A tale of two analyticities

Sean Howe (speaking on joint work with Christian Klevdal)

2021-07-12 Fields Institute Number Theory Seminar

I - A fairy tale about reality

II - Reality about a fairy tale

I - A fairy tale about reality

Some non-mathematical definitions

Reality

Nice familiar algebraic and analytic geometry over $\mathbb{C}!$

Fairy Tale

1 b: a story in which improbable events lead to a happy ending *merriam-webster.com*

(we'll assume some big conjectures!)

The setup

General:

•
$$S/\overline{\mathbb{Q}}$$
 is an algebraic variety.

- $f: X \to S$ is a smooth proper family of algebraic varieties.
- \tilde{S} is the universal cover of $S(\mathbb{C})$.

Example (The Legendre family)

•
$$S = \mathbb{P}^1 \setminus \{0, 1, \infty\}$$

• X_{λ} is the elliptic curve defined by $y^2 = x(x-1)(x-\lambda)$, i.e.

$$X = V\left(ZY^2 - X(X - Z)(X - \lambda Z)
ight) \subset \underbrace{\mathcal{S}}_{[\lambda:1]} imes \underbrace{\mathbb{P}^2}_{[X:Y:Z]}$$

• $\tilde{S} \cong \mathbb{H}$, the upper half plane.

The period mapping

General:

Fix $s_0 \in S(\mathbb{C})$, $0 \le k \le 2 \dim X_{s_0}$, and a trivialization

$$\mathbb{Q}^n \xrightarrow{\sim} H^k(X_{s_0}, \mathbb{Q}).$$

• Let $m_p = \dim H^{k-p}(X_{s_0}, \Omega^p)$

- Let *FI* be the variety classifying decreasing flags of subspaces in Qⁿ with dim F^p/F^{p+1} = m_p.
- We obtain a period map

$$\pi: \widetilde{S}(\mathbb{C})
ightarrow \mathcal{F}l(\mathbb{C})$$

measuring the position of the Hodge filtration with respect to the continuation of the chosen trivialization.

The period mapping - example Example (The Legendre family continued)

- On X_{λ} , we have the holomorphic differential form dx/y.
- Integration of dx/y induces an element

$$\int_{\bullet} \frac{dx}{y} \in H^1(X_{\lambda}(\mathbb{C}), \mathbb{C}) = \operatorname{Hom}(H_1(X_{\lambda}(\mathbb{C}), \mathbb{Z}), \mathbb{C}).$$

▶ If we fix a trivialization of $\mathbb{Q}^2 \to H^1(X_1(\mathbb{C}), \mathbb{Q})$ then we obtain by continuation, for any $\tau \in \tilde{S}$, a trivialization

$$\varphi_{ au}: \mathbb{Q}^2 \xrightarrow{\sim} H^1(X_{\lambda(au)}, \mathbb{Q})$$

• $\mathcal{F}I = \mathbb{P}^1$, and

$$\pi(au) = \varphi_{ au}^{-1}\left(\langle \int_{ullet} rac{dx}{y}
angle
ight) \subset \mathbb{C}^2.$$

• π identifies $\tilde{S} = \mathbb{H} = \mathbb{P}^1(\mathbb{C}) \setminus \mathbb{P}^1(\mathbb{R})$.

A classical question

$$egin{array}{ccc} ilde{\mathcal{S}} & \stackrel{\pi}{\longrightarrow} \mathcal{F}I(\mathbb{C}) \ & \downarrow^{u} \ & \mathcal{S}(\mathbb{C}) \end{array}$$

Question (Informal)

Which $(\overline{\mathbb{Q}}-)$ algebraic conditions on the Hodge filtration induce $(\overline{\mathbb{Q}}-)$ algebraic conditions on *S*?

Question (Formal)

For which irreducible $(\overline{\mathbb{Q}}-)$ algebraic subvarieties $Z \subset \mathcal{F}l_{\mathbb{C}}$ is the analytic subset $u(\pi^{-1}(Z))$ a $(\overline{\mathbb{Q}}-)$ algebraic subvariety of *S*?

The question for the Legendre family

$$\mathbb{H} \stackrel{\pi}{\longrightarrow} \mathbb{P}^1(\mathbb{C}) \ \downarrow_{\lambda} \ \mathbb{C} \setminus \{0,1\}$$

The question

- $Z \subset \mathbb{P}^1_{\mathbb{C}}$ irreducible subvariety means
 - 1. Z is a point
 - 2. $Z = \mathbb{P}^1_{\mathbb{C}}$

Only interesting question: when are both τ and $\lambda(\tau)$ in $\overline{\mathbb{Q}}$?

Theorem (Schneider¹, 1937)

Both τ and $\lambda(\tau)$ are in $\overline{\mathbb{Q}}$ if and only if $K = \mathbb{Q}(\tau)$ is a quadratic imaginary field (if and only if $K \xrightarrow{\sim} End(X_{\tau}) \otimes \mathbb{Q}$.)

¹Schneider's result is usually formulated with j instead of λ , but equivalent!

What we know - I

$$egin{array}{ccc} & \tilde{S} & \stackrel{\pi}{\longrightarrow} & \mathcal{F}I(\mathbb{C}) \ & & \downarrow^{u} \ & & S(\mathbb{C}) \end{array}$$

The Hodge locus

- Suppose t is a weight zero tensor on Qⁿ = H^k(X_{s0}, Q). The Hodge locus Hdg(t) ⊆ FI is the locus where t ∈ Fil⁰.
- The Hodge conjecture predicts that π⁻¹(Hdg(t)) is the locus of τ such that t, up to Tate twist, is represented by an algebraic cycle on X^m_{u(τ)}, m >> 0
- Can also interpret using Mumford-Tate groups = "Galois group of a Hodge structure".

Theorem (Cattani-Deligne-Kaplan, 1995)

- 1. For any t, $u(\pi^{-1}(\operatorname{Hdg}(t)))$ is a \mathbb{C} -algebraic subvariety of S.
- 2. (Weil) If the Hodge conjecture holds, then it is $\overline{\mathbb{Q}}$ -algebraic.

Moreover...

These should be the "only" algebraic conditions on the Hodge filtration that impose algebraic conditions on S (i.e. anything else should be explainable in terms of these).

What we know - III

Some closely related notions

- 1. Special (irreducible components...) and weakly special subvarieties (products with points...)
- 2. Bialgebraic subvarieties (careful when π_{dR} is not injective...)

Some more results

- C-bialgebraic is equivalent to *weakly* special very generally (Klingler, 2017).
- ► In the abelian type Shimura case, Q-bialgebraic = special. (Ullmo-Yafaev, 2012 – the crucial case of points is a result of Cohen and Shiga-Wolfart generalizing Schneider's result).
- If special points are Q
 -algebraic then special subvarieties are Q
 -algebraic (Klingler, Otwinowska, Urbanik 2020).

What we know if we believe everything...

$$egin{array}{ccc} ilde{S} & \stackrel{\pi}{\longrightarrow} \mathcal{F}I(\mathbb{C}) \ & \downarrow^{u} \ S(\mathbb{C}) \end{array}$$

Hodge loci are algebraic on S

"Everything" includes the Hodge conjecture, thus we already know the Hodge loci cut out $\overline{\mathbb{Q}}$ -algebraic conditions on S.

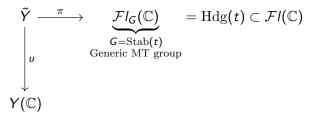
Theorem (conditional sideways Q-Ax-Lindemann; well-known?)

Suppose the Grothendieck period conjecture and the Hodge conjecture hold. If $Y \subset S$ is a smooth $\overline{\mathbb{Q}}$ -algebraic subvariety and \tilde{Y} is a connected component of $u^{-1}(Y(\mathbb{C}))$, then

 $\overline{\pi(\tilde{Y})}^{\overline{\mathbb{Q}}-\operatorname{Zar}} = \operatorname{Hdg}(t)$ for some t (t cuts out generic MT group).

Proof Sketch (still assuming everything)

1. Reduce to the Hodge-generic case:



- 2. Andre: There is a point $y \in Y(\overline{\mathbb{Q}})$ with $MT(\pi(\tilde{y})) = G$.
- 3. Grothendieck Period Conjecture $\implies \pi(\tilde{y})$ is a $\overline{\mathbb{Q}}$ -generic point in $\mathcal{F}I_{MT(\pi(\tilde{y}))}(\mathbb{C})$.

Remark on Ullmo-Yafaev's bialgebraicity for Shimura varieties Replace 2-3 with Deligne-Andre theorem to find enough monodromy to get a weakly special subvariety, then use weaker transcendence result (Wustholz) via Cohen/Shiga-Wolfart. II - Reality about a fairy tale

Some non-mathematical definitions

Reality

We prove a result unconditionally.

Fairy Tale

1 a: a story (as for children) involving fantastic forces and beings (such as fairies, wizards, and goblins) merriam-webster.com
(the world we work in is a bit more exotic!)

p-adic cohomology (Scholze, Bhatt-Morrow-Scholze) Some fields

- $\check{\mathbb{Q}}_p$ like \mathbb{Q}_p but start with $\overline{\mathbb{F}}_p$ instead of \mathbb{F}_p .
- ▶ $\overline{\mathbb{Q}}_p$ an algebraic closure. \mathbb{C}_p is the *p*-adic completion of $\overline{\mathbb{Q}}_p$.
- ▶ $B_{\mathrm{dR}} \cong \mathbb{C}_p((t))$ abstractly. $B_{\mathrm{dR}} \supset \overline{\mathbb{Q}_p}((t))$ canonically.

Cohomology

• $X/\overline{\mathbb{Q}}_p$ smooth proper rigid analytic variety.

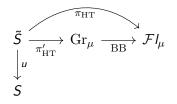
$$c_{\mathrm{dR}}: H^i(X,\mathbb{Q}_p)\otimes_{\mathbb{Q}_p} B_{\mathrm{dR}}\cong H^i_{\mathrm{dR}}(X)\otimes_{\overline{\mathbb{Q}}_p} B_{\mathrm{dR}}$$

► X/C_p smooth proper rigid analytic variety.

$$H^{i}(X,\mathbb{Q}_{p})\otimes_{\mathbb{Q}_{p}}B_{\mathrm{dR}}=\mathbb{M}_{\mathrm{dR}}[1/t],\ \mathbb{M}_{\mathrm{dR}}\otimes_{B^{+}_{\mathrm{dR}}\cong\mathbb{C}_{p}[[t]]}\mathbb{C}_{p}=H^{i}_{\mathrm{dR}}(X).$$

Lattices give rise to trace **Hodge-Tate filtration** on $H^i(X, \mathbb{Q}_p) \otimes \mathbb{C}_p$ and **Hodge filtration** on $H^i_{dR}(X)$.

The setup



- 1. S/\mathbb{Q}_p a smooth rigid analytic variety.
- 2. X/S is a smooth proper family of rigid analytic varieties.
- Ŝ/S any profinite étale diamond trivializing cover for the local system Hⁱ(X_s, ℚ_p).
- 5a. $\pi_{\text{HT}}: \tilde{S} \to \mathcal{F}l_{\mu}$ measures the position of the *Hodge-Tate* filtration with respect to the trivialization.
- 5b. Upgrade: $\pi'_{\mathrm{HT}}: \tilde{S} \to \mathrm{Gr}_{\mu}$ (moduli space of lattices).

The question

Some remarks

- 1. $\mathcal{F}I_{\mu}$ and S are rigid analytic varieties over $\overline{\mathbb{Q}}_{p}$.
- 2. \tilde{S} typically departs from this world (lives somewhere between rigid analytic varieties and perfectoid spaces).
- 3. Gr_µ also departs from this world, but rigid analytic subvarieties make sense still. In fact, they are just the rigid analytic subvarieties of $\mathcal{F}I_{\mu}$ satisfying Griffiths transversality.
- 4. In situations related to abelian varieties (or *p*-divisible groups), μ is *miniscule* so $\mathcal{F}l_{\mu} = Gr_{\mu}$.

Question

Which rigid analytic conditions on the Hodge-Tate filtration (or lattice) induce rigid analytic conditions on *S*?

Example (The Legendre family)

For the Legendre family we have $Gr_{\mu} = \mathcal{F}I_{\mu} = \mathbb{P}^{1}$.

$$egin{array}{c} \widetilde{S} & \longrightarrow & \mathbb{P}^1 \ & \downarrow_{\lambda} & & \\ \mathbb{P}^1 ackslash \{0, 1, \infty\} & & \end{array}$$

For
$$\tau \in \mathbb{P}^1(\mathbb{C}_p), \lambda(\pi_{\mathrm{HT}}^{-1}(\tau)) = \begin{cases} \text{Profinite set} & \text{if } \tau \notin \mathbb{P}^1(\mathbb{Q}_p) \\ \text{Dense interior} & \text{if } \tau \in \mathbb{P}^1(\mathbb{Q}_p). \end{cases}$$

Theorem (H., 2018 - local *p*-adic Schneider) For $x \in \tilde{S}(\mathbb{C}_p)$, $\tau := \pi_{\mathrm{HT}}(x)$,

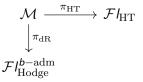
 $\tau \in \mathbb{P}^{1}(\overline{\mathbb{Q}}_{p}) \setminus \mathbb{P}^{1}(\mathbb{Q}_{p}) \text{ and } \lambda(x) \in \overline{\mathbb{Q}}_{p} \Leftrightarrow [\mathbb{Q}_{p}(\tau) : \mathbb{Q}_{p}] = 2,$ $(\Leftrightarrow \operatorname{End}(X_{\lambda}[p^{\infty}]) \otimes \mathbb{Q}_{p} = \mathbb{Q}_{p}(\tau)).$

How to generalize?

Work locally

- 1. Want to work only with S where the connection on de Rham cohomology is flat (+ a bit more).
- 2. Example: in the reduction disk of a point in the Legendre family (ordinary $\leftrightarrow \mathbb{P}^1(\mathbb{Q}_p)$, supersingular $\leftrightarrow \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{C}_p)$).
- 3. Have this behavor locally on reduction disks for a smooth proper formal model.
- 4. Compare analyticity of period domain for Hodge filtrations to analyticity of period domain for Hodge-Tate filtrations.

The universal case for *p*-divisible formal groups



▶ *d*=dimension, *n*=height.

- \$\mathcal{F}l_{Hodge}\$ and \$\mathcal{F}l_{HT}\$ both (classical) Grassmannians for d-dimensional subspaces of n-dimensional vector space.
- **b** encodes Newton polygon, *b*-admissible locus is open.
- lmage of $\pi_{\rm HT}$ is locally closed, open if *b* semistable/isoclinic.

Theorem (H., Klevdal - Rough version)

If S is a smooth rigid analytic variety over a finite extension of $\tilde{\mathbb{Q}}_p$, $f: S \to \mathcal{F}l_{\mathrm{Hodge}}^{b-\mathrm{adm}}$, and \tilde{S} is a connected component of $\pi_{\mathrm{dR}}^{-1}(S)$, then $\pi_{\mathrm{HT}}(\tilde{S}) \subset \mathcal{F}l_G$, G the generic MT group, and any rigid analytic subset of $\mathcal{F}l_G$ containing $\pi_{\mathrm{HT}}(\tilde{S})$ has non-empty interior.

In general

- \$\mathcal{M} = \mathcal{M}_{G,\mu,b}\$ moduli of mixed characteristic local shtuka (allow \$G/\mathbb{Q}_p\$ arbitrary linear algebraic! No reason for local MT groups to be reductive here, even in case above)
- The flag varieties are replaced by diamond affine Grassmannians
- Maps from smooth rigid analytic subvarieties still make sense! (They correspond exactly to maps to the flag variety satisfying Griffiths transversality).
- ▶ For *b*-basic, can swap π_{HT} and π_{dR} get bialgebraicity/ "Ax-Lindemann" type results for this (most important) case.

Proof sketch

- 1. Reduce to Hodge generic case.
- Find Q
 [¯]_p-point in Hodge generic locus (we have to do some work in general here, though in some "structurally polarized" cases the Hodge generic locus is just a dense open!)
- 3. Observe that Fontaine's crystalline comparison theorem is a strong version of a local Grothendieck Period Conjecture.

$$c_{\mathrm{dR}}: H^i(X_s, \mathbb{Q}_p) \otimes B_{\mathrm{dR}} \cong H^i_{\mathrm{dR}}(X_s) \otimes B_{\mathrm{dR}}$$

For $\sigma \in \operatorname{Gal}(\overline{\check{\mathbb{Q}}}_p/K)$,

$$\sigma(c_{\mathrm{dR}}) = c_{\mathrm{dR}} \circ \rho(\sigma)^{-1}$$

for $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathcal{K}) \to G(\mathbb{Q}_p)$ with open image where G is the Mumford-Tate group of the local p-adic Hodge structure (this Mumford-Tate group makes sense not just at $\overline{\mathbb{Q}}_p$ -points!).

Thanks for coming!

- Questions? (if time)
- Contact: sean.howe@utah.edu
- Preprint available soon we hope!