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Arithmetic statistics (of elliptic curves) is the study of the
average behaviour of certain invariants associated to
elliptic curves.
It is conjectured that half of elliptic curves have rank 0 and
the other half have rank 1.
In particular, 0 percent of all elliptic curves are expected to
have rank ≥ 2.
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Some results in this direction are due to Bhargava and
Shankar, who study the average size of Selmer groups.
As a result of analyzing the average size of the 5-Selmer
group, they are able to show that

1 the average rank of elliptic curves is less than .885
(conjectured to be 0.5).

2 Less than 20% of elliptic curves have rank ≥ 2
(conjectured to be 0%).

3 At least 20% of elliptic curves have rank 0 (conjectured to
be 50%).
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Iwasawa theory is concerned with the structure of certain
Galois modules associated to elliptic curves.
These Galois modules arise from Selmer groups, and the
study of their structure is the primary motivation of the
subject.
Unlike the Selmer groups that Bhargava-Shankar work
with, the Selmer groups in Iwasawa theory are defined over
certain infinite towers of number fields.
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Elliptic curves and Galois Representations

Let E be an elliptic curve over Q.
Fix a prime p, denote by E [pn] the pn torsion subgroup of
E (Q̄).
The p-adic Tate-module Tp(E ) is the inverse limit

Tp(E ) = lim←−
n

E [pn],

where the inverse limit is taken w.r.t. multiplication by p
maps ×p : E [pn+1]→ E [pn].
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The Tate-module Tp(E ) is a free Zp-module of rank 2,
and is equipped with an action of the absolute Galois
group Gal(Q̄/Q).
To the pair (E , p), the Galois action on the Tate-module is
encoded by a Galois representation:

ρE ,p : Gal(Q̄/Q)→ GL2(Zp).
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We study two interrelated problems:

For a fixed elliptic curve E we study invariants associated
to the p-adic Galois representation ρE ,p as p ranges over
all primes.
For a fixed prime p, we study the average behaviour of
invariants associated to ρE ,p as E ranges over all elliptic
curves over Q.
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The Cyclotomic Zp-extension

Let p be a fixed prime number.
For n ∈ Z≥1, let Qn be the subfield of Q(µpn+1) such that
Gal(Qn/Q) ' Z/pn as depicted

Q.

Qn

Q(µpn+1)

Set Q0 := Q.
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Given a number field K , let Kn be the composite K ·Qn.
The tower of number fields
K = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn ⊆ . . . is called the
cyclotomic tower.
The field Kcyc is taken to be the union

Kcyc :=
⋃
n≥1

Kn.

The Galois group Gal(Kcyc/K ) is isomorphic to Zp.
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Early Investigations

Iwasawa’s early ivestigations led him to study the variation
of p-class groups of Kn as n→∞.
For n ≥ 1, set An(K ) to denote the p-primary part of the
class group of Kn

An(K ) := Cl(Kn)[p∞].

Iwasawa showed that there are invariants µ, λ, ν such that

#An(K ) = pµp
n+λn+ν

for large values of n.
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Iwasawa’s approach

There are natural maps An+1(K )→ An(K ) and the
inverse limit Acyc(K ) := lim←−n

An(K ) is a module over
ΓK := Gal(Kcyc/K ).
Iwasawa introduced the completed algebra
Λ := lim←−n

Zp[Gal(Kn/K )] ' Zp[[x ]].
He showed that Acyc(K ) is a finitely generated torsion
Zp[[x ]]-module and his theorem is a consequence of the
structure theory of such modules.
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Vanishing of the µ-invariant

Theorem (Fererro-Washington)

Let K be an abelian extension of Q, the Iwasawa µ-invariant
µK ,p vanishes.

The same is expected for arbitrary number field extensions
K/Q.
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Iwasawa theory of Elliptic Curves

Mazur initiated the Iwasawa theory of elliptic curves over
Q.
Throughout, we let E be an elliptic curve over Q with
good ordinary reduction at p.
For a fixed elliptic curve E and prime p, Mazur studied the
growth of rankE (Qn) as n→∞.
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Selmer groups

The p-primary torsion group E [p∞] ⊂ E (Q̄) admits an
action of the absolute Galois group Gal(Q̄/Q).
For each number field extension F of Q, the Selmer group
Selp∞(E/F ) consists of Galois cohomology classes

f ∈ H1(Gal
(
Q̄/F

)
,E [p∞])

satisfying suitable local conditions.
It fits into a short exact sequence

0→ E (F )⊗Qp/Zp → Selp∞(E/F )→X(E/F )[p∞]→ 0.
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action of the absolute Galois group Gal(Q̄/Q).

For each number field extension F of Q, the Selmer group
Selp∞(E/F ) consists of Galois cohomology classes

f ∈ H1(Gal
(
Q̄/F

)
,E [p∞])

satisfying suitable local conditions.
It fits into a short exact sequence

0→ E (F )⊗Qp/Zp → Selp∞(E/F )→X(E/F )[p∞]→ 0.
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Selmer groups

The Selmer group over Qcyc is taken to be the direct limit

Selp∞(E/Qcyc) := lim−→
n

Selp∞(E/Qn).

The Pontryagin dual
Mcyc := Homcnts(Selp∞(E/Qcyc),Qp/Zp) is a finitely
generated and torsion Λ ' Zp[[x ]] module.
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Iwasawa Invariants

By the structure theory of Zp[[x ]] modules, up to a
pseudoisomorphism, Mcyc decomposes into cyclic-modules:⊕

j

Zp[[x ]]/(pµj )

⊕
⊕

j

Zp[[x ]]/(fj(x))

 .

The µ and λ invariants are as follows

µE ,p :=
∑
j

µj and λE ,p :=
∑
j

deg fj(x).
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Greenberg’s Conjecture

Conjecture (Greenberg)

Suppose that E [p] is irreducible as a Galois module, then,
µE ,p = 0.

For a fixed elliptic curve E/Q without complex
multiplication, it follows from Serre’s Open image theorem
that E [p] is irreducible as a Galois module for all but
finitely many primes.
Mazur showed that if E is semistable, then E [p] is
irreducible for p > 11.
For a fixed prime p, Duke showed that E [p] is irreducible
as a Galois module for 100% of elliptic curves E/Q.
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The λ-invariant satisfies the inequality λE ,p ≥ rankE (Q).
We would like to model the average behaviour of the
Iwasawa invariants µ and λ in two cases:

1 when E is fixed and p-varies,
2 when p is fixed and E varies.
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Consider the following result of R. Greenberg:

Theorem (R. Greenberg)

Let E be an elliptic curve with rankE (Q) = 0. Then the
following equivalent conditions are satisfied for 100% of the
ordinary primes p:

µE ,p = 0 and λE ,p = 0,
Selp∞(E/Qcyc) = 0.
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The result may be generalized various ways, for instance:

Theorem (D.Kundu, AR)

Let E be an elliptic curve with rankE (Q) = 0. Then the
following equivalent conditions are satisfied for all but finitely
many primes p at which E has supersingular reduction:

µ±
E ,p = 0 and λ±E ,p = 0,

Sel±(E/Qcyc) = 0.

Here, Sel±(E/Qcyc) are Kobayashi’s signed Selmer groups
and µ±E ,p, λ

±
E ,p the signed Iwasawa invariants.
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Recall that Γ = Gal(Qcyc/Q), the Selmer group
Selp∞(E/Qcyc) admits an action of Γ.
There is a natural map

Φ : Sel(E/Qcyc)Γ → Sel(E/Qcyc)Γ.

The (generalized) Euler characteristic

χ(Γ,E [p∞]) :=
# ker Φ

# cok Φ
.
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Relationship with Iwasawa Invariants

Theorem

The truncated Euler characteristic χ(Γ,E [p∞]) is an integer
and the following conditions are equivalent:

χ(Γ,E [p∞]) = 1,
µE ,p = 0 and λE ,p = rankE (Q).
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p-adic Birch and Swinnerton-Dyer Conjecture

Let E be an elliptic curve over Q and assume that
X(E/Q)[p∞] is finite.

Theorem (Perrin-Riou, Schneider)

The Euler characteristic χ (Γ,E [p∞]) is equal to the following
formula, up to a p-adic unit

Rp(E/Q)

prankE(Q)
×

#X(E/Q)[p∞]×
∏
` c`(E )×

(
#Ẽ (Fp)

)2

(#E (Q)[p∞])2 .
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Short-hand notation

Theorem (Perrin-Riou, Schneider)

χ(Γ,E [p∞]) =
RE ,p ×XE ,p × τE ,p × αE ,p

(#E (Q)[p∞])2 .

RE ,p is the order of the p-primary part of the p-adic
regulator of E/Q,
XE ,p the order of the p-primary part of the Tate
Shafarevich group is E ,
τE ,p the order of the p-primary part of the Tamagawa
product

∏
` c`(E ),

αE ,p :=
(

#Ẽ (Fp)[p∞]
)2

.
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#Ẽ (Fp)[p∞]
)2

.



Arithmetic
Statistics

and Iwasawa
theory

Anwesh Ray

Introduction

Iwasawa
theory of
Elliptic
Curves

The Euler
Characteris-
tic

E fixed p
varies

p fixed E
varies

Assume that p is an ordinary prime. Have the following
implications:

RE ,p = 1,XE ,p = 1, τE ,p = 1, αE ,p = 1
⇒χ(Γ,E [p∞]) = 1
⇔µE ,p = 0 and λE ,p = rankE (Q).
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Elliptic curve E fixed and the prime p varies

Fix E and let p vary. We expect that for 100% of the
primes,

µE ,p = 0 and λE ,p = rankE (Q).

This is the case provided RE ,p = 1 for 100% of primes p.
Computational evidence shows that this is to be expected.
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There are analogues in the case when E has supersingular
reduction at p.
We are led to make the following conjecture:

Conjecture

Let E be a fixed elliptic curve over Q. For 100% of the primes
p at which E has good ordinary reduction (resp. supersingular),
µ = 0 and λ = rankE (Q) (resp. µ+ = µ− = 0 and
λ+ = λ− = rankE (Q)).
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Fixed prime p and E varies

Fix a prime p.
Recall that any elliptic curve E over Q admits a unique
Weierstrass equation

E : y2 = x3 + Ax + B

where A,B are integers and gcd(A3,B2) is not divisible by
any twelfth power.
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The height of E is defined as follows:

H(E ) := max
(
|A|3,B2

)
.

Let E(X ) of elliptic curves of height < X .
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Fix a prime p ≥ 5.
Let Ep(X ) ⊂ E(X ) be the subset of elliptic curves with

1 rankE (Q) = 0,
2 good ordinary reduction at p,
3 Either µE ,p > 0, or λE ,p > 0 (or both).

Theorem (D. Kundu, AR)

Let p ≥ 5 be a fixed prime. We have that:

lim sup
X→∞

Ep(X )

E(X )
< f0(p) + (ζ(p)− 1) + ζ(10) · d(p)

p2 .
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Here, f0(p) is the proportion of elliptic curves E of rank 0
for which p | #X(E/Q).
Delaunay has shown that according to Cohen-Lenstra
heuristics, one should expect

f0(p) = 1−
∞∏
j=1

(
1− 1

p2j−1

)
=

1
p

+
1
p3 −

1
p4 +

1
p5 −

1
p6 . . . .

These numbers decrease rapidly as p increases, for
instance, f0(2) ≈ 0.58, f0(3) ≈ 0.36 and f0(5) ≈ 0.21.
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Here, d(p) be the number of pairs κ = (a, b) ∈ Fp × Fp

such that
1 ∆(κ) 6= 0.
2 Eκ : y2 = x3 + ax + b has a point over Fp of order p.

The number d(p) is closely related to the Kronecker class
number of 1− 4p. Computations show that the values
d(p)/p2 tend to decrease as p increases, however, there is
much oscillation in the data.
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Values of d(p)/p2 for 7 ≤ p < 150

p d(p)/p2 p d(p)/p2

7 0.0816326530612245 71 0.0208292005554453
11 0.0413223140495868 73 0.0270219553387127
13 0.0710059171597633 79 0.0374939913475405
17 0.0276816608996540 83 0.0178545507330527
19 0.0581717451523546 89 0.0222194167403106
23 0.0415879017013233 97 0.0255074928260176
29 0.0332936979785969 101 0.00980296049406921
31 0.0312174817898023 103 0.0288434348194929
37 0.0306793279766253 107 0.00925845051969604
41 0.0118976799524093 109 0.0181802878545577
43 0.0567874526771228 113 0.0263137285613595
47 0.0208239022181983 127 0.0169260338520677
53 0.0277678889284443 131 0.0189382903094225
59 0.0166618787704683 137 0.0108689860940913
61 0.0349368449341575 139 0.0142849748977796
67 0.0147026063711294 149 0.0133327327597856
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Elliptic curves with large λ-invariant

The λ-invariant λE ,p gives an upper bound for rankE (Qn)
as n→∞.
On the other hand, the rank boundedness Conjecture asks
if there exist elliptic curves E/Q with arbitrarily large
Mordell-Weil rank.
Given any prime p, Greenberg showed that there exist
elliptic curves E/Q for which µE ,p + λE ,p is arbitrarily large.
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Lower Bounds

Theorem (D. Kundu, AR)

Let p ≥ 5 be a prime and N ∈ Z≥1. There is an explicit lower
bound dp,N > 0 for the density of elliptic curves E/Q for which

µE ,p + λE ,p ≥ N.

The quantity dp,N is given by some explicit infinite sums,
which gets smaller as either N or p increases.
We do assume the finiteness of X(E/Q)[p∞] in our
arguments.
On assuming Greenberg’s conjecture, the inequality
µE ,p + λE ,p ≥ N may be replaced with λE ,p ≥ N.
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Recent Work

The results have been extended to anticyclotomic
Zp-extensions, joint with J.Hatley and D.Kundu. Here,
results are proved when the imaginary quadratic field is
allowed to vary.
In joint work with L.Beneish and D.Kundu, we use
techniques in Iwasawa theory to study arithmetic statistics
for rank jumps and growth of Selmer groups of elliptic
curves in Z/pZ-extensions.
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Thank you!
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