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The origins

• Dirichlet’s (analytic) Class Number Formula

for F a number field (with number ring OF ).

Relates certain fundamental arithmetic invariants—(ideal) class
number hF , units O×F and number of roots of unity w1(F )—to one
single “special value”.
More precisely, define the Dedekind zeta function of F (denoting
N(I )=ideal norm of I ) ζF (s) =

∑
A6=(0)N(A)−s , <(s) > 1, and

“evaluate” at s = 1, or via fctl. eqn. relating s ↔ 1− s,
ζ∗F (0)(=first non-vanishing coeff. in the Taylor exp. at s = 0).

ζ∗F (0) = −hF R1(F )

w1(F )
,

where R1(F ) = covol(O×F ) denotes the Dirichlet regulator of F ,
i.e. the covolume of the lattice spanned by a set of fundamental
units of O×F via (log |σ(·)|)σ, σ : F ↪→ C.



An analogue

Do other evaluations, say at s = 1−m, allow for a similar
formula—and arithmetic interpretation?

Q. Roughly, is there a relationship, for m > 1,

ζ∗F (1−m) ∼ (higher class no)(higher regulator) ,

where ∼ still requires specification?

A. Seminal work by Borel (’74, ’78) indeed established

I the rank of all relevant algebraic K -groups, and defined

I “higher regulators” arising from the (odd-indexed) groups.

I Furthermore, he related the m-th regulator to ζ∗F (1−m).

In a nutshell: The rank is 0 for K2i (OF ), i > 0, and

dm := rkK2m−1(OF ) =

{
r2 if m > 1 even,

r1 + r2 if m > 1 odd.



Lichtenbaum’s question
Lichtenbaum subsequently(!) in ’72 gave an interpretation of what
should be considered as a “higher class number”:
the order of a specific (even-indexed) higher algebraic K -group.
Hence, up to for m > 1, he expected

ζ∗F (1−m) ∼ (m-th higher class no)(m-th Borel regulator) ,

where ∼ denotes “up to known factors”.
How does that reconcile with Dirichlet’s CNF? Turns out:

I K0(OF ) = Z⊕ C`(OF ), so hK = |C`(OF )| = |K0(OF )tors|,
I K1(OF ) = O×F , hence R1(F ) = covol(K1(OF )).

Lichtenbaum’s analogue, rough form (and the original):

ζ∗F (1−m) ∼ |K2m−2(OF )|covol(K2m−1(OF/tors)) ,



Bloch’s pioneering work

Drawback: Highly abstract definition of both K -groups Ki (F ), for
i > 2, and the associated higher regulators. Even to date, only
calculation via original def. has been done in case F = Q(

√
−3)

(Choo, Mannan, Sanchez-Garcia, Snaith, 2012), but only a
bounded interval could be given.
Enter Bloch (Steele Prize 2021): Famous Irvine lecture notes
(from ’78, published in ’00(!)) established a rather explicit
candidate for K3(F ). Moreover, he suggested an associated
regulator map (originally studied by D.Wigner).
Bloch’s crucial idea: Study the kernel of the following map

δF2 : Z[F ] →
∧

2F×

[x ] 7→ x ∧ (1− x),

and factor out “universal relations” (independent of F ).

Expectation: B2(F ) =
ker δF2
〈univ.rel.〉 (“Bloch gp”) is close to K3(F ).



Suslin’s confirmation, and elements in ker δF2

Suslin: Established a precise relationship (short exact sequence
0→ T (F )→ K3(F )/KM

3 (F )→ B2(F )→ 0, for some torsion
groups T (F ) and KM

3 (F ) =‘Milnor K -group’).
In particular K3(F ) and B2(F ) indeed have the same rank.

A few elements in ker δF2
I [12 ] ∈ ker δQ2 ;

I [x ] + [1− x ], 2
(
[x ] + [1/x ]

)
∈ ker δQ2 (x);

I [9]− 6[3] ∈ ker δQ2 ;

I In the field F = Q(
√
−7) the number α = 1+

√
−7

2 , root of
x2 − x + 2, satisfies α2 + (1− α) = −1, so 1 + 1−α

α2 = −1
α2 .

Therefore, using a ∧ bc = a ∧ b + a ∧ c and working modulo
2-torsion (we can ignore signs in each wedge factor), we get

δF2

(
[−1− α

α2
]

)
= (1− α)∧ −1

α2
+
−1

α2
∧ −1

α2
≡ −2

(
(1− α)∧α),

so 2[−1−α
α2 ] + [α] is in ker δF2 (and L2 maps it to ∼ ζ∗F (−1)).



Universal relations and Li2(z)

Universal: Let zi ∈ F (i = 1, . . . , 5) satisfy 1− zi = zi−2zi+2

(indices mod 5), then
∑5

i=1[zi ] ∈ ker δF2 (“five term relation”).

The Bloch-Wigner dilogarithm. A function that vanishes on
these universal relations is given by a single-valued variant of
Euler’s dilogarithm Li2(z) =

∑
n≥1 z

n/n2, originally studied by
D.Wigner and employed in Bloch’s lecture notes, is

L2(z) = =
(
Li2(z)− log |z |Li1(z)

)
.

Hence L2(z) can be extended to a function on the quotient B2(F ),
for F ↪→ C, and thus might play the role of a higher regulator for
the group K3(F ). Indeed, giving credit to Goncharov for ε,

Theorem. (Zagier ’85, Borel+Bloch+Beilinson+Suslin+ε)
For a number field F ∃ξ1, . . . , ξr2 ∈ ker δF2 and q ∈ Q× s.t.

πr2ζ∗F (−1) = q · det
(
L2(ξσi )

)
i ,σ
.

In other words, ZPC holds for m = 2.



More precise version à la Lichtenbaum, for abelian fields, shown
(’95-’03) by Kolster-Nguyen Quang Do-Fleckinger (+Benois), by
Huber-Kings, and also by Burns-Greither; all up to a power of 2.

Recent update (jt. + Burns, de Jeu, Rahm, Yasaki, ’21): This
power of 2 can be settled, using work of Flach, allows to derive the
first genuine generators of K3(OF ) for some imag. quadratic fields.

Example. For F = Q(
√
−4547) the following element generates

K3(OF ) is a generator for the “torsion free part” (ω = 1+
√
−4547
2 ).

Moreover, this implies that K2(OF ) has order 233 (a prime).



Higher weight

Q. How to generalise δ2, e.g. what is a candidate for K5OF ?

A. Zagier (late ’80s): defined a “higher Bloch group” on which a
single-valued version of Li3(z) =

∑
n≥1 z

n/n3 is defined and which
plays a “regulating” role (i.e. maps to a lattice in some R-v.s.).

First approximation: Define analogously the ‘fingerprint’ map

δF3 : Z[F ] → F× ⊗
∧

2F×

[x ] 7→ x ⊗ x ∧ (1− x).

This time taking the kernel is not good enough in general, but one
needs to impose further conditions. Indeed, any homomorphism
ι : F× → Z induces a map ι : ker δF3 → ker δF2 (on the first tensor
factor). Demand: to land in the intersection A3(F ) =

⋂
ι ker ι.

Again, one defines the subgroup of “universal elements”, say
C3(F ) ⊂ A3(F ), and takes the quotient B3(F ) = A3(F )/C3(F ).
This is Zagier’s candidate for K5OF (after ⊗Q).



A function that is defined on the quotient: a single-valued version
L3(z) of the trilogarithm Li3(z) (found, for all Lim(z), by
Ramakrishnan implicitly and made explicit by both Wojtkowiak
and Zagier).

By iterating this process Zagier defined analogues for even higher
Bloch groups Bm(F ) = Am(F )/Cm(F ), which putatively play the
role of K2m−1(F ). Then the gist of (a corollary of) his conjecture
for ‘weight’ m can be formulated as follows.

Zagier’s Polylogarithm Conjecture. For a number field F and
m > 1 there are elements ξj ∈ Am(F ), j = 1, . . . , dm s.t.

ζ∗F (1−m) ∼ det
(
Lm(ξσj )

)
j ,σ

where σ runs through appropriate field embeddings (∼ again
indicating “up to a power of π and a rational factor”).



Goncharov’s program

Goncharov. Ingenious new point of view: Associate ‘trilogarithmic
values’ to configurations of six points in the projective plane.

Thm. (Goncharov, ’90) ZPC holds for m = 3.

Important new functional equation for the trilogarithm via new
projective invariant for a configuration as above, his “triple ratio”

Alt6

(
|124|·|235|·|316|
|125|·|236|·|314|

)
; L3(..) represents a cont. 5-cocycle for GL3.

More conceptual +refined approach to ZPC, invoking graded
pieces of K -groups, and a conjectural motivic co-Lie algebra for
any field, in which his newly defined polylogarithmic/motivic
complexes should be contained in a natural way.
I Vast and visionary program

I Suggested many tools to attack ZPC for higher weight m.

I In particular, it spurred the search for higher cross ratios.

Despite tremendous progress (medal at ECM Paris ’92!), the same
approach for m = 4 has not yet been successful.



Multiple polylogarithms

Consider also multi-variable analogues of polylogarithms, so-called
multiple polylogarithms (MPL’s), the simplest new ones being
double polylogs, defined by

Lia,b(x , y) =
∑

m>n>0

xm

ma

yn

nb
.

He singled out one “combinatorial” problem that would go a long
way towards solving ZPC for m = 4. Write V (x , y) for the formal
five term relation in the two variables x , y .

Goncharov’s Conjecture: There should be functions
fi (x , y , z) ∈ Q(x , y , z) (i ∈ I finite) such that

I3,1(z ,V (x , y)) =
∑
i

Li4
(
fi (x , y , z)

)
modulo products of lower weight terms.
(Here I3,1(x , y) = Li3,1(y/x , 1/y), “iterated integral version”.)



Goncharov’s symbol and Feynman integrals

While solutions to this innocuous looking conjecture could be
found for 1-variable functional equations (Zagier ’93, G. ’00) in
place of V (x , y), the original task seemed intractable.

Goncharov kept churning out important results, e.g. he showed
I that a certain multi-variable “Grassmannian” polylog satisfies

the sought-for cocycle condition;

I (with Deligne) the existence of said motivic coLie algebra for
number fields,

I studied (with Fock) a connection to cluster algebras,

I and in particular he defined a symbol, an ‘algebraic
fingerprint’ for the MPL’s (generalising the δFm above).

Roughly, a symbol is a sum of elementary tensors which captures
the differential behaviour of the associated function, the
combinatorics being encoded in terms of trivalent trees.

All these ingredients should eventually culminate in ZPC for m = 4.



Furthermore, he collaborated with physicists (Spradlin et al.):
Goncharov’s motivic insights and ideas helped recast a hideously
long expression for an important integral (found by Duhr et al.),

the so-called six-point 1-loop remainder function R
(1)
6 in N = 4

SYM theory. Drastic reduction from 17pp. to essentially one long
line (+conventions). Sketchy 5pp. note.

 Collaboration with Duhr (+ Rhodes), reverse-engineering their
results, culminating in an implementation of the ‘symbol’ that
allowed for experiments. By-product:

Thm. There are 122 rational functions fi (x , y , z) and integers ci
which solve Goncharov’s Conjecture, i.e.

I3,1
(
z , [x ]+[y ]+

[ 1− x

1− xy

]
+[1−xy ]+

[ 1− y

1− xy

])
≡

122∑
i=1

ciLi4
(
fi (x , y , z)

)
,

modulo products of lower weight functions.
Found a few days after Zagier’s 60th birthday celebrations...



Fast forward to Zagier’s 65th birthday celebrations (“Modular
forms are everywhere”). Invited talk by Goncharov–announces yet
another new point of view on the problem, motivated and guided
by cluster algebra complexes, plus a new concept of “motivic
correlators” (distinguished elements in motivic coLie algebra).

Goncharov-Rudenko: A conceptual way to derive a crucial new
relation denoted Q4 (relating correlators of type I3,1 and Li4) that
plays a role akin to the 122-term one above; the previous triple
ratio formula is recast as Q3 (relating type I2,1 and Li3), (DR
assures me that my original identity provided both motivation and
inspiration for their deduction.)

Moreover, they also establish the connection to algebraic K -theory
to the extent that they can claim

Theorem. (Goncharov-Rudenko, ’18) ZPC holds for m = 4.

Still lacking in this–still somewhat implicit–approach: an explicit
“quadruple ratio”.



In joint work with Charlton and Radchenko we could establish
this—alas, the current expression is still rather unpleasant.

Theorem. (Cha-Ga-Ra, ’19) There is a (complicated) explicit form
of the quadruple ratio (= a formal linear combination of rational
functions on configurations of 8 points in P3 whose image under
L4 represents a non-trivial cohomology class in H7

∗ (GL4(C),R)).
It comprises 368 orbits under an action of the alternating group on
8 letters.

Further results in higher weight:
Theorem. (Cha-Ga-Ra, ’19) There are explicit analogues of Qm

for m = 5, 6, 7.
This could provide an important stepping stone for a solution of
ZPC in those weights.

Breaking (recent amazing preprint by Rudenko).
Solves Goncharov’s depth reduction conjecture (MPL’s in weight
m are generated by MPL’s in depth at most m/2).
Announces similar results to Qm above, joint with Matveiakin.



Thank You!


