z_2) \in \mathbb{B}^2, t \ge 0$. Then g(z,t) is a Loewner chain, and if $\Phi(z) = (z_1, z_2 + z_1^2)$, then $\Phi \in \operatorname{Aut}(\mathbb{C}^2)$ and $f(z,t) := \Phi(g(z,t))$ is a Loewner chain such that $||f(r,0)|| > r/(1-r)^2$ for $r \in (0,1)$, and $\{e^{-t}f(\cdot,t)\}_{t\ge 0}$ is not a normal family on \mathbb{B}^2 .

• f(z, t) and $g(z, t) \mapsto$ the same Loewner PDE

•
$$\bigcup_{t\geq 0} f_t(\mathbb{B}^2) = \bigcup_{t\geq 0} g_t(\mathbb{B}^2) = \mathbb{C}^2.$$

• P. Duren, I. Graham, H. Hamada and G.K, Math. Ann. (2010)

Theorem

Let $A \in L(\mathbb{C}^n)$ be such that $k_+(A) < 2m(A)$. Let $h(z, t) = Az + \cdots$ be a Herglotz vector field, and let $f(z, t) = e^{tA}z + \cdots$ be the canonical solution of the Loewner PDE (2.3), i.e.

$$rac{\partial f}{\partial t}(z,t)={\sf D} f(z,t) h(z,t), \quad {
m a.e.} \ t\geq 0, \, orall z\in \mathbb{B}^n,$$

and let g(z, t) be a standard solution of (2.3). If $\{e^{-tA}g(\cdot, t)\}_{t\geq 0}$ is a normal family on \mathbb{B}^n , then there exists $\Psi \in L(\mathbb{C}^n)$ such that $g(z, t) = \Psi(f(z, t))$ for $z \in \mathbb{B}^n$ and $t \geq 0$.

Corollary

Let $A \in L(\mathbb{C}^n)$ be such that $k_+(A) < 2m(A)$. The canonical solution $f(z, t) = e^{tA}z + \cdots$ of the Loewner PDE (2.3) is the unique normalized univalent Loewner chain solution such that $\{e^{-tA}f(\cdot, t)\}_{t\geq 0}$ is a normal family on \mathbb{B}^n , and $R(f_t) := \bigcup_{t\geq 0} f(\mathbb{B}^n, t) = \mathbb{C}^n$.

- How does look a standard solution in terms of the canonical solution?
 - P. Duren, I. Graham, H. Hamada and G.K., Math. Ann. (2010)

Theorem

Let $A \in L(\mathbb{C}^n)$ be such that $k_+(A) < 2m(A)$. If $g(z, t) = e^{tA}z + \cdots$ is a Loewner chain, then there exist a unique Loewner chain $f(z, t) = e^{tA}z + \cdots$ such that $\{e^{-tA}f(\cdot, t)\}_{t\geq 0}$ is a normal family, and a unique entire univalent mapping Φ (Φ is an automorphism of \mathbb{C}^n or a Fatou-Bieberbach map) such that $g(\cdot, t) = \Phi(f(\cdot, t)), t \geq 0$.

- L. Arosio (2011); M. Vodă (2011) (resonances).
- L. Arosio, F. Bracci, E.F. Wold, Solving the Loewner PDE in complete hyperbolic starlike domains of Cⁿ. Adv. Math. 242, 209–216 (2013).

• P. Duren, I. Graham, H. Hamada, G. Kohr: *Solutions for the generalized Loewner differential equation in several complex variables*, Math. Ann., 347 (2010).

- Every normal Loewner chain^{*a*} $(g_t)_{t\geq 0}$ satisfies: $R(g_t) = \mathbb{C}^n$.
- **②** For every Loewner chain $(g_t)_{t\geq 0}$ there exists a unique normal Loewner chain $\{f_t\}_{t\geq 0}$ and a unique biholomorphic mapping $\Phi: \mathbb{C}^n \to R(f_t)$ such that $g_t = \Phi \circ f_t$, for all $t \geq 0$. If $R(g_t) = \mathbb{C}^n$, then Φ is an *automorphism* of \mathbb{C}^n . If $R(g_t) \neq \mathbb{C}^n$, then Φ is a *Fatou-Bieberbach mapping*.
- Solution of the Loewner differential equation associated to a Herglotz vector field h : Bⁿ × [0,∞) → Cⁿ:

$$rac{\partial g}{\partial t}(z,t) = Dg(z,t)h(z,t), \quad ext{a.e.} \ t \geq 0, \, orall z \in \mathbb{B}^n.$$

 $^{a}g_{t}:=g(\cdot,t).$

2. Parametric representation on the unit ball

Definition

Let $f \in H(\mathbb{B}^n)$ be such that f(0) = 0, $Df(0) = I_n$. Also let $A \in L(\mathbb{C}^n)$ be such that $k_+(A) < 2m(A)$. We say that f has A-parametric representation if there exists mapping $h : \mathbb{B}^n \times [0, \infty) \to \mathbb{C}^n$ such that (i) $h(\cdot, t) \in \mathcal{N}_A(\mathbb{B}^n)$, $t \ge 0$; (ii) $h(z, \cdot)$ is measurable on $[0, \infty)$, $z \in \mathbb{B}^n$ such that $f(z) = \lim_{t\to\infty} e^{tA}v(z, t)$ locally uniformly on \mathbb{B}^n , where v = v(z, t) is the unique Lipschitz continuous solution on $[0, \infty)$ of the initial value problem

$$rac{\partial m{v}}{\partial t}=-h(m{v},t), ext{ a.e. } t\geq 0, \ m{v}(m{z},0)=m{z}, \ orall m{z}\in \mathbb{B}^n.$$

S⁰_A(Bⁿ) := {f ∈ S(Bⁿ) : f has A-parametric representation}
S⁰(Bⁿ) := S⁰_{l_n}(Bⁿ) (usual parametric representation).

Gabriela Kohr , Mirela Kohr (UBB Cluj) Loewner chains and approximation properties

I. Graham, H. Hamada, G.K., M.K., 2008:

Theorem

Let $f \in S(\mathbb{B}^n)$ and $A \in L(\mathbb{C}^n)$ with $k_+(A) < 2m(A)$. Then $f \in S^0_A(\mathbb{B}^n)$ if and only if there exists an *A*-univalent subordination chain f(z, t) such that $\{e^{-tA}f(\cdot, t)\}_{t\geq 0}$ is a normal family on \mathbb{B}^n and $f = f(\cdot, 0)$.

Corollary

Let
$$f \in S^0(\mathbb{B}^n) = S^0_{I_n}(\mathbb{B}^n)$$
. Then

$$\frac{\|z\|}{(1+\|z\|)^2} \le \|f(z)\| \le \frac{\|z\|}{(1-\|z\|)^2}, \, z \in \mathbb{B}^n.$$

These estimates are sharp.

Theorem

 $S^0_A(\mathbb{B}^n)$ is a compact family for $A \in L(\mathbb{C}^n)$ with $k_+(A) < 2m(A)$.

• This compactness result does not hold if $k_+(A) = 2m(A)$ (Duren et al. 2010).

3. Rungeness and approximation properties

H. Hamada, M. Iancu, G.K, S. Schleissinger (2017-2018). $\operatorname{Aut}(\mathbb{C}^n) = \{ \Phi : \mathbb{C}^n \to \mathbb{C}^n : \Phi \text{ is an automorphism of } \mathbb{C}^n \},$ $\mathcal{A}(\mathbb{B}^n) = \{ \Phi |_{\mathbb{R}^n} : \Phi \in \operatorname{Aut}(\mathbb{C}^n), \Phi(0) = 0, D\Phi(0) = I_n \}.$

Definition

Let $D_1 \subseteq D_2 \subseteq \mathbb{C}^n$ be domains. Then (D_1, D_2) is called a Runge pair if $\mathcal{O}(D_2)$ is dense in $\mathcal{O}(D_1)$, where $\mathcal{O}(D_j)$ is the family of holomorphic functions of D_j into \mathbb{C} , for j = 1, 2. A domain $D \subseteq \mathbb{C}^n$ is called Runge if (D, \mathbb{C}^n) is a Runge pair.

Remark

(*i*) A domain $D \subseteq \mathbb{C}$ is Runge if and only if *D* is simply connected. (*ii*) Every starlike domain $D \subseteq \mathbb{C}^n$ is Runge (A. El Kasimi, Complex Var. Theory Appl., 1988). (*iii*) Every spirallike domain $D \subseteq \mathbb{C}^n$ with respect to $A \in L(\mathbb{C}^n)$ with

m(A) > 0 is Runge (H. Hamada, Adv. Math., 2015).

• J. Wermer, 1959: There is a biholomorphic mapping $F : \mathbb{U}^2 \to \mathbb{C}^2$ such that $F(\mathbb{U}^2)$ is not Runge, and thus the Runge property is not an invariant property with respect to biholomorphic maps.

- E. Fornaess Wold, 2008: For $n \ge 2$, there is a Fatou-Bieberbach mapping $\psi : \mathbb{C}^n \to \mathbb{C}^n$ such that $\psi(\mathbb{C}^n)$ is not Runge.
- Every automorphism of \mathbb{C}^n preserves the Runge property.
- E. Andersén, L. Lempert, On the group of holomorphic automorphisms of \mathbb{C}^n , Invent. Math., **110** (1992), 371–388.
- F. Forstnerič, J.P. Rosay, Approximation of biholomorphic mappings by automorphisms of \mathbb{C}^n , Invent. Math. 112 (1993) 323–349.

Theorem

Let $n \ge 2$, $D \subseteq \mathbb{C}^n$ be a starlike domain w.r.t. the origin, and let $f : D \to \mathbb{C}^n$ be a biholomorphic mapping. Then f(D) is a Runge domain if and only if there is a sequence of automorphisms of \mathbb{C}^n which converges to f, locally uniformly on D.

• H. Hamada, Approximation properties on spirallike domains of \mathbb{C}^n , Adv. Math., **268** (2015), 467–477.

Theorem

Let $n \ge 2$. Let $D \subseteq \mathbb{C}^n$ be a spirallike domain with respect to A with $k_+(A) < 2m(A)$, and let $f : D \to \mathbb{C}^n$ be a biholomorphic mapping. Then f(D) is a Runge domain if and only if there is a sequence of automorphisms of \mathbb{C}^n which converges to f, locally uniformly on D.

• L. Arosio, F. Bracci, E. Fornaess Wold, Adv. Math., 2013:

Theorem

Every Loewner chain $(f_t)_{t\geq 0}$ satisfies: $(f_s(\mathbb{B}^n), f_t(\mathbb{B}^n))$ is a Runge pair, $0 \leq s \leq t$. In particular, if $R(f_t) := \bigcup_{t\geq 0} f_t(\mathbb{B}^n) = \mathbb{C}^n$, then $f_t(\mathbb{B}^n)$ is a Runge domain in \mathbb{C}^n , for all $t \geq 0$.

• $S^0(\mathbb{B}^n) \subsetneq S^1(\mathbb{B}^n) \subseteq S_R(\mathbb{B}^n), n \ge 2.$

イロン イ理 とくほとく ほ

 $S_R(\mathbb{B}^n) = \{ f \in S(\mathbb{B}^n) : f(\mathbb{B}^n) \text{ is Runge} \}.$

 $S^0_A(\mathbb{B}^n) = \big\{ f \in S(\mathbb{B}^n) : \exists A ext{-normal Loewner chain } (f_t), f = f_0 \big\}.$

 $S^{1}_{A}(\mathbb{B}^{n}) = \{ f \in S(\mathbb{B}^{n}) : \exists A \text{-Loewner chain } (f_{t}) \}$

with $R(f_t) = \mathbb{C}^n$ such that $f(\cdot, 0) = f$

 $\mathcal{A}(\mathbb{B}^n) = \{ \Phi|_{\mathbb{B}^n} : \Phi \in \operatorname{Aut}(\mathbb{C}^n), \Phi(0) = 0, D\Phi(0) = I_n \}.$

- For n = 1: $S^0 = S^1 = S_R = S$ and $A = \{id\}$.
- For $n \geq 2$: $S^{0}(\mathbb{B}^{n}) \subsetneq S^{1}(\mathbb{B}^{n}) \subseteq S_{R}(\mathbb{B}^{n})$.

• If $f \in S_R(\mathbb{B}^n) \cap C^1(\overline{\mathbb{B}^n})$, then $f \in S^1(\mathbb{B}^n)$ (an application of the variational method due to Bracci, Graham, Hamada, G.K., 2016).

• L. Arosio, F. Bracci, E.F. Wold, Proc. Amer. Math. Soc. (2015): Let $n \ge 2$ and $A \in L(\mathbb{C}^n)$, $k_+(A) < 2m(A)$. Then

 $\mathcal{A}(\mathbb{B}^n) \subsetneq S^1_{\mathcal{A}}(\mathbb{B}^n) \subseteq S_{\mathcal{R}}(\mathbb{B}^n) = \overline{\mathcal{A}(\mathbb{B}^n)} \subsetneq S(\mathbb{B}^n).$

• S. Schleissinger (2014); H.Hamada (2015): $S_A^0(\mathbb{B}^n) \subseteq S_R(\mathbb{B}^n)$.

• H. Hamada, Adv. Math., 2015: A-spirallike domains in \mathbb{C}^n are Runge domains, for all $A \in L(\mathbb{C}^n)$, m(A) > 0.

H. Hamada, M. Iancu, G. K, S. Schleissinger (2018):

Theorem

Let $A \in L(\mathbb{C}^n)$ be such that $k_+(A) < 2m(A)$, and let $n \ge 2$. Then $S^0_A(\mathbb{B}^n) = \overline{S^0_A(\mathbb{B}^n) \cap \mathcal{A}(\mathbb{B}^n)}$. In particular, $S^0(\mathbb{B}^n) = \overline{S^0(\mathbb{B}^n) \cap \mathcal{A}(\mathbb{B}^n)}$.

$$S^*(\mathbb{B}^n) = \overline{S^*(\mathbb{B}^n) \cap \mathcal{A}(\mathbb{B}^n)}.$$

Theorem

If $n \ge 2$, then $K(\mathbb{B}^n) = \overline{K(\mathbb{B}^n) \cap \mathcal{A}(\mathbb{B}^n)}$.

H. Hamada, M. Iancu, G.K (2018):

• If
$$n \geq 2$$
 and $m(A) > 0$, then $\overline{S^0_A(\mathbb{B}^n)} = \overline{S^0_A(\mathbb{B}^n) \cap \mathcal{A}(\mathbb{B}^n)}$.

4. Extreme points, support points and parametric representation

Definition

Let *X* be a locally convex topological vector space and let $E \subseteq X$. (i) A point $x \in E$ is called an *extreme point* of E ($x \in ex E$) provided x = ty + (1 - t)z, where $t \in (0, 1)$, $y, z \in E$, implies x = y = z. That is, $x \in E$ is an extreme point of *E* if *x* is not a proper convex combination of two points in *E*. (ii) A point $w \in E$ is called a *support point* of *E* ($w \in supp E$) if

 $\Re L(w) = \max_{y \in E} \Re L(y)$ for some continuous linear functional

 $L: X \to \mathbb{C}$ such that $\Re L$ is nonconstant on E.

- $X := H(\mathbb{B}^n)$; ex $S^0_A(\mathbb{B}^n) \neq \emptyset$ and supp $S^0_A(\mathbb{B}^n) \neq \emptyset$ for $k_+(A) < 2m(A)$.
- J. Muir, T.J. Suffridge (2006): extreme points for $K(\mathbb{B}^n)$.
- I. Graham, G.K and J.A, Pfaltzgraff (2005): extreme and support points of compact subsets of $S(\mathbb{B}^n)$ generated by extension operators.

I. Graham, H. Hamada, G.K, M.K (2010-2014):

Theorem 1

Let $f \in \operatorname{ex} S^0(\mathbb{B}^n)$. Also, let f(z, t) be a Loewner chain such that $f = f(\cdot, 0)$ and $\{e^{-t}f(\cdot, t)\}_{t\geq 0}$ is a normal family on \mathbb{B}^n . Then $e^{-t}f(\cdot, t) \in \operatorname{ex} S^0(\mathbb{B}^n)$ for $t \geq 0$.

Theorem 2

Let $f \in \sup S^0(\mathbb{B}^n)$ and f(z, t) be a Loewner chain s.t. $f = f(\cdot, 0)$ and $\{e^{-t}f(\cdot, t)\}_{t\geq 0}$ is a normal family on \mathbb{B}^n . Then $\exists t_0 > 0$ s.t. $e^{-t}f(\cdot, t) \in \sup S^0(\mathbb{B}^n)$ for $0 \le t < t_0$.

• If no bounded map in $S^0_A(\mathbb{B}^n)$ is a support point of $S^0_A(\mathbb{B}^n)$, then Theorem 2 holds for all $t \in [0, \infty)$.

Conjecture 1 (2010)

There are no bounded support/extreme points of $S^0(\mathbb{B}^n)$ for $n \ge 2$.

• S. Schleissinger, Proc. AMS, 2014 (Runge pairs in \mathbb{C}^n):

Theorem

If $f \in \operatorname{supp} S^0(\mathbb{B}^n)$ then $e^{-t}f(\cdot, t) \in \operatorname{supp} S^0(\mathbb{B}^n)$ for $t \ge 0$.

• F. Bracci, CMFT, 2015: in higher dimensions, there exist bounded support points for the family $S^0(\mathbb{B}^n)$.

Theorem

If $f = (f_1, f_2) \in S^0(\mathbb{B}^2)$, then $|a_{0,2}^1| \leq \frac{3\sqrt{3}}{2}$, where $a_{0,2}^1 = \frac{\partial^2 f_1}{\partial z_2^2}(0)$. The above bound is sharp and equality holds for

$$F(z) = \left(z_1 + \frac{3\sqrt{3}}{2}z_2^2, z_2\right), \quad z = (z_1, z_2) \in \mathbb{B}^2.$$

In particular, *F* is a bounded support point of $S^0(\mathbb{B}^2)$.

• I. Graham, H. Hamada, G.K., M.K., Math. Ann., 2014:

Theorem

Let $A \in L(\mathbb{C}^n)$ be such that $k_+(A) < 2m(A)$. Also let $f \in \operatorname{supp} S^0_A(\mathbb{B}^n)$ (resp. $f \in \operatorname{ex} S^0(\mathbb{B}^n)$) and let f(z, t) be an A-normalized univalent subordination chain such that $f = f(\cdot, 0)$ and $\{e^{-tA}f(\cdot, t)\}_{t\geq 0}$ is a normal family on \mathbb{B}^n . Then $e^{-tA}f(\cdot, t) \in \operatorname{supp} S^0_A(\mathbb{B}^n)$ (respectively $e^{-tA}f(\cdot, t) \in \operatorname{ex} S^0_A(\mathbb{B}^n)$) for $t \geq 0$.

- Extension to higher dimensions of results due to R. Pell, 1980; W.E. Kirwan, 1980, and Kirwan and Schober, 1982, for n = 1 (the family S).
- Extension of Schleissinger's result, 2014.

Open problems

- Is it true that $S(\mathbb{B}^n) = \tilde{S}^1(\mathbb{B}^n)$ for $n \ge 2$?
- Characterize exN_A and supp N_A in dimension n ≥ 2, where k₊(A) < 2m(A). Connections with ex S⁰_A(ℝⁿ) and supp S⁰_A(ℝⁿ).
- Find connections between ex S⁰(𝔅ⁿ) (resp. supp S⁰(𝔅ⁿ)) and ex M (resp. supp M).
- If $f \in \text{ex } S^0(\mathbb{B}^n)$, is it true that f is unbounded on \mathbb{B}^n , $n \ge 2$?
- Characterize the extreme/support points of other compact subsets of S⁰(Bⁿ) (for example, the families of convex and starlike mappings).

Question

Let $f \in S^0(\mathbb{B}^n)$ and let (f_t) be a Loewner chain such that $f = f_0$. Also, let h = h(z, t) be the associated Herglotz vector field of (f_t) .

- (i) Is it true that $h(\cdot, t) \in \operatorname{ex} \mathcal{M}(\mathbb{B}^n)$ for a.e. $t \in [0, \infty)$ if and only if $f \in \operatorname{ex} S^0(\mathbb{B}^n)$?
- (ii) If $h(\cdot, t) \in \operatorname{supp} \mathcal{M}(\mathbb{B}^n)$ for a.e. $t \ge 0$, is it true that $f \in \operatorname{supp} S^0(\mathbb{B}^n)$?

O. Roth, 2016: If *t* ∈ supp S⁰(Bⁿ), then *h*(·, *t*) ∈ supp M(Bⁿ) for a.e. *t* ≥ 0.

• Characterize all bounded support points of $S^0(\mathbb{B}^n)$, for $n \ge 2$.

Thank you for your attention!

4 A N