Fields Number theory Seminar

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

University of British Columbia

anweshray@math.ubc.ca

August 9, 2021

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Joint with Debanjana Kundu (PIMS/UBC).

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies Arithmetic statistics (of elliptic curves) is the study of the average behaviour of certain invariants associated to elliptic curves.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

- Arithmetic statistics (of elliptic curves) is the study of the average behaviour of certain invariants associated to elliptic curves.
- It is conjectured that half of elliptic curves have rank 0 and the other half have rank 1.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Arithmetic statistics (of elliptic curves) is the study of the average behaviour of certain invariants associated to elliptic curves.
- It is conjectured that half of elliptic curves have rank 0 and the other half have rank 1.
- In particular, 0 percent of all elliptic curves are expected to have rank ≥ 2.

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies Some results in this direction are due to Bhargava and Shankar, who study the average size of Selmer groups.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Some results in this direction are due to Bhargava and Shankar, who study the average size of Selmer groups.
- As a result of analyzing the average size of the 5-Selmer group, they are able to show that

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Some results in this direction are due to Bhargava and Shankar, who study the average size of Selmer groups.
- As a result of analyzing the average size of the 5-Selmer group, they are able to show that
 - the average rank of elliptic curves is less than .885 (conjectured to be 0.5).

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Some results in this direction are due to Bhargava and Shankar, who study the average size of Selmer groups.
- As a result of analyzing the average size of the 5-Selmer group, they are able to show that
 - the average rank of elliptic curves is less than .885 (conjectured to be 0.5).

2 Less than 20% of elliptic curves have rank ≥ 2 (conjectured to be 0%).

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Some results in this direction are due to Bhargava and Shankar, who study the average size of Selmer groups.
- As a result of analyzing the average size of the 5-Selmer group, they are able to show that
 - the average rank of elliptic curves is less than .885 (conjectured to be 0.5).
 - 2 Less than 20% of elliptic curves have rank \geq 2 (conjectured to be 0%).
 - 3 At least 20% of elliptic curves have rank 0 (conjectured to be 50%).

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies Iwasawa theory is concerned with the structure of certain Galois modules associated to elliptic curves.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Iwasawa theory is concerned with the structure of certain Galois modules associated to elliptic curves.
- These Galois modules arise from Selmer groups, and the study of their structure is the primary motivation of the subject.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Iwasawa theory is concerned with the structure of certain Galois modules associated to elliptic curves.
- These Galois modules arise from Selmer groups, and the study of their structure is the primary motivation of the subject.
- Unlike the Selmer groups that Bhargava-Shankar work with, the Selmer groups in Iwasawa theory are defined over certain infinite towers of number fields.

Elliptic curves and Galois Representations

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction Iwasawa theory of
Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Elliptic curves and Galois Representations Arithmetic Statistics and Iwasawa theory • Let *E* be an elliptic curve over \mathbb{Q} . Anwesh Ray Introduction

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Elliptic curves and Galois Representations

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Let *E* be an elliptic curve over \mathbb{Q} .
- Fix a prime p, denote by E[pⁿ] the pⁿ torsion subgroup of E(Q).

Elliptic curves and Galois Representations

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Let *E* be an elliptic curve over \mathbb{Q} .
- Fix a prime p, denote by E[pⁿ] the pⁿ torsion subgroup of E(Q
).
- The *p*-adic Tate-module $T_p(E)$ is the inverse limit

$$T_p(E) = \varprojlim_n E[p^n],$$

where the inverse limit is taken w.r.t. multiplication by p maps $\times p : E[p^{n+1}] \to E[p^n]$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

◆□ ▶ ◆□ ▶ ▲目 ▶ ▲□ ▶ ▲□ ▶

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The Tate-module $T_p(E)$ is a free \mathbb{Z}_p -module of rank 2, and is equipped with an action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- The Tate-module $T_p(E)$ is a free \mathbb{Z}_p -module of rank 2, and is equipped with an action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.
- To the pair (*E*, *p*), the Galois action on the Tate-module is encoded by a Galois representation:

 $\rho_{E,p} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}_p).$

Ari	thmetic			
Statistics				
and	Iwasawa			
t	heory			

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

We study two interrelated problems:

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

We study two interrelated problems:

For a fixed elliptic curve E we study invariants associated to the p-adic Galois representation ρ_{E,p} as p ranges over all primes.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

We study two interrelated problems:

- For a fixed elliptic curve E we study invariants associated to the p-adic Galois representation ρ_{E,p} as p ranges over all primes.
- For a fixed prime *p*, we study the average behaviour of invariants associated to *ρ_{E,p}* as *E* ranges over all elliptic curves over Q.

The Cyclotomic \mathbb{Z}_p -extension

Arithmetic Statistics and Iwasawa theory
Anwesh Ray Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed <i>E</i> varies

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Cyclotomic \mathbb{Z}_{p} -extension

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • Let p be a fixed prime number.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − つへで

The Cyclotomic \mathbb{Z}_p -extension

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Let p be a fixed prime number.
- For $n \in \mathbb{Z}_{\geq 1}$, let \mathbb{Q}_n be the subfield of $\mathbb{Q}(\mu_{p^{n+1}})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n$ as depicted

 $\mathbb{Q}(\mu_{p^{n+1}})$ \mathbb{Q}_n

The Cyclotomic \mathbb{Z}_p -extension

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

- Let p be a fixed prime number.
- For $n \in \mathbb{Z}_{\geq 1}$, let \mathbb{Q}_n be the subfield of $\mathbb{Q}(\mu_{p^{n+1}})$ such that $\operatorname{Gal}(\mathbb{Q}_n/\mathbb{Q}) \simeq \mathbb{Z}/p^n$ as depicted

 $\mathbb{Q}(\mu_{p^{n+1}})$ Q_n

• Set $\mathbb{O}_0 := \mathbb{O}$.

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

◆□ ▶ ◆□ ▶ ▲目 ▶ ▲□ ▶ ▲□ ▶

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

• Given a number field K, let K_n be the composite $K \cdot \mathbb{Q}_n$.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies Given a number field K, let K_n be the composite K · Q_n.
The tower of number fields K = K₀ ⊆ K₁ ⊆ K₂ ⊆ · · · ⊆ K_n ⊆ . . . is called the cyclotomic tower.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Given a number field K, let K_n be the composite $K \cdot \mathbb{Q}_n$.
 - The tower of number fields $K = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n \subseteq \ldots$ is called the cyclotomic tower.
- The field K_{cyc} is taken to be the union

$$K_{\mathsf{cyc}} := igcup_{n\geq 1} K_n.$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Galois group $Gal(K_{cyc}/K)$ is isomorphic to \mathbb{Z}_p .

Early Investigations

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < で</p>

Early Investigations

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • Iwasawa's early ivestigations led him to study the variation of *p*-class groups of K_n as $n \to \infty$.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで
Early Investigations

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Iwasawa's early ivestigations led him to study the variation of *p*-class groups of K_n as $n \to \infty$.
- For n ≥ 1, set A_n(K) to denote the p-primary part of the class group of K_n

$$\mathcal{A}_n(K) := \operatorname{Cl}(K_n)[p^{\infty}].$$

Early Investigations

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Iwasawa's early ivestigations led him to study the variation of *p*-class groups of K_n as $n \to \infty$.
- For n ≥ 1, set A_n(K) to denote the p-primary part of the class group of K_n

$$\mathcal{A}_n(K) := \operatorname{Cl}(K_n)[p^{\infty}].$$

• Iwasawa showed that there are invariants μ , λ , ν such that $#A_n(K) = p^{\mu p^n + \lambda n + \nu}$

for large values of n.

	Iwasawa's approach
Arithmetic Statistics and Iwasawa theory	
Anwesh Ray	
Introduction	
Iwasawa theory of Elliptic Curves	
The Euler Characteris- tic	
E fixed p varies	
p fixed E varies	

Iwasawa's approach

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • There are natural maps $\mathcal{A}_{n+1}(K) \to \mathcal{A}_n(K)$ and the inverse limit $\mathcal{A}_{cyc}(K) := \varprojlim_n \mathcal{A}_n(K)$ is a module over $\Gamma_K := \operatorname{Gal}(K_{cyc}/K)$.

Iwasawa's approach

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • There are natural maps $\mathcal{A}_{n+1}(K) \to \mathcal{A}_n(K)$ and the inverse limit $\mathcal{A}_{cyc}(K) := \lim_{K \to n} \mathcal{A}_n(K)$ is a module over $\Gamma_K := \operatorname{Gal}(K_{cyc}/K)$.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Iwasawa introduced the completed algebra $\Lambda := \varprojlim_n \mathbb{Z}_p[\operatorname{Gal}(K_n/K)] \simeq \mathbb{Z}_p[[x]].$

Iwasawa's approach

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- There are natural maps $\mathcal{A}_{n+1}(K) \to \mathcal{A}_n(K)$ and the inverse limit $\mathcal{A}_{cyc}(K) := \varprojlim_n \mathcal{A}_n(K)$ is a module over $\Gamma_K := \operatorname{Gal}(K_{cyc}/K)$.
- Iwasawa introduced the completed algebra $\Lambda := \lim_{n \to \infty} \mathbb{Z}_p[\operatorname{Gal}(K_n/K)] \simeq \mathbb{Z}_p[[x]].$
- He showed that A_{cyc}(K) is a finitely generated torsion Z_p[[x]]-module and his theorem is a consequence of the structure theory of such modules.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Vanishing of the μ -invariant

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Theorem (Fererro-Washington)

Let K be an abelian extension of \mathbb{Q} , the Iwasawa μ -invariant $\mu_{K,p}$ vanishes.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Vanishing of the μ -invariant

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Theorem (Fererro-Washington)

Let K be an abelian extension of \mathbb{Q} , the Iwasawa μ -invariant $\mu_{K,p}$ vanishes.

■ The same is expected for arbitrary number field extensions *K*/ℚ.

Arithmetic
Statistics
and Iwasawa
theory
chicoly
Anunal Dav
Anwesh Ray
to the state of the
introduction
iwasawa
theory of
Elliptic
Curves
The Euler
Characteris-
tic
E fixed p
varies
varies
n fixed F
p fixed L
varies

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies Mazur initiated the Iwasawa theory of elliptic curves over Q.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

■ Throughout, we let *E* be an elliptic curve over *Q* with good ordinary reduction at *p*.

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Mazur initiated the Iwasawa theory of elliptic curves over Q.
- Throughout, we let *E* be an elliptic curve over *Q* with good ordinary reduction at *p*.
- For a fixed elliptic curve *E* and prime *p*, Mazur studied the growth of rank $E(\mathbb{Q}_n)$ as $n \to \infty$.

	Selmer groups
Arithmetic Statistics and Iwasawa theory	
Anwesh Ray	
Introduction	
lwasawa theory of Elliptic Curves	
The Euler Characteris- tic	
E fixed p varies	
p fixed <i>E</i> varies	

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The *p*-primary torsion group $E[p^{\infty}] \subset E(\overline{\mathbb{Q}})$ admits an action of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$.

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- The *p*-primary torsion group $E[p^{\infty}] \subset E(\overline{\mathbb{Q}})$ admits an action of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$.
- For each number field extension F of Q, the Selmer group Sel_p∞(E/F) consists of Galois cohomology classes

$$f\in H^1({\operatorname{Gal}}\left(ar{\mathbb{Q}}/F
ight),E[p^\infty])$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

satisfying suitable local conditions.

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- The *p*-primary torsion group $E[p^{\infty}] \subset E(\overline{\mathbb{Q}})$ admits an action of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$.
- For each number field extension F of Q, the Selmer group Sel_p∞(E/F) consists of Galois cohomology classes

$$f\in H^1({\operatorname{{\sf Gal}}}\left(ar{\mathbb{Q}}/F
ight),E[p^\infty])$$

satisfying suitable local conditions.

It fits into a short exact sequence

 $0 \to E(F) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \operatorname{Sel}_{p^{\infty}}(E/F) \to \operatorname{III}(E/F)[p^{\infty}] \to 0.$

	Selmer groups
Arithmetic Statistics and Iwasawa theory	
Anwesh Ray	
Introduction	
lwasawa theory of Elliptic Curves	
The Euler Characteris- tic	
E fixed p varies	
p fixed <i>E</i> varies	

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The Selmer group over \mathbb{Q}_{cyc} is taken to be the direct limit

$$\operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\operatorname{cyc}}) := \varinjlim_{n} \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_{n}).$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The Selmer group over \mathbb{Q}_{cyc} is taken to be the direct limit Sel_p $_{\infty}(E/\mathbb{Q}_{cyc}) := \varinjlim \operatorname{Sel}_{p^{\infty}}(E/\mathbb{Q}_n).$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 The Pontryagin dual *m*_{cyc} := Hom_{cnts}(Sel_{p∞}(E/Q_{cyc}), Q_p/Z_p) is a finitely generated and torsion Λ ≃ Z_p[[x]] module.

Iwasawa Invariants

Arithmetic
Statistics
and Iwasawa
Al
theory
Anwesh Ray
Introduction
Luce and the
Twasawa
theory of
Elliptic
Curves
The Euler
Characteric
Characteris-
tic
E fixed p
varies
n fixed E
Varias
varies

Iwasawa Invariants

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies ■ By the structure theory of Z_p[[x]] modules, up to a pseudoisomorphism, 𝔐_{cyc} decomposes into cyclic-modules:

$$\left(\bigoplus_{j} \mathbb{Z}_{p}[[x]]/(p^{\mu_{j}})\right) \oplus \left(\bigoplus_{j} \mathbb{Z}_{p}[[x]]/(f_{j}(x))\right)$$

•

Iwasawa Invariants

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies ■ By the structure theory of Z_p[[x]] modules, up to a pseudoisomorphism, 𝔐_{cyc} decomposes into cyclic-modules:

$$\left(\bigoplus_{j} \mathbb{Z}_{\rho}[[x]]/(p^{\mu_{j}})\right) \oplus \left(\bigoplus_{j} \mathbb{Z}_{\rho}[[x]]/(f_{j}(x))\right)$$

.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• The μ and λ invariants are as follows

$$\mu_{E,p} := \sum_{j} \mu_{j} \text{ and } \lambda_{E,p} := \sum_{j} \deg f_{j}(x).$$

Conjecture (Greenberg)

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

Suppose that E[p] is irreducible as a Galois module, then, $\mu_{E,p} = 0.$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Conjecture (Greenberg)

Suppose that E[p] is irreducible as a Galois module, then, $\mu_{E,p} = 0$.

■ For a fixed elliptic curve E_{/Q} without complex multiplication, it follows from Serre's Open image theorem that E[p] is irreducible as a Galois module for all but finitely many primes.

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Conjecture (Greenberg)

Suppose that E[p] is irreducible as a Galois module, then, $\mu_{E,p} = 0.$

■ For a fixed elliptic curve E_{/Q} without complex multiplication, it follows from Serre's Open image theorem that E[p] is irreducible as a Galois module for all but finitely many primes.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Mazur showed that if E is semistable, then E[p] is irreducible for p > 11.

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Conjecture (Greenberg)

Suppose that E[p] is irreducible as a Galois module, then, $\mu_{E,p} = 0$.

- For a fixed elliptic curve E_{/Q} without complex multiplication, it follows from Serre's Open image theorem that E[p] is irreducible as a Galois module for all but finitely many primes.
- Mazur showed that if *E* is semistable, then *E*[*p*] is irreducible for *p* > 11.
- For a fixed prime p, Duke showed that E[p] is irreducible as a Galois module for 100% of elliptic curves E/_Q.

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

• The λ -invariant satisfies the inequality $\lambda_{E,p} \geq \operatorname{rank} E(\mathbb{Q})$.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The λ -invariant satisfies the inequality $\lambda_{E,p} \geq \operatorname{rank} E(\mathbb{Q})$.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

We would like to model the average behaviour of the lwasawa invariants μ and λ in two cases:

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The λ -invariant satisfies the inequality $\lambda_{E,p} \geq \operatorname{rank} E(\mathbb{Q})$.

- We would like to model the average behaviour of the lwasawa invariants μ and λ in two cases:
 - 1 when *E* is fixed and *p*-varies,

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The λ -invariant satisfies the inequality $\lambda_{E,p} \geq \operatorname{rank} E(\mathbb{Q})$.

- We would like to model the average behaviour of the lwasawa invariants μ and λ in two cases:
 - 1 when E is fixed and p-varies,
 - 2 when p is fixed and E varies.

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies Consider the following result of R. Greenberg:

Theorem (R. Greenberg)

Let *E* be an elliptic curve with rank $E(\mathbb{Q}) = 0$. Then the following equivalent conditions are satisfied for 100% of the ordinary primes *p*:

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

• Consider the following result of R. Greenberg:

Theorem (R. Greenberg)

Let *E* be an elliptic curve with rank $E(\mathbb{Q}) = 0$. Then the following equivalent conditions are satisfied for 100% of the ordinary primes *p*:

•
$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = 0$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

• Consider the following result of R. Greenberg:

Theorem (R. Greenberg)

Let *E* be an elliptic curve with rank $E(\mathbb{Q}) = 0$. Then the following equivalent conditions are satisfied for 100% of the ordinary primes *p*:

•
$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = 0$

• Sel_p
$$\infty$$
 (E/\mathbb{Q}_{cyc}) = 0.

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies
Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies • The result may be generalized various ways, for instance:

Theorem (D.Kundu, AR)

Let E be an elliptic curve with rank $E(\mathbb{Q}) = 0$. Then the following equivalent conditions are satisfied for all but finitely many primes p at which E has supersingular reduction:

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies • The result may be generalized various ways, for instance:

Theorem (D.Kundu, AR)

Let E be an elliptic curve with rank $E(\mathbb{Q}) = 0$. Then the following equivalent conditions are satisfied for all but finitely many primes p at which E has supersingular reduction: • $\mu_{E,p}^{\pm} = 0$ and $\lambda_{E,p}^{\pm} = 0$,

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The result may be generalized various ways, for instance:

Theorem (D.Kundu, AR)

Let *E* be an elliptic curve with rank $E(\mathbb{Q}) = 0$. Then the following equivalent conditions are satisfied for all but finitely many primes *p* at which *E* has supersingular reduction:

•
$$\mu_{E,p}^{\pm} = 0 \text{ and } \lambda_{E,p}^{\pm} = 0$$

• $\operatorname{Sel}^{\pm}(E/\mathbb{Q}_{\operatorname{cyc}}) = 0.$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The result may be generalized various ways, for instance:

Theorem (D.Kundu, AR)

Let *E* be an elliptic curve with rank $E(\mathbb{Q}) = 0$. Then the following equivalent conditions are satisfied for all but finitely many primes *p* at which *E* has supersingular reduction: $\mu_{E}^{\pm} = 0$ and $\lambda_{E}^{\pm} = 0$.

•
$$\mu_{E,p}^{\pm} = 0$$
 and $\lambda_{E,p}^{\pm} =$
• $\operatorname{Sel}^{\pm}(E/\mathbb{Q}_{\operatorname{cyc}}) = 0.$

■ Here, Sel[±](E/Q_{cyc}) are Kobayashi's signed Selmer groups and µ[±]_{E,p}, λ[±]_{E,p} the signed Iwasawa invariants.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ■ - のへで

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies Recall that Γ = Gal(Q_{cyc}/Q), the Selmer group Sel_p[∞](E/Q_{cyc}) admits an action of Γ.

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

- Recall that Γ = Gal(Q_{cyc}/Q), the Selmer group Sel_p∞(E/Q_{cyc}) admits an action of Γ.
- There is a natural map

$$\Phi: {
m Sel}(E/{\mathbb Q}_{{
m cyc}})^{\Gamma} o {
m Sel}(E/{\mathbb Q}_{{
m cyc}})_{\Gamma}.$$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies ■ Recall that $\Gamma = \text{Gal}(\mathbb{Q}_{\text{cyc}}/\mathbb{Q})$, the Selmer group $\text{Sel}_{p^{\infty}}(E/\mathbb{Q}_{\text{cyc}})$ admits an action of Γ .

There is a natural map

$$\Phi: \operatorname{Sel}(E/\mathbb{Q}_{\operatorname{cyc}})^{\Gamma} \to \operatorname{Sel}(E/\mathbb{Q}_{\operatorname{cyc}})_{\Gamma}.$$

The (generalized) Euler characteristic

$$\chi(\Gamma, E[p^{\infty}]) := \frac{\# \ker \Phi}{\# \operatorname{cok} \Phi}$$

Relationship with Iwasawa Invariants

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

Theorem

The truncated Euler characteristic $\chi(\Gamma, E[p^{\infty}])$ is an integer and the following conditions are equivalent:

Relationship with Iwasawa Invariants

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Theorem

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

The truncated Euler characteristic $\chi(\Gamma, E[p^{\infty}])$ is an integer and the following conditions are equivalent: • $\chi(\Gamma, E[p^{\infty}]) = 1$,

Relationship with Iwasawa Invariants

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

The truncated Euler characteristic $\chi(\Gamma, E[p^{\infty}])$ is an integer

and the following conditions are equivalent:

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$\chi(\mathsf{\Gamma},\mathsf{E}[p^\infty])=1,$$

Theorem

•
$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = \operatorname{rank} E(\mathbb{Q})$.

p-adic Birch and Swinnerton-Dyer Conjecture

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction Iwasawa
Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed <i>E</i> varies

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

p-adic Birch and Swinnerton-Dyer Conjecture

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies • Let *E* be an elliptic curve over \mathbb{Q} and assume that $\operatorname{III}(E/\mathbb{Q})[p^{\infty}]$ is finite.

Theorem (Perrin-Riou, Schneider)

The Euler characteristic $\chi(\Gamma, E[p^{\infty}])$ is equal to the following formula, up to a p-adic unit

$$\frac{\mathcal{R}_{p}(E/\mathbb{Q})}{p^{\mathsf{rank}\,E(\mathbb{Q})}} \times \frac{\#\mathrm{III}(E/\mathbb{Q})[p^{\infty}] \times \prod_{\ell} c_{\ell}(E) \times \left(\#\widetilde{E}(\mathbb{F}_{p})\right)^{2}}{\left(\#E(\mathbb{Q})[p^{\infty}]\right)^{2}}$$

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

Theorem (Perrin-Riou, Schneider)

$$\chi(\Gamma, E[p^{\infty}]) = \frac{R_{E,p} \times \mathrm{III}_{E,p} \times \tau_{E,p} \times \alpha_{E,p}}{\left(\# E(\mathbb{Q})[p^{\infty}]\right)^2}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

Theorem (Perrin-Riou, Schneider)

$$\chi(\Gamma, E[p^{\infty}]) = \frac{R_{E,p} \times III_{E,p} \times \tau_{E,p} \times \alpha_{E,p}}{\left(\# E(\mathbb{Q})[p^{\infty}]\right)^2}$$

R_{E,p} is the order of the *p*-primary part of the *p*-adic regulator of *E*/ℚ,

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

Theorem (Perrin-Riou, Schneider)

$$\chi(\Gamma, E[p^{\infty}]) = \frac{R_{E,p} \times III_{E,p} \times \tau_{E,p} \times \alpha_{E,p}}{\left(\# E(\mathbb{Q})[p^{\infty}]\right)^2}$$

- *R_{E,p}* is the order of the *p*-primary part of the *p*-adic regulator of *E*/ℚ,
- III_{E,p} the order of the *p*-primary part of the Tate Shafarevich group is *E*,

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

Theorem (Perrin-Riou, Schneider)

$$\chi(\Gamma, E[p^{\infty}]) = \frac{R_{E,p} \times III_{E,p} \times \tau_{E,p} \times \alpha_{E,p}}{\left(\# E(\mathbb{Q})[p^{\infty}]\right)^2}$$

- *R_{E,p}* is the order of the *p*-primary part of the *p*-adic regulator of *E*/ℚ,
- III_{E,p} the order of the *p*-primary part of the Tate Shafarevich group is *E*,
- $\tau_{E,p}$ the order of the *p*-primary part of the Tamagawa product $\prod_{\ell} c_{\ell}(E)$,

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies

Theorem (Perrin-Riou, Schneider)

$$\chi(\Gamma, E[p^{\infty}]) = \frac{R_{E,p} \times III_{E,p} \times \tau_{E,p} \times \alpha_{E,p}}{\left(\# E(\mathbb{Q})[p^{\infty}]\right)^2}$$

- *R_{E,p}* is the order of the *p*-primary part of the *p*-adic regulator of *E*/ℚ,
- III_{E,p} the order of the *p*-primary part of the Tate Shafarevich group is *E*,
- $\tau_{E,p}$ the order of the *p*-primary part of the Tamagawa product $\prod_{\ell} c_{\ell}(E)$,

•
$$\alpha_{E,p} := \left(\# \tilde{E}(\mathbb{F}_p)[p^\infty] \right)^2$$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteristic

E fixed p varies

p fixed E varies Assume that p is an ordinary prime. Have the following implications:

$$\begin{aligned} &R_{E,p} = 1, \amalg_{E,p} = 1, \tau_{E,p} = 1, \alpha_{E,p} = 1 \\ \Rightarrow &\chi(\Gamma, E[p^{\infty}]) = 1 \\ \Leftrightarrow &\mu_{E,p} = 0 \text{ and } \lambda_{E,p} = \operatorname{rank} E(\mathbb{Q}). \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Elliptic curve E fixed and the prime p varies

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Elliptic curve E fixed and the prime p varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed *p* varies

p fixed *E* varies

Fix E and let p vary. We expect that for 100% of the primes,

$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = \operatorname{rank} E(\mathbb{Q}).$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Elliptic curve E fixed and the prime p varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed *p* varies

p fixed E varies ■ Fix *E* and let *p* vary. We expect that for 100% of the primes,

$$\mu_{E,p} = 0$$
 and $\lambda_{E,p} = \operatorname{rank} E(\mathbb{Q}).$

This is the case provided R_{E,p} = 1 for 100% of primes p.
 Computational evidence shows that this is to be expected.

Arithmetic
and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies There are analogues in the case when E has supersingular reduction at p.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ 三 - のへで

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- There are analogues in the case when E has supersingular reduction at p.
 - We are led to make the following conjecture:

Conjecture

Let E be a fixed elliptic curve over \mathbb{Q} . For 100% of the primes p at which E has good ordinary reduction (resp. supersingular), $\mu = 0$ and $\lambda = \operatorname{rank} E(\mathbb{Q})$ (resp. $\mu^+ = \mu^- = 0$ and $\lambda^+ = \lambda^- = \operatorname{rank} E(\mathbb{Q})$).

Fixed prime p and E varies

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Fixed prime p and E varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Fix a prime *p*.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ 釣�(♡

Fixed prime p and E varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Fix a prime *p*.
- Recall that any elliptic curve *E* over Q admits a unique Weierstrass equation

$$E: y^2 = x^3 + Ax + B$$

where A, B are integers and $gcd(A^3, B^2)$ is not divisible by any twelfth power.

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The height of *E* is defined as follows:

$$H(E) := \max\left(|A|^3, B^2\right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • The height of *E* is defined as follows:

$$H(E) := \max\left(|A|^3, B^2\right).$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

• Let $\mathcal{E}(X)$ of elliptic curves of height < X.

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Fix a prime $p \ge 5$.

▲□▶▲圖▶▲≣▶▲≣▶ = 三 - のへで

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • Fix a prime $p \ge 5$.

• Let $\mathcal{E}_p(X) \subset \mathcal{E}(X)$ be the subset of elliptic curves with

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Fix a prime $p \ge 5$.
- Let *E_p(X)* ⊂ *E(X)* be the subset of elliptic curves with
 rank *E*(ℚ) = 0,

Anwesh Ray

Introduction

- Iwasawa theory of Elliptic Curves
- The Euler Characteris tic
- E fixed p varies
- p fixed E varies

- Fix a prime $p \ge 5$.
- Let $\mathcal{E}_p(X) \subset \mathcal{E}(X)$ be the subset of elliptic curves with 1 rank $E(\mathbb{Q}) = 0$,

2 good ordinary reduction at p,
Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies Fix a prime $p \ge 5$.

Let *E_p(X)* ⊂ *E(X)* be the subset of elliptic curves with
 rank *E*(ℚ) = 0,

2 good ordinary reduction at *p*,

3 Either
$$\mu_{E,p} > 0$$
, or $\lambda_{E,p} > 0$ (or both).

Theorem (D. Kundu, AR)

Let $p \ge 5$ be a fixed prime. We have that:

$$\limsup_{X\to\infty}\frac{\mathcal{E}_p(X)}{\mathcal{E}(X)} < f_0(p) + (\zeta(p)-1) + \zeta(10) \cdot \frac{d(p)}{p^2}$$

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies ■ Here, f₀(p) is the proportion of elliptic curves E of rank 0 for which p | #III(E/Q).

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Here, f₀(p) is the proportion of elliptic curves E of rank 0 for which p | #Ⅲ(E/ℚ).
- Delaunay has shown that according to Cohen-Lenstra heuristics, one should expect

$$f_0(p) = 1 - \prod_{j=1}^{\infty} \left(1 - \frac{1}{p^{2j-1}} \right) = \frac{1}{p} + \frac{1}{p^3} - \frac{1}{p^4} + \frac{1}{p^5} - \frac{1}{p^6} \dots$$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Here, $f_0(p)$ is the proportion of elliptic curves E of rank 0 for which $p \mid \# \amalg(E/\mathbb{Q})$.
- Delaunay has shown that according to Cohen-Lenstra heuristics, one should expect

$$f_0(p) = 1 - \prod_{j=1}^{\infty} \left(1 - \frac{1}{p^{2j-1}} \right) = \frac{1}{p} + \frac{1}{p^3} - \frac{1}{p^4} + \frac{1}{p^5} - \frac{1}{p^6} \dots$$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

These numbers decrease rapidly as p increases, for instance, $f_0(2) \approx 0.58$, $f_0(3) \approx 0.36$ and $f_0(5) \approx 0.21$.

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

• Here, d(p) be the number of pairs $\kappa = (a, b) \in \mathbb{F}_p \times \mathbb{F}_p$ such that

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

• Here, d(p) be the number of pairs $\kappa = (a, b) \in \mathbb{F}_p \times \mathbb{F}_p$ such that

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

1 $\Delta(\kappa) \neq 0.$

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies • Here, d(p) be the number of pairs $\kappa = (a, b) \in \mathbb{F}_p \times \mathbb{F}_p$ such that

1
$$\Delta(\kappa) \neq 0$$
.
2 $E_{\kappa}: y^2 = x^3 + ax + b$ has a point over \mathbb{F}_p of order p .

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- Here, d(p) be the number of pairs $\kappa = (a, b) \in \mathbb{F}_p \times \mathbb{F}_p$ such that
 - 1 $\Delta(\kappa) \neq 0$. 2 $E_{\kappa} : y^2 = x^3 + ax + b$ has a point over \mathbb{F}_p of order p.
- The number d(p) is closely related to the Kronecker class number of 1 – 4p. Computations show that the values d(p)/p² tend to decrease as p increases, however, there is much oscillation in the data.

Values of $d(p)/p^2$ for $7 \le p < 150$

Arithmetic					
Stat	tistics				
and h	wasawa				
th	eory				

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed *p* varies

p fixed E varies

р	$d(p)/p^2$	р	$d(p)/p^2$
7	0.0816326530612245	71	0.0208292005554453
11	0.0413223140495868	73	0.0270219553387127
13	0.0710059171597633	79	0.0374939913475405
17	0.0276816608996540	83	0.0178545507330527
19	0.0581717451523546	89	0.0222194167403106
23	0.0415879017013233	97	0.0255074928260176
29	0.0332936979785969	101	0.00980296049406921
31	0.0312174817898023	103	0.0288434348194929
37	0.0306793279766253	107	0.00925845051969604
41	0.0118976799524093	109	0.0181802878545577
43	0.0567874526771228	113	0.0263137285613595
47	0.0208239022181983	127	0.0169260338520677
53	0.0277678889284443	131	0.0189382903094225
59	0.0166618787704683	137	0.0108689860940913
61	0.0349368449341575	139	0.0142849748977796
67	0.0147026063711294	149	0.0133327327597856

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
Iwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

p fixed E varies

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- The λ -invariant $\lambda_{E,p}$ gives an upper bound for rank $E(\mathbb{Q}_n)$ as $n \to \infty$.
- On the other hand, the rank boundedness Conjecture asks if there exist elliptic curves E_{/Q} with arbitrarily large Mordell-Weil rank.

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

lwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

- The λ-invariant λ_{E,p} gives an upper bound for rank E(Q_n) as n → ∞.
- On the other hand, the rank boundedness Conjecture asks if there exist elliptic curves E_{/Q} with arbitrarily large Mordell-Weil rank.
- Given any prime p, Greenberg showed that there exist elliptic curves $E_{/\mathbb{Q}}$ for which $\mu_{E,p} + \lambda_{E,p}$ is arbitrarily large.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Theorem (D. Kundu, AR)

Let $p \ge 5$ be a prime and $N \in \mathbb{Z}_{\ge 1}$. There is an explicit lower bound $\mathfrak{d}_{p,N} > 0$ for the density of elliptic curves $E_{/\mathbb{Q}}$ for which

$$\mu_{E,p} + \lambda_{E,p} \ge N.$$

Theorem (D. Kundu, AR)

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Let $p \ge 5$ be a prime and $N \in \mathbb{Z}_{\ge 1}$. There is an explicit lower bound $\mathfrak{d}_{p,N} > 0$ for the density of elliptic curves $E_{/\mathbb{Q}}$ for which

$$\mu_{E,p} + \lambda_{E,p} \ge N.$$

The quantity
\$\dot_{p,N}\$ is given by some explicit infinite sums, which gets smaller as either N or p increases.

Theorem (D. Kundu, AR)

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Let $p \ge 5$ be a prime and $N \in \mathbb{Z}_{\ge 1}$. There is an explicit lower bound $\mathfrak{d}_{p,N} > 0$ for the density of elliptic curves $E_{/\mathbb{Q}}$ for which

$$\mu_{E,p} + \lambda_{E,p} \ge N.$$

■ The quantity $\vartheta_{p,N}$ is given by some explicit infinite sums, which gets smaller as either N or p increases.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• We do assume the finiteness of $\operatorname{III}(E/\mathbb{Q})[p^{\infty}]$ in our arguments.

Theorem (D. Kundu, AR)

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

Introduction

Iwasawa theory of Elliptic Curves

The Euler Characteris tic

E fixed p varies

p fixed E varies

Let $p \ge 5$ be a prime and $N \in \mathbb{Z}_{\ge 1}$. There is an explicit lower bound $\mathfrak{d}_{p,N} > 0$ for the density of elliptic curves $E_{/\mathbb{Q}}$ for which

$$\mu_{E,p} + \lambda_{E,p} \ge N.$$

- The quantity $\vartheta_{p,N}$ is given by some explicit infinite sums, which gets smaller as either N or p increases.
- We do assume the finiteness of $\operatorname{III}(E/\mathbb{Q})[p^{\infty}]$ in our arguments.
- On assuming Greenberg's conjecture, the inequality $\mu_{E,p} + \lambda_{E,p} \ge N$ may be replaced with $\lambda_{E,p} \ge N$.

	Recent Work
Arithmetic Statistics and Iwasawa theory Anwesh Ray	
Introduction Iwasawa theory of Elliptic Curves	
The Euler Characteris- tic	
E fixed p varies	
p fixed <i>E</i> varies	

Recent Work

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

- Introduction
- Iwasawa theory of Elliptic Curves
- The Euler Characteris tic
- E fixed p varies
- p fixed E varies

The results have been extended to anticyclotomic Z_p-extensions, joint with J.Hatley and D.Kundu. Here, results are proved when the imaginary quadratic field is allowed to vary.

Recent Work

Arithmetic Statistics and Iwasawa theory

Anwesh Ray

- Introduction
- lwasawa theory of Elliptic Curves
- The Euler Characteris tic
- E fixed p varies
- p fixed E varies

- The results have been extended to anticyclotomic \mathbb{Z}_p -extensions, joint with J.Hatley and D.Kundu. Here, results are proved when the imaginary quadratic field is allowed to vary.
- In joint work with L.Beneish and D.Kundu, we use techniques in lwasawa theory to study arithmetic statistics for rank jumps and growth of Selmer groups of elliptic curves in Z/pZ-extensions.

Arithmetic Statistics and Iwasawa theory
Anwesh Ray
Introduction
lwasawa theory of Elliptic Curves
The Euler Characteris- tic
E fixed p varies
p fixed E varies