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Unweighted walks

Consider walks starting form (0, 0) with set of steps in
DcC {<_v\7T7/‘a_>7\U~l/H/} A {(Iv./) | ’7/ € {_1a071}}

An example

D={\,/,\}}




Weighted models and Generating Series

Weighted Model: Assign a set of probabilistic weights to each cardinal
direction
W = {(di)ij=—1.01 € (QN[0,1])° with > " a; =1},

associated with a set of directions D := {(/, j)|d;; # 0}
Unweighted model: all the non-zero weights are equal and dy,o = 0.

Weighted coefficients: Fix a weighted model W and set g(/, s, k) is the
probability for a weighted walk to end at (/, s) in k steps.

Generating Series: Fix W (and therefore D) and consider

Qx,y.t)=>_q(l,s k)x'y°t*

1,8,k

converges for |x|,|y| < 1and |t < 1.



Classification for walks in the quadrant

Combinatorial question:
Fix W and count the number q(/, s, k) of walks in the first quadrant with steps
in D ending at (/, s) after k steps? Too difficult in general but one can search

» for asymptotics of the sequence (q(/, s, k)).
) for an algebraic classification of the associated generating series.

Classification problem: when is Q(x, y, )

» Algebraic over Q(x, y, t)?
» Holonomic over Q(x, y, t)? (x-, y-, and t-holonomic)
» Differentially Algebraic over Q(x, y,t)? (x-,y-, and t-DA)

f(x,y,t) is x-DA if for some n and nonzero polynomial P,

of o"f
P(X7y7t7faa7"'aaxn)7o




Classification

Inspired by Fayolle, lasnogorodski, Malyshev (1999) for random walks,
Bousquet-Mélou, Mishna (2010) associate to a model W,

» an algebraic curve E of genus 0 or 1, and
» agroup G, finite or infinite.
Bousquet-Mélou-Mishna conjecture: Q(x, y, t) holonomic < |G| < co

triviallity ,symmetries
—>

Unweighted model 256 choices for D 79 interesting ones

Results: For the 79 unweighted models
» |G| < o for 23 walks = Q(x, y, t) algebraic or holonomic.

— A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers, M. Mishna, ...

» |G| = ~ for 56 walks = Q(x, y, t) not holonomic.

» 5 walks with genus(E) = 0 — S. Melzcer, M. Mishna, A. Rechnitzer, . ..
» 51 walks with genus(E) = 1 —A. Bostan, I. Kurkova, K. Raschel, B. Salvy, ...

» If the series is not holonomic is it differentially Algebraic?



The unweighted 51 models with |G| = oo, genus(E) = 1
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Theorem (Dreyfus-H.-Roques-Singer, 2018):
Fort e R\Q

1. In 42 cases, Q(x,y, t) is not x, y-DA.

2. In 9 cases, Q(x,y,t) is x, y-DA but neither is holon.
e 2. O. Bernardi, M. Bousquet-Mélou, K. Raschel first proved that Q(x, y, t) is
X-,y-, or t-DA.

What about weighted models?



Weighted Models

» For 5 models with |G| = oo, genus(E) = 0:
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Theorem (Dreyfus-H.-Roques-Singer, 2020): For t € R\Q
In all weighted cases, Q(x, y, t) is not x, y-DA.
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Weighted Models

» For 5 models with |G| = oo, genus(E) = 0:

AN G S S

Theorem (Dreyfus-H.-Roques-Singer, 2020): For t € R\Q
In all weighted cases, Q(x, y, t) is not x, y-DA.
For weighted models with genus(E) = 1

some are and some are not



Examples (H.-Singer-2020)
Ex. 1 The weighted model

is always holonomic.

Ex.2 The nine unweighted differentially algebraic models with NSC on
weights for DA

A A nt
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Examples (H.-Singer-2020)
Ex. 1 The weighted model

is always holonomic.

Ex.2 The nine unweighted differentially algebraic models with NSC on
weights for DA

A A nt

WiiB.1 WiiB.2 Wiic.1

All All All
WII‘Ba WII.C.;l WIIC..2

All d1,1di1—dipd 10=0 do,10o,—1 —di1d-1, 1 =0
WiiB.6 |;VHC.‘5 WIIB.?

All All d_1101 -1 —do_1do1 =0



Ex.3 An unweighted differentially transcendental model with NSC on weights

for DA

WiiB.6

d_11054 — do,1d_1,_100,—1 + dy,1d?y =0



» Generalities about Walks: Functional Equation, Curve, Group

» Theorems for Differential Algebraicity: Certificates, Decoupling

» Algorithms for Differential Algebraicity: Mordell-Weil Lattices, Néron-Tate
Height
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Generalities: Functional Equation of the Walk

Generating series: Fix W (and therefore D)

Qlx,y. 1) =Y a(l, s, k)x'y°t"

1,8,k
Step Inventory: S(x,y) = 3=, dix'y’
Kernel polynomial: K(x,y,t) = xy(1 —tS(x,y)) = xy — t§(x,y) - biquadratic
Functional Equation: via an induction on the length

K(X7y7 t)O(X7ya t) =Xy
— K(x,0,0)Q(x,0,t) — K(0,y, t)Q(0,y, t)
+ K(0,0,1)Q(0,0,t).

Prop.: Q(x,y,t)is x,y-DA < Q(x,0,t) is x-DA and Q(0, y, t) is y-DA.
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Fix t. € C\Q. The kernel curve is the curve

E={([x:x],[y0: y1])\X1y1K(ﬁ % t.) = 0} C P'(C) x P'(C)

E is a general member of a family of curves Ey,..,) parametrized by

t = [t : 4] € P' given by

ﬁ@io

Xyt K( )— tixoxiyoyr — bS([X0 : X1, Vo : y1]) =

E, corresponds to the equatlon XX Yoyr = 0in P! x P!,

E.. corresponds to the equation S([Xo : x1], [yo : y1]) = 0in P! x P".

These two curves intersects in 8 base points and all the curves of the family
pass through these points.

Qo "\
Yy =00 7 V y)o

\s; &/
y=0

x=0 X =0

Figure: Position of the base points
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Fact: K irreducible = E has genus 0 or 1. This can be read in the set of
directions.

Ex: 1) D=K E:xy—t(y? +x?y* + x>+ x)=0 = g(E) =1

2) D_.}\K‘. E:xy—t(y?+x2+x*)=0 =g(E)=0

for t € C\Q '
Parametrization

b lig(E)=0then¢:P' — E,z+ (x(2),y(2)) given by rational fractions;
» Ifg(E) =1then ¢ : C/(Zwy + Zw2) — E,z — (x(2), y(2)) given by
Weierstrass p-functions.
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Group of the Walk

E = {K(x,y,t.) = 0} C P'(C) x P'(C)

Since K is biquadratic in x and y, we define two involutions of £ and an
automorphism:

g, —1X X
) = (0 5 O
L(X,y)

12,9- y
g(x,y)
O = 12 O 4 p\
(xy.
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Group of the Walk

E = {K(x,y,t.) = 0} C P'(C) x P'(C)

Since K is biquadratic in x and y, we define two involutions of £ and an
automorphism:

g, —1X
= R O
1 > d 1/y Z(Xy
L2(X7y) (x z/:d1ly/>y
g(x,y)
O = 1204 p\
(xy

The Group of the Walk G is the group generated by ¢1, ¢2.

|G| < 0o & Insuchthato” = id.
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Properties of the group
» Gis finite iff Q(x, y) is holonomic (A. Bostan, M. Bousquet-Mélou,
T. Dreyfus, M. van Hoeij, M. Kauers, M. Mishna, K. Raschel)
» 9(E) =0= o0(z) = gz and g is not a root of unity (D-H-R-S).
» 9(E)=1=3Q3 € E,st. o(Q) = Q@ Q3 Thus,

o"(Q) = Qforsome Q < " = id.

The automorphism o has always order tWo.
Qo = Ry Qi =h

The weighted cross:

Ry =5 Py =5

since o%(Py) = P;. The generating series is holonomic
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From now on, we will assume that E has genus 1 and G is infinite.

that is,
E is an elliptic curve and
o(Q) = Q& Qs for any Q € E and Q3 is non-torsion.
(on the universal cover o(z) = z + ws)
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Theorems for Differential Algebraicity
Theorem: (Kurkova-Raschel, 2012 (unweighted) and Dreyfus-Raschel 2019
(weighted))
For t, € R\ @, one construct ¢ : C/(Zwy + Zwp) — E, z — (x(2), y(2)) and
0(2) =z + ws.
The function Q(0, y, t.) can be analytically continued to a meromorphic
function F over C such that

F(z4+ws) — F(z) = b,

where b = x(u1(y) — y) € C(E) the function field of E.
Prop. (Dreyfus-H.-Roques-Singer, 2018)
By differential Galois theory (H.-Singer-20008), the following are equivalent:
1. Q(0,y,t.)is y-DA.
2. There exist an integer n > 0, ¢; € C, and g € C(E) such that
8"(b) + 18" (b) + ... + c16(b) + b = o(g) — g.

with § = Z.
Condition 2 holds if an only if the orbit residues for b are zero.

A rational fraction b = Z(g) if and only if residues of order one of poles of b
are zero.

Orbitresidues are discrete generalization.
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Theorems for Algebraicity: Orbit Residues

Def.E elliptic curve, o the addition by a non-torsion point, K = C(E)
» {ua|Q € E} local param. are coherent if u,-1q) = o(Ua)-
» Forbe C(E), Q€ E, write

Ca.1
Ua

Ca.N Ca.i
b — Q, C:J
Ua

f
et +

+ -+

with f regular at Q. Then, the i™" orbit residue of b at Q is

oresg(b) = > Chngq)-

nez

Prop. (D-H-R-S (2018)) The following are equivalent
> Q(x,y,t)is x, y-DA.
b Forallie N.g,Q € E, oresh(b) = 0.

To determine if Q(x, y, t) is DA
find the orbits of the poles of b = x(¢1(y) — y) and their orbit residues.
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Theorems for Algebraicity: Orbit Residues

To prove DA, show: for all i € Nxo, Q € E, oresg(b) = Y-, Chnq) = 0

The polar divisor of bis (b)oeoc = M+ N + ¢1(N) where M/N € P' x P! and
» M= ([1:0],[0: 1]) and ¢1(M) = M; residue = o # 0.
» N=([-1:1],[1:0]);residue = 3 #0
P u(N) = ([-1:1],%); residue = 5 # 0

Ex. The unweighted model

Classical Residue Theorem = o + 28 = 0. Thus,
orbit residues are zero < all poles are in same orbit (in particular,
M = o"(N)).

Differential Algebraicity <= M = ¢"(N) for some n.
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Theorems for Differential algebraicity: Weighted models
Prop.( H.-Singer (2020)) For t, € R \ Q, the following are equivalent

1. Q(0,y,t.)is y-DA over C(y);
2. There exist an integer n > 0, ¢; € C, and g € C(E) such that

L(b) = 86"(b) + cn16"'(b) + ... 4+ c16(b) + cob = 0(9) — 9.

for b= x(v1(y) — y) € C(E).
3. There exists g € C(E) such that

b=o(g) -9

This g is called a certificate
4. There exist f(x) € C(x) and h(y) € C(y) s.t.

xy = f(x) + h(y)

in C(E). The model W is decoupled. Bernardi, Bousquet-Mélou, Raschel
(2017) show that 9 models of 51 unweighted models with |G| = oo, 9 were
decoupled and how one can find an explicit differential equation out of this
decoupling.
5. Two precise poles Q, P of b which are also base points of the pencil are such that
a"(Q) =P
for some n € Z.
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First application: differential transcendence criteria
Remember the position of the base points

7

N F>

e 8
V4

Figure: Position of the base points

o

AN

Theorem (H.-Singer 2020): If one of the P;’s and one of the Qs is fixed by an
involution then Q(0, y, t.) is D-transcendental.
Example If its group G is infinite then a weighted model

Ve

is D-transcendental.
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Algorithms for differential algebraicity: Mordell-Weil Lattices, Néron-Tate
Height

Fix a set of directions D.
The question of the differential algebraicity of Q(x, y, t.) is reduced to the
following: given two points Q, P, is there some n € Z such that

Q=o"(P).

Is there an algorithm to test this condition without fixing the weights on the set
of directions?
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Since E is defined over k = Q(t) and that E does not descend to Q.

There is a height h : E(k) — Q called Néron-Tate height such that
) If Qis a torsion point, then A(Q) = 0.
b 1fQ = nN, then A(Q) = N?A(N).

» h(N) is computable. For the points we consider, this depends on the
configuration of base points of the family K(x, y, t) = 0 and certain lines
in a blow-up of P' x P', not on the weights.
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Algorithms for D-algebraicity: Mordell-Weil Lattices, Néron-Tate Height

TestQ = ¢"(P)
On an elliptic curve we can select the point we call O. Let O = P. We have

o(P)=PoN=0a@N=N
so " (P) = nN. Therefore
Q=0"(P) < Q=nN.
So Q = ¢"(P) = h(Q) = n?A(N).

This allows to find the potential n and the algebraic conditions on the weights
by comparing Q and o"(P).
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Computing the heights without fixing the weights

K(x,y,t) = xy — txyS(x, y)
S(x,y) = Z(iyj) dijx'y’

Let S be the Kodaira-Néron model of E. Then,
b S is a smooth projective rational surface with projection 7 : S — P!

» Almost all fibers are isomorphic to E; Sy is singular.
) Bijection between Q(t)-points P of E and sections P : P' — S over Q.

Eight base points distinct = S : t;xox1Yoy1 — tS(Xo, X1, Yo, ¥1) =0

If not, S is a blowup of P! x P' at the eight points and S; is obtained from
Eo : xox1yoy1 = 0 C P' x P! via the successive blowups.
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More About the Néron-Tate Height

E=7n:8S— P!
PcEQ(t)=P:P' =S

Def. A(P) = h(P) =2x(S) +2(P.0) - _ contr,(P)

veR

2— Z contr, (P)( for the points P we are considering)
veR

> ,cqcontr,(P) = 7?27

What we know about 7 : S — P':
» R = set of reducible fibers

» Finite number of types (Kodaira, Néron)
» One can explicitly compute the type of Sy by blowup. It depends only from
the position of the base points.

» The type of a reducible fiber at v determines a root lattice T,

» (Oguiso-Shioda) finitely many possibilities for &,c5T, C Esg
» Knowing Ty allows to reduce the number of possibilities.

» Root Lattice T,, = finite set of values for contr, (P) (Shioda)
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Working through an example
Ex. The weighted model ﬁ/
It is DA
iff
Qo = ¢"(Po) = na(Po) = nS, for some n
(choosing Py as the zero of E)

Q1 Qo

So Po

()i =Rjand Py = P = S (b) The fiber above zero

Figure: Fiber above zero is an I;
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The steps of the algorithm are as foIIows

b Sois an k and contry(So) = 272 and contry(Qo) = -

p Oguiso-Shioda list: 7 = As
Oguiso-Shioda list: = at most 2 reducible fibers Sy, S and
®verTo = As O As  As.

» Shioda list: T, = Ay = contr,(P) € {0,1/2}

If h(Qov) = M?h(S,) for some n e Z then

10 10 ¢
The only solutions are n = +1.
» n=1is not possible since Sy # Qo

P n=-1is equivalent to d1,od71,o — d71,1d1 1=0

5(7=5)
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Open problems

Combinatorial interpretation
Problems of specializations of the variables in Q(x, y, t)

Walks in an orthant: replace the kernel curve by a kernel surface.

Walks with large steps: the kernel curve is no longer given by a
biquadratic polynomial.
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