Approximation and closed ideals in some analytic spaces

Hafid Bahajji-El Idrissi Joint work with Omar El-Fallah

Mohammed-V University in Rabat, Morocco

Fields Focus Program on Analytic Function Spaces and their Applications July 1 - December 31, 2021

July 13, 2021

Introduction	Approximation theorem	
0000		
Problem		

The Hardy space H^2 is the space of analytic functions f on \mathbb{D} such that

$$\|f\|_{\mathrm{H}^2}^2 := |f(0)|^2 + \int_{\mathbb{D}} |f'(z)|^2 \log(1/|z|) dA(z) < \infty.$$

Problem

Let $X \subset H^2$ be a Banach algebra which has the division property.

Describe the closed ideals of the algebra X.

Notations

- Let \mathcal{I} be a non trivial closed ideal of X. We denote by
 - $\theta_{\mathcal{I}}$ the greatest common divisor of the inner parts of nonzero functions in \mathcal{I} .
 - $E_{\mathcal{I}} := \{ \zeta \in \mathbb{T} : f(\zeta) = 0, \text{ for all } f \in \mathcal{I} \}.$

• $X = A(\mathbb{D}) := Hol(\mathbb{D}) \cap C(\overline{\mathbb{D}})$ equipped by the norm

$$\|f\|_{\infty} = \sup_{z\in\mathbb{D}} |f(z)|.$$

is a commutative algebra.

Theorem (1,2)

Let ${\mathcal I}$ be a non trivial closed ideal of $A({\mathbb D}).$ Then

$$\mathcal{I} = \left\{ f \in \mathcal{A}(\mathbb{D}) : f_{|\mathcal{E}_{\mathcal{I}}} = 0 \text{ and } f \in \theta_{\mathcal{I}}\mathcal{A}(\mathbb{D}) \right\}$$

A. Beurling,

On two problems concerning linear transformations in Hilbert space *Acta Mathematica*, (1): 239–255, 1949.

W. Rudin,

The closed ideals in an algebra of analytic functions.

Canadian Journal of Mathematics, (9): 426–434, 1957.

Introduction	Approximation theorem
0000	
Closed ideals of λ_{α}	

• $X = \lambda_{\alpha}$, for $\alpha \in (0, 1)$. The separable Lipschitz analytic algebra λ_{α} is given by $\lambda_{\alpha} := \{f \in A(\mathbb{D}) : |f(z) - f(w)| = o(|z - w|^{\alpha})\}.$

Equipped with the norm,

$$\|f\|_{\lambda_{\alpha}} = \|f\|_{\mathrm{H}^{\infty}} + \sup_{z,w\in\mathbb{D}} \frac{|f(z) - f(w)|}{|z - w|^{\alpha}},$$

 λ_{α} is a Banach algebra.

Matheson(3)

Let \mathcal{I} be a non trivial closed ideal of λ_{α} . Then

$$\mathcal{I} = \left\{ f \in \lambda_{\alpha} : \ f_{| E_{\mathcal{I}}} = 0, \text{ and } f \in \theta_{\mathcal{I}} \lambda_{\alpha} \right\}.$$

AL. Matheson,

Closed ideals in rings of analytic functions satisfying a Lipschitz condition. Banach spaces of analytic functions, **67–72**, 1977.

H. Bahajji-El Idrissi

$$X = \mathcal{D} \cap \lambda_{\alpha}$$
$$\mathcal{D} \cap \lambda_{\alpha} := \{ f \in \operatorname{Hol}(\mathbb{D}) : \|f\|_{\mathcal{D} \cap \lambda_{\alpha}} = \|f\|_{\lambda_{\alpha}} + \mathcal{D}^{1/2}(f) < \infty \}.$$

where

$$\mathcal{D}(f) = \frac{1}{\pi} \int_{\mathbb{D}} |f'(z)|^2 dA(z), \text{ and } \|f\|_{\lambda_{\alpha}} := \|f\|_{\infty} + \sup_{z \in \mathbb{D}} \frac{|f'(z)|}{(1-|z|)^{1-\alpha}}$$

The space $\mathcal{D} \cap \lambda_{\alpha}$ equipped with the norm $\|.\|_{\mathcal{D} \cap \lambda_{\alpha}}$ is a Banach algebra.

Theorem (⁴)

Let \mathcal{I} be a non trivial closed ideal of $\mathcal{D} \cap \lambda_{\alpha}$. Then

$$\mathcal{I} = \left\{ f \in \mathcal{D} \cap \lambda_{\alpha} : f_{|E_{\mathcal{T}}} = \mathbf{0}, \text{ and } f \in \theta_{\mathcal{I}} \mathcal{D} \cap \lambda_{\alpha} \right\}.$$

B. Bouya,

Closed Ideals in Some Algebras of Analytic Functions *Canad. J. Math*, (61): 282–298, 2009.

H. Bahajji-El Idrissi

Approximation theorem in λ_{lpha} and $\mathcal{D} \cap \lambda_{lpha}$

Let $\alpha \in (0, 1)$.

- **M**. Matheson : $X = \lambda_{\alpha}$, Michigan Math. J. (1978).
- B. Bouya : $X = \mathcal{D} \cap \lambda_{\alpha}$, Canad. J. Math.(2009).

Theorem

Let $f \in X$ be a function that vanishes on a closed subset *E* of \mathbb{T} . Then, given M > 0, there exists $(f_n)_n \subset X$ such that

1 f_n vanishes on E for all $n \ge 1$.

$$|f_n(z)| = O(dist^M(z, E)) \text{ for all } n \ge 1.$$

$$\lim_{n \to 0} \|f_n f - f\|_X = 0.$$

 $\bullet X = \lambda_{\alpha}.$

By arguing in the same way as in (⁵), one can see that

$$\|f\|_{\alpha} \asymp \|f\|_{\infty} + \sup_{\zeta_{1}, \zeta_{2} \in \mathbb{T}, \zeta_{1} \neq \zeta_{2}} \frac{||f(\zeta_{1})| - |f(\zeta_{2})||}{|\zeta_{1} - \zeta_{2}|^{\alpha}} + \sup_{z \in \mathbb{D}} \frac{P(|f|)(z) - |f(z)|}{(1 - |z|)^{\alpha}}$$

Let f, g be two outer functions. Let $f \wedge g$ be the outer function associated to $|f| \wedge |g|(\zeta) := \min(|f(\zeta)|, |g(\zeta)|), (\zeta \in \mathbb{T})$. Namely,

$$f \wedge g(z) = \exp\left(\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} \log(|f| \wedge |g|(\zeta)) dm(\zeta)\right), \quad (z \in \mathbb{D}).$$

Theorem [H.B.I & O. El-Fallah]

Let $p \ge 1$. Let $f \in H^2$ be an outer function. We have

$$P(|f \wedge f^p|)(z) - |f \wedge f^p(z)| \le p^2 \left(P(|f|)(z) - |f(z)| \right), \quad (z \in \mathbb{D}).$$

Let $x \ge 1$ and $y \in [0, 1]$. Let $a, b \ge 0$ be such that a + b = 1. Then

$$x^{a}(p^{2}y^{b}-y^{pb}) \leq b(p^{2}y-y^{p}) + a(p^{2}-1)x.$$

5.

K.M. Dyakonov,

Equivalent norm on Lipschitz-type spaces of homorphic functions *Acta mathematica*, 1997.

H. Bahajji-El Idrissi

Let $f = \theta g \in \lambda_{\alpha} \setminus \{0\}$, where θ, g are respectively the inner and outer factors of f. Suppose that $f_{|E} = 0$. Since λ_{α} possesses the division property, $g \in \lambda_{\alpha}$. We have

$$g_{|E} = 0$$
 and $|g(z)| = O(\operatorname{dist}(z, E)^{\alpha}).$

Let $n \ge 1$, $p = 2^k$, $k := E(\ln(1 + M/\alpha) / \ln(2)) + 1$, and put $f_n = 1 \land n^{p-1}g^{p-1}$. So

$$f_n \in \lambda_{\alpha}$$
 and $|f_n(z)| = O(\operatorname{dist}(z, E)^M).$

We have $ff_n = \theta(g \land n^{p-1}g^p)$, $(ff_n)_n$ converges uniformly to f on any compact subset of \mathbb{D} . We claim that

$$\begin{split} &||f_n(\zeta_1)| - |f_n(\zeta_2)|| \le \rho \, ||f(\zeta_1)| - |f(\zeta_2)|| \,, \qquad (\zeta_1, \zeta_2 \in \mathbb{T}). \\ &P(|f_n|)(z) - |f_n(z)| \le \rho^2 \, (P(|f|)(z) - |f(z)|) \,, \qquad (z \in \mathbb{D}). \end{split}$$

This means that

1 $(ff_n)_n$ converges to *f* uniformly on compact subsets of \mathbb{D} ,

 $2 ||ff_n(\zeta_1)| - |ff_n(\zeta_2)|| = o(|\zeta_1 - \zeta_2|^{\alpha}), \quad |\zeta_1 - \zeta_2| \to 0, \quad \zeta_1, \zeta_2 \in \mathbb{T}, \text{ uniformly in } n,$

3
$$P(|ff_n|)(z) - |ff_n(z)| = o((1 - |z|)^{\alpha}), |z| \to 1^-$$
, uniformly in *n*.

Therefore $(ff_n)_n$ converges to f in λ_{α} .

,

The standard Dirichlet space D_{γ} , $\gamma \in (0, 1)$, is defined by

$$\mathcal{D}_{\gamma} := \{f \in \operatorname{Hol}(\mathbb{D}) : \mathcal{D}_{\gamma}(f) := \frac{1}{\pi} \int_{\mathbb{D}} |f'(z)|^2 (1-|z|^2)^{\gamma} dA(z) < \infty\}.$$

Let f be a function in H^2 . By Green's formula, we have

$$\mathcal{D}_{\gamma}(f) = \int_{\mathbb{D}} \left(\mathcal{P}(|f|^2)(z) - |f(z)|^2 \right) d\mu_{\gamma}(z),$$

where $d\mu_\gamma(z):=rac{1}{4}|\Delta(1-|z|^2)^\gamma|dA(z)$ and

$$P(|f|^2)(z) = \int_{\mathbb{T}} |f^*(\zeta)|^2 \frac{1-|z|^2}{|\zeta-z|^2} dm(\zeta).$$

The space $\mathcal{D}_{\gamma} \cap \lambda_{\alpha}$ equipped with the norm

$$\|f\|_{\mathcal{D}_{\gamma}\cap\lambda_{\alpha}}=\|f\|_{\lambda_{\alpha}}+\mathcal{D}_{\gamma}^{1/2}(f)$$

is a Banach algebra.

•
$$X = \mathcal{D}_{\gamma} \cap \lambda_{\alpha}$$
, where $\gamma, \alpha \in (0, 1)$.

Theorem (⁶)

Let $f \in D_{\gamma} \cap \lambda_{\alpha}$ which vanishes on a closed subset *E*. Then, given M > 0, there exists $(f_n)_n \subset D_{\gamma} \cap \lambda_{\alpha}$ such that

f_n vanishes on E.

$$|f_n(z)| = O(dist^M(z, E)) \text{ for all } n \geq 1.$$

$$\lim_{n\to 0} \|f_n f - f\|_{\mathcal{D}_{\gamma}\cap\lambda_{\alpha}} = 0.$$

■ M. Matheson : $X = \lambda_{\alpha}$, Michigan Math. J. (1978).

■ B. Bouya : $X = D \cap \lambda_{\alpha}$, Canad. J. Math.(2009).

H. Bahajji-El Idrissi and O. El-Fallah,

Approximation in spaces of analytic functions. *Studia Mathematica, 2019.*

H. Bahajji-El Idrissi

Proof of approximation theorem in $\mathcal{D}_{\gamma} \cap \lambda_{\alpha}$

Let $f = \theta g \in \mathcal{D}_{\gamma} \cap \lambda_{\alpha} \setminus \{0\}$, where θ, g are respectively the inner and outer factors of f. Suppose that $f_{|E} = 0$. Since λ_{α} possesses the F-property, $g \in \lambda_{\alpha}$. We have $g_{|E} = 0$. Let $n \ge 1$ and $p = 2^k$ where $k := E(\frac{\ln(1+M/\alpha)}{\ln(2)}) + 1$. We consider

 $ff_n = \theta(g \wedge n^{p-1}g^p)$

From the above discussion $f_n \in \mathcal{D}_{\gamma} \cap \lambda_{\alpha}$ and clearly

$$|f_n(z)| = O(\operatorname{dist}(z, E)^M).$$

As we said before $(ff_n)_n$ converges to f in λ_{α} . Next, from the above discussion, we get

$$\begin{aligned} \mathcal{D}_{\gamma}(ff_n) &= \int_{\mathbb{D}} (\mathcal{P}(|ff_n|^2)(z) - |ff_n(z)|^2) d\mu_{\gamma}(z) \\ &\leq p^2 \int_{\mathbb{D}} \left(\mathcal{P}(|f|^2)(z) - |f(z)|^2 \right) d\mu_{\gamma}(z) = p^2 \mathcal{D}_{\gamma}(f). \end{aligned}$$

Then $(ff_n)_n$ converges weakly to $f \in \mathcal{D}_{\gamma}$. Let F_j be the convex hull of $\{ff_n : n \ge j\}$. Since \mathcal{D}_{γ} is a Hilbert space there exists $fg_j \in F_j$ such that $\lim_j \mathcal{D}_{\gamma}(fg_j - f) = 0$. Since $(ff_n)_n$ converges to f in λ_{α} , we also have $\lim_i ||fg_j - f||_{\alpha} = 0$.

ENS Rabat

Proof of approximation theorem in $\mathcal{D}_\gamma \cap \lambda_lpha$

$$X = \mathcal{D} \cap \lambda_{\alpha}$$

Theorem

- Let $f = B.S_{\sigma}.g$ be a function in H^2 . Then
 - S. Richter & C. Sundberg. :

$$\mathcal{D}(g \wedge g^{p}) \leq 2^{p} \mathcal{D}(g), \qquad (p = 2^{k}).$$

2 L. Carleson :

$$\mathcal{D}(f) = \mathcal{D}(g) + \sum_{n} \int_{\mathbb{T}} \frac{1 - |z_n|^2}{|z_n - \zeta|^2} |g(\zeta)|^2 dm(\zeta) + \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{|g(\zeta)|^2}{|\lambda - \zeta|^2} d\sigma(\lambda) dm(\zeta),$$

Let (*ff*_n) the sequence defined above, $ff_n = \theta(g \wedge n^{p-1}g^p)$, we have

$$\begin{aligned} \mathcal{D}(ff_n) &\leq \quad p^2 \mathcal{D}(g) + \sum_n \int_{\mathbb{T}} \frac{1 - |z_n|^2}{|z_n - \zeta|^2} |g(\zeta)|^2 dm(\zeta) + \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{|g(\zeta)|^2}{|\lambda - \zeta|^2} d\sigma(\lambda) dm(\zeta) \\ &\leq \quad p^2 \mathcal{D}(f). \end{aligned}$$

Representation theorem

I M_z is a bounded operator on D_γ and it checks the following inequality

$$\sum_{k=0}^{''} (-1)^k \binom{n}{k} \|M_z^k f\|_{\mathcal{D}_{\gamma}}^2 \leq 0, \qquad \text{for all } f \in \mathcal{D}_{\gamma} \text{ and for all } n \geq 2.$$

2 M_z is an operator analytic and cyclic on \mathcal{D}_{γ} , namely

(*i*)
$$\bigcap_{n} M_{z}^{n} \mathcal{D}_{\gamma} = \{0\},$$

(*ii*) dim $(\mathcal{D}_{\gamma} \ominus M_{z}(\mathcal{D}_{\gamma})) = 1.$

Theorem (7)

Let ${\mathcal T}$ be a bounded operator analytic and cyclic on a separated Hilbert space ${\mathcal H}$ such that

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \| T^k x \|_{\mathcal{H}}^2 \leq 0 \qquad \forall x \in \mathcal{H} \quad \text{and} \; \forall n \geq 2.$$

Then there exists a positive superharmonic function ω on \mathbb{D} such that (T, \mathcal{H}) is unitarily equivalent to $(M_z, \mathcal{D}_\omega)$.

S. Richter, for n = 2 and if we replace the inequality with an equality.

7.

A. Aleman,

The multiplication operator on Hilbert spaces of analytic functions. *Habilitation, Uppsala.*, **1993**.

H. Bahajji-El Idrissi

Introduction
Definition of \mathcal{D}_{\cdots}

Let ω be a positive superharmonic weight on \mathbb{D} . The superharmonically weighted Dirichlet space \mathcal{D}_{ω} associated with ω is defined by

$$\mathcal{D}_{\omega} := \left\{ f \in \mathrm{H}^2 : \mathcal{D}_{\omega}(f) := \int_{\mathbb{D}} |f'(z)|^2 \omega(z) dA(z) < \infty
ight\}.$$

The space \mathcal{D}_{ω} will be endowed by the hilbertian norm $\|f\|_{\omega}^2 := \|f\|_{H^2}^2 + \mathcal{D}_{\omega}(f)$. Let ω be a nonnegative superharmonic weight on \mathbb{D} . By Jensen-Riesz representation theorem there exists a positive Borel measure μ on \mathbb{D} and a finite positive Borel measure ν on \mathbb{T} such that

$$\omega(z) = U_{\mu}(z) + P_{\nu}(z), \quad (z \in \mathbb{D}),$$

where U_{μ} is the Green potential of μ and P_{ν} is the Poisson transform of ν , namely

$$U_{\mu}(z) = \int_{\mathbb{D}} \log \left| \frac{1 - \overline{w}z}{w - z} \right| d\mu(w) \text{ and } P_{\nu}(z) = \int_{\mathbb{T}} \frac{1 - |z|^2}{|1 - \overline{\zeta}z|^2} d\nu(\zeta).$$

It is well known that $U_{\mu} \neq \infty$ if and only if $\int_{\mathbb{D}} (1 - |z|) d\mu(z) < \infty$.

$$\int_{\mathbb{D}}(1-|z|)d\mu(z)<\infty.$$

	0/1
=	
ENS Rabat	طبعة، ودود الكايس Université Mohammed

It is clear, from Green's formula, that

$$\int_{\mathbb{D}} |f'(w)|^2 \log \left| \frac{1-z\overline{w}}{z-w} \right| dA(w) = P(|f|^2)(z) - |f(z)|^2 \quad (z \in \mathbb{D}).$$

So, we have the following formula

$$\mathcal{D}_{U_{\mu}}(f) = \int_{\mathbb{D}} \int_{\mathbb{D}} |f'(w)|^2 \log \left| \frac{1 - z\overline{w}}{z - w} \right| dA(w) d\mu(z) = \int_{\mathbb{D}} \left(P(|f|^2)(z) - |f(z)|^2 \right) d\mu(z)$$

Theorem

Let f be an outer functions in H^2 . Then

1 H.B.I. & O. El-Fallah,

$$\mathcal{D}_{U_{\mu}}(f \wedge f^{p}) \leq p^{2} \mathcal{D}_{U_{\mu}}(f), \qquad (p \geq 1).$$

2 Richter & Sundberg,

$$\mathcal{D}_{P_{\nu}}(f \wedge f^p) \leq p^2 \mathcal{D}_{P_{\nu}}(f), \quad (p = 2^k, \ k \geq 1).$$

Put together these inequalities,

$$\mathcal{D}_{\omega}(f \wedge f^{p}) \leq p^{2}\mathcal{D}_{\omega}(f), \qquad (p \geq 1).$$

Introduction	Approximation theorem	\mathcal{D}_{ω}
		000000
Approximation theorem in ${\cal D}_\omega \cap \lambda_lpha$		

Let $\alpha \in (0, 1)$ and let ω be a nonnegative superharmonic weight on \mathbb{D} .

Theorem (⁸)

Let $f \in \mathcal{D}_{\omega} \cap \lambda_{\alpha}$ be a function that vanishes on a closed subset *E* of \mathbb{T} . Then, given M > 0, there exists $(f_n)_n \subset \mathcal{D}_{\omega} \cap \lambda_{\alpha}$ such that $\blacksquare f_n$ vanishes on *E* for all n > 1.

$$|f_n(z)| = O(dist^M(z, E)) \text{ for all } n \ge 1.$$

$$\lim_{n\to 0} \|f_n f - f\|_{\mathcal{D}_\omega \cap \lambda_\alpha} = 0.$$

■ M. Matheson : $X = \lambda_{\alpha}$, Michigan Math. J. (1978).

B. Bouya : $X = \mathcal{D} \cap \lambda_{\alpha}$, Canad. J. Math.(2009).

H. Bahajji-El Idrissi and O. El-Fallah,

Approximation in spaces of analytic functions. *Studia Mathematica*, 2019.

H. Bahajji-El Idrissi

Closed ideals of $\mathcal{D}_{\alpha} \cap \lambda_{\alpha}$	
0000	0000000
Introduction	Approximation theorem

Let $\alpha \in (0, 1)$ and let ω be a nonnegative superharmonic weight on \mathbb{D} .

$$X = \mathcal{D}_{\omega} \cap \lambda_{\alpha}$$

 $\mathcal{D}_{\omega} \cap \lambda_{\alpha} := \{ f \in \operatorname{Hol}(\mathbb{D}) : \|f\|_{\mathcal{D}_{\omega} \cap \lambda_{\alpha}} = \|f\|_{\lambda_{\alpha}} + \mathcal{D}_{\omega}^{1/2}(f) < \infty \}.$

The space $\mathcal{D}_{\omega} \cap \lambda_{\alpha}$ equipped with the norm $\|.\|_{\mathcal{D}_{\omega} \cap \lambda_{\alpha}}$ is a Banach algebra.

Theorem (9)

Let \mathcal{I} be a non trivial closed ideal of $\mathcal{D}_{\omega} \cap \lambda_{\alpha}$. Then

$$\mathcal{I} = \left\{ f \in \mathcal{D}_{\omega} \cap \lambda_{\alpha} \ : \ f_{| \mathcal{E}_{\mathcal{T}}} = \mathsf{0}, \text{ and } f \in \theta_{\mathcal{I}} \mathcal{D}_{\omega} \cap \lambda_{\alpha} \right\}.$$

■ M. Matheson : $X = \lambda_{\alpha}$, Michigan Math. J. (1978).

■ B. Bouya : $X = D \cap \lambda_{\alpha}$, Canad. J. Math.(2009).

H. Bahajji-El Idrissi and O. El-Fallah,

Approximation in spaces of analytic functions. *Studia Mathematica*, 2019.

 \mathcal{D}_{ω}

H. Bahajji-El Idrissi

Thank you for your attention

H. Bahajji-El Idrissi

Approximation and closed ideals in some analytic spac

July 13, 2021 18 / 18