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Unweighted walks

Consider walks starting form (0, 0) with set of steps in

D ⊂ {←,↖, ↑,↗,→,↘, ↓,↙} ↔ {(i , j) | i , j ∈ {−1, 0, 1}}

An example

D = { , , , }.
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Weighted models and Generating Series

Weighted Model: Assign a set of probabilistic weights to each cardinal
direction

W = {(di,j )i,j=−1,0,1 ∈ (Q ∩ [0, 1])9 with
∑

di,j = 1},

associated with a set of directions D := {(i , j)|di,j 6= 0}

Unweighted model: all the non-zero weights are equal and d0,0 = 0.

Weighted coefficients: Fix a weighted modelW and set q(l , s, k) is the
probability for a weighted walk to end at (l , s) in k steps.

Generating Series: FixW (and therefore D) and consider

Q(x , y , t) =
∑
l,s,k

q(l , s, k)x ly stk

converges for |x |, |y | ≤ 1 and |t | < 1.

3/29



Classification for walks in the quadrant

Combinatorial question:
FixW and count the number q(l , s, k) of walks in the first quadrant with steps
in D ending at (l , s) after k steps? Too difficult in general but one can search

for asymptotics of the sequence (q(l , s, k)).

for an algebraic classification of the associated generating series.

Classification problem: when is Q(x , y , t)

Algebraic over Q(x , y , t)?

Holonomic over Q(x , y , t)? (x-, y -, and t-holonomic)

Differentially Algebraic over Q(x , y , t)? (x-,y -, and t-DA)

f (x , y , t) is x-DA if for some n and nonzero polynomial P,

P(x , y , t , f ,
∂f
∂x
, . . . ,

∂nf
∂xn ) = 0
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Classification

Inspired by Fayolle, Iasnogorodski, Malyshev (1999) for random walks,
Bousquet-Mélou, Mishna (2010) associate to a modelW,

an algebraic curve E of genus 0 or 1, and

a group G, finite or infinite.

Bousquet-Mélou-Mishna conjecture: Q(x , y , t) holonomic⇔ |G| <∞

Unweighted model 256 choices for D triviallity,symmetries−−−−−−−−−−−→ 79 interesting ones

Results: For the 79 unweighted models

|G| <∞ for 23 walks⇒ Q(x , y , t) algebraic or holonomic.
→ A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers, M. Mishna, . . .

|G| =∞ for 56 walks⇒ Q(x , y , t) not holonomic.
5 walks with genus(E) = 0 → S. Melzcer, M. Mishna, A. Rechnitzer, . . .
51 walks with genus(E) = 1 →A. Bostan, I. Kurkova, K. Raschel, B. Salvy, . . .

If the series is not holonomic is it differentially Algebraic?
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The unweighted 51 models with |G| = ∞, genus(E) = 1

Theorem (Dreyfus-H.-Roques-Singer, 2018):
For t ∈ R\Q

1. In 42 cases, Q(x , y , t) is not x , y -DA.

2. In 9 cases, Q(x , y , t) is x , y -DA but neither is holon.

• 2. O. Bernardi, M. Bousquet-Mélou, K. Raschel first proved that Q(x , y , t) is
x-,y -, or t-DA.

What about weighted models?
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Weighted Models

I For 5 models with |G| =∞, genus(E) = 0:

Theorem (Dreyfus-H.-Roques-Singer, 2020): For t ∈ R\Q
In all weighted cases, Q(x , y , t) is not x , y -DA.

For weighted models with genus(E) = 1

some are and some are not
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Examples (H.-Singer-2020)
Ex. 1 The weighted model

is always holonomic.
Ex.2 The nine unweighted differentially algebraic models with NSC on
weights for DA

wIIB.1 wIIB.2 wIIC.1

All All All

wIIB.3 wIIC.4 wIIC.2

All d−1,−1d1,1 − d1,0d−1,0 = 0 d0,1d0,−1 − d1,1d−1,−1 = 0

wIIB.6 wIIC.5 wIIB.7

All All d−1,1d1,−1 − d0,−1d0,1 = 0
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Ex.3 An unweighted differentially transcendental model with NSC on weights
for DA

wIIB.6

d−1,1d2
0,1 − d0,1d−1,−1d0,−1 + d1,1d2

−1,−1 = 0

9/29



Generalities about Walks: Functional Equation, Curve, Group

Theorems for Differential Algebraicity: Certificates, Decoupling

Algorithms for Differential Algebraicity: Mordell-Weil Lattices, Néron-Tate
Height
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Generalities: Functional Equation of the Walk

Generating series: FixW (and therefore D)

Q(x , y , t) =
∑
l,s,k

q(l , s, k)x ly stk

Step Inventory: S(x , y) =
∑

(i,j) di,jx iy j

Kernel polynomial: K (x , y , t) = xy(1− tS(x , y)) = xy − tS̃(x , y) - biquadratic
Functional Equation: via an induction on the length

K (x , y , t)Q(x , y , t) = xy

− K (x , 0, t)Q(x , 0, t)− K (0, y , t)Q(0, y , t)

+ K (0, 0, t)Q(0, 0, t).

Prop.: Q(x , y , t) is x , y -DA⇔ Q(x , 0, t) is x-DA and Q(0, y , t) is y -DA.
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Fix tα ∈ C\Q. The kernel curve is the curve

E = {([x0 : x1], [y0 : y1]) | x1y1K (
x0

x1
,

y0

y1
, tα) = 0} ⊂ P1(C)× P1(C)

E is a general member of a family of curves E[t0:t1] parametrized by

t = [t0 : t1] ∈ P1 given by

x1y1t1K (
x0

x1
,

y0

y1
,

t0
t1

) = t1x0x1y0y1 − t0S̃([x0 : x1], [y0 : y1]) = 0

E0 corresponds to the equation x0x1y0y1 = 0 in P1 × P1.
E∞ corresponds to the equation S̃([x0 : x1], [y0 : y1]) = 0 in P1 × P1.
These two curves intersects in 8 base points and all the curves of the family
pass through these points.

◦
Q0

◦
R0

◦
S0

◦
P0

◦
Q1

◦
R1

◦
S1

◦
P1

x = 0 x =∞
y = 0

y =∞

Figure: Position of the base points
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Fact: K irreducible⇒ E has genus 0 or 1. This can be read in the set of
directions.

Ex: 1) D = E : xy − t(y2 + x2y2 + x2 + x) = 0 ⇒ g(E) = 1

2) D = E : xy − t(y2 + xy2 + x2) = 0 ⇒ g(E) = 0

for t ∈ C\Q
Parametrization

If g(E) = 0 then φ : P1 → E , z 7→ (x(z), y(z)) given by rational fractions;

If g(E) = 1 then φ : C/(Zω1 + Zω2)→ E , z 7→ (x(z), y(z)) given by
Weierstrass ℘-functions.
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Group of the Walk

E = {K (x , y , tα) = 0} ⊂ P1(C)× P1(C)

Since K is biquadratic in x and y , we define two involutions of E and an
automorphism:

ι1(x , y) = (x , 1
y

∑
i di,−1x i∑
i di,1x i )

ι2(x , y) = ( 1
x

∑
j d−1,j y

j∑
j d1,j y j , y)

σ = ι2 ◦ ι1

The Group of the Walk G is the group generated by ι1, ι2.

|G| <∞⇔ ∃n such that σn = id .
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Properties of the group
G is finite iff Q(x , y) is holonomic (A. Bostan, M. Bousquet-Mélou,
T. Dreyfus, M. van Hoeij, M. Kauers, M. Mishna, K. Raschel)
g(E) = 0⇒ σ(z) = qz and q is not a root of unity (D-H-R-S).
g(E) = 1⇒ ∃Ω3 ∈ E , s.t. σ(Q) = Q⊕ Ω3 Thus,

σn(Q) = Q for some Q ↔ σn = id .

The weighted cross:

The automorphism σ has always order two.

◦
Q0 = R1

◦
R0 = S1

◦
P1 = S0

◦
Q1 = P0

since σ2(P1) = P1. The generating series is holonomic
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From now on, we will assume that E has genus 1 and G is infinite.

that is,
E is an elliptic curve and

σ(Q) = Q ⊕ Ω3 for any Q ∈ E and Ω3 is non-torsion.
(on the universal cover σ(z) = z + ω3)
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Theorems for Differential Algebraicity
Theorem: (Kurkova-Raschel, 2012 (unweighted) and Dreyfus-Raschel 2019
(weighted))
For tα ∈ R \Q, one construct φ : C/(Zω1 + Zω2)→ E , z 7→ (x(z), y(z)) and
σ(z) = z + ω3.
The function Q(0, y , tα) can be analytically continued to a meromorphic
function F over C such that

F (z + ω3)− F (z) = b,

where b = x(ι1(y)− y) ∈ C(E) the function field of E .
Prop. (Dreyfus-H.-Roques-Singer, 2018)
By differential Galois theory (H.-Singer-20008), the following are equivalent:

1. Q(0, y , tα) is y -DA.
2. There exist an integer n ≥ 0, ci ∈ C, and g ∈ C(E) such that

δn(b) + cn−1δ
n−1(b) + . . .+ c1δ(b) + c0b = σ(g)− g.

with δ = d
dz .

Condition 2 holds if an only if the orbit residues for b are zero.

A rational fraction b = d
dz (g) if and only if residues of order one of poles of b

are zero.

Orbitresidues are discrete generalization.
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Theorems for Algebraicity: Orbit Residues

Def.E elliptic curve, σ the addition by a non-torsion point, K = C(E)

{uQ | Q ∈ E} local param. are coherent if uσ−1(Q) = σ(uQ).

For b ∈ C(E), Q ∈ E , write

b =
cQ,N

uQ
N + · · ·+ cQ,i

u i
Q

+ · · ·+ cQ,1

uQ
+ f

with f regular at Q. Then, the ith orbit residue of b at Q is

oresi
Q(b) =

∑
n∈Z

c i
σn(Q).

Prop. (D-H-R-S (2018)) The following are equivalent

Q(x , y , t) is x , y -DA.

For all i ∈ N>0,Q ∈ E , oresi
Q(b) = 0.

To determine if Q(x , y , t) is DA

find the orbits of the poles of b = x(ι1(y)− y) and their orbit residues.
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Theorems for Algebraicity: Orbit Residues

To prove DA, show: for all i ∈ N>0,Q ∈ E , oresi
Q(b) =

∑
n∈Z c i

σn(Q) = 0

Ex. The unweighted model

The polar divisor of b is (b)∞ = M + N + ι1(N) where M,N ∈ P1 × P1 and

M = ([1 : 0], [0 : 1]) and ι1(M) = M; residue = α 6= 0.

N = ([−1 : 1], [1 : 0]); residue = β 6= 0

ι1(N) = ([−1 : 1], ∗); residue = β 6= 0

Classical Residue Theorem⇒ α + 2β = 0. Thus,
orbit residues are zero⇔ all poles are in same orbit (in particular,
M = σn(N)).

Differential Algebraicity⇐⇒ M = σn(N) for some n.
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Theorems for Differential algebraicity: Weighted models
Prop.( H.-Singer (2020)) For tα ∈ R \Q, the following are equivalent

1. Q(0, y , tα) is y -DA over C(y);
2. There exist an integer n ≥ 0, ci ∈ C, and g ∈ C(E) such that

L(b) := δn(b) + cn−1δ
n−1(b) + . . .+ c1δ(b) + c0b = σ(g)− g.

for b = x(ι1(y)− y) ∈ C(E).
3. There exists g ∈ C(E) such that

b = σ(g)− g.

This g is called a certificate
4. There exist f (x) ∈ C(x) and h(y) ∈ C(y) s.t.

xy = f (x) + h(y)

in C(E). The modelW is decoupled. Bernardi, Bousquet-Mélou, Raschel
(2017) show that 9 models of 51 unweighted models with |G| =∞, 9 were
decoupled and how one can find an explicit differential equation out of this
decoupling.

5. Two precise poles Q,P of b which are also base points of the pencil are such that

σn(Q) = P

for some n ∈ Z.
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First application: differential transcendence criteria
Remember the position of the base points

◦
Q0

◦
R0

◦
S0

◦
P0

◦
Q1

◦
R1

◦
S1

◦
P1

Figure: Position of the base points

Theorem (H.-Singer 2020): If one of the Pi ’s and one of the Qj ’s is fixed by an
involution then Q(0, y , tα) is D-transcendental.
Example If its group G is infinite then a weighted model

is D-transcendental.
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Algorithms for differential algebraicity: Mordell-Weil Lattices, Néron-Tate
Height

Fix a set of directions D.
The question of the differential algebraicity of Q(x , y , tα) is reduced to the
following: given two points Q,P, is there some n ∈ Z such that

Q = σn(P).

Is there an algorithm to test this condition without fixing the weights on the set
of directions?
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Since E is defined over k = Q(t) and that E does not descend to Q.

There is a height ĥ : E(k) 7→ Q called Néron-Tate height such that

If Q is a torsion point, then ĥ(Q) = 0.

If Q = nN, then ĥ(Q) = n2ĥ(N).

ĥ(N) is computable. For the points we consider, this depends on the
configuration of base points of the family K (x , y , t) = 0 and certain lines
in a blow-up of P1 × P1, not on the weights.
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Algorithms for D-algebraicity: Mordell-Weil Lattices, Néron-Tate Height

Test Q = σn(P)
On an elliptic curve we can select the point we call O. Let O = P. We have

σ(P) = P⊕ N = O⊕ N = N

so σn(P) = nN. Therefore

Q = σn(P)⇔ Q = nN.

So Q = σn(P)⇒ ĥ(Q) = n2ĥ(N).
This allows to find the potential n and the algebraic conditions on the weights
by comparing Q and σn(P).
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Computing the heights without fixing the weights

K (x , y , t) = xy − txyS(x , y)
S(x , y) =

∑
(i,j) di,jx iy j

Let S be the Kodaira-Néron model of E . Then,

S is a smooth projective rational surface with projection π : S → P1

Almost all fibers are isomorphic to E ; S0 is singular.

Bijection between Q(t)-points P of E and sections P : P1 → S over Q.

Eight base points distinct⇒ S : t1x0x1y0y1 − t0S̃(x0, x1, y0, y1) = 0
If not, S is a blowup of P1 × P1 at the eight points and S0 is obtained from
E0 : x0x1y0y1 = 0 ⊂ P1 × P1 via the successive blowups.
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More About the Néron-Tate Height

E ⇒ π : S → P1

P ∈ E(Q(t))⇔ P : P1 → S

Def. ĥ(P) = ĥ(P) = 2χ(S) + 2(P.O)−
∑
ν∈R

contrν(P)

= 2−
∑
ν∈R

contrν(P)( for the points P we are considering)

∑
ν∈R contrν(P) = ????

What we know about π : S → P1:
R = set of reducible fibers

Finite number of types (Kodaira, Néron)
One can explicitly compute the type of S0 by blowup. It depends only from
the position of the base points.

The type of a reducible fiber at ν determines a root lattice Tν
(Oguiso-Shioda) finitely many possibilities for ⊕ν∈RTν ⊂ E8
Knowing T0 allows to reduce the number of possibilities.

Root Lattice Tν ⇒ finite set of values for contrν(P) (Shioda)
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Working through an example
Ex. The weighted model

It is DA
iff

Q0 = σn(P0) = nσ(P0) = nS0 for some n
(choosing P0 as the zero of E)

◦
R0

◦
Q0

◦
S0

◦
Q1

◦
P0

(a) Q1 = R1 and P0 = P1 = S1

◦
R0

◦
Q0

◦
S0

◦
Q1

5

3 4

2 1
0

6

◦
P0

(b) The fiber above zero

Figure: Fiber above zero is an I7
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The steps of the algorithm are as follows

S0 is an I7 and contr0(S0) = 2(7−2)
7 and contr0(Q0) = 5(7−5)

7 .

Oguiso-Shioda list: I7 ⇒ A6

Oguiso-Shioda list: ⇒ at most 2 reducible fibers S0,Sα and
⊕ν∈RTν = A6 or A6 ⊕ A1.

Shioda list: Tα = A1 ⇒ contrν(P) ∈ {0, 1/2}

If ĥ(Q0) = n2ĥ(S0) for some n ∈ Z then

n2(2− 10
7
− ε

2
) = 2− 10

7
− ε′

2
.

The only solutions are n = ±1.

n = 1 is not possible since S0 6= Q0

n = −1 is equivalent to d1,0d−1,0 − d−1,1d1,−1 = 0
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Open problems

Combinatorial interpretation

Problems of specializations of the variables in Q(x , y , t)

Walks in an orthant: replace the kernel curve by a kernel surface.

Walks with large steps: the kernel curve is no longer given by a
biquadratic polynomial.
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