The Fricke-Macbeath curve and triple product L-functions

Benedict H. Gross

2021

Steve and I were in the same undergraduate class at Harvard.

We took algebra from Richard Brauer.

We both participated in the summer school on automorphic forms and L-functions in Corvallis. Steve attended all the lectures...

We wrote one joint paper:

Heights and the central critical values of triple product L-functions. Compositio Math. **81** (1992).

The first part of this talk is joint work with Noam Elkies.

We were guided by a beautiful talk on the Fricke-Macbeath curve by Jaap Top.

The material on triple product L-functions was motivated by a surprising result in a recent paper of Dean Bisogno, Wanlin Li, Daniel Litt, and Padma Srinivasan.

Some important progress was made by Congling Qiu and Wei Zhang soon after the talk.

I want to thank all of them.

Hurwitz curves

Let X be a curve of genus $g \ge 2$ over $\mathbb C$ and let $G = \operatorname{Aut}(X)$.

The group *G* is finite and $\#G \le 84(g-1)$.

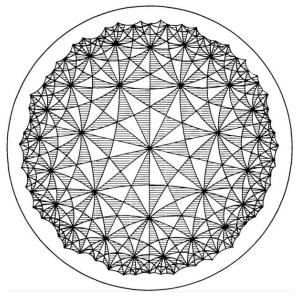
A. Hurwitz, "Über algebraische Gebilde mit Eindeutigen Transformationen in sich". Math. Annalen, **41** (1893).

If equality holds, then $X/G \cong \mathbb{P}^1$ and the covering $X \to \mathbb{P}^1$ is ramified at three points, with inertia subgroups of order 2, 3, 7.

The finite group G is a quotient of the hyperbolic triangle group

$$\Delta(2,3,7) = \{x, y, z : x^2 = y^3 = z^7 = xyz = 1\},$$

which is a discrete subgroup of $\operatorname{Aut}(\mathfrak{H})=\operatorname{SL}_2(\mathbb{R})/\langle \pm 1 \rangle.$



1879, F. Klein, Math. Annalen 14

Let X be an H-curve, let $G = \operatorname{Aut}(X)$ and let Γ be the kernel of the surjective homomorphism $\Delta(2,3,7) \to G$.

We have a uniformization of the G-covering map

$$X(\mathbb{C}) = \Gamma \backslash \mathfrak{H} \to \mathbb{P}^1(\mathbb{C}) = \Delta(2,3,7) \backslash \mathfrak{H}.$$

The group G acts linearly on $H^0(X,\Omega)$.

If V is a non-trivial irreducible representation of G and V^* is its dual, then the Lefschetz fixed point formula implies

$$\operatorname{\mathsf{mult}}(V) + \operatorname{\mathsf{mult}}(V^*) = \dim V - \dim V^{\langle 2 \rangle} - \dim V^{\langle 3 \rangle} - \dim V^{\langle 7 \rangle}.$$

The first few genera of *H*-curves are

$$g = 3, 7, 14, 17, 118, \dots$$

The unique H-curve X of genus 3 is the Klein quartic

$$x^3y + y^3z + z^3x = 0$$

with automorphism group isomorphic to PSL₂(7).

The unique H-curve X of genus 7 is was studied by R. Fricke in 1899, as a quotient of the upper half plane.

It has automorphism group isomorphic to PGL₂(8).

The representation $V = H^0(X, \Omega)$ is irreducible and in the discrete series, associated to the two cubic characters of the non-split torus.

A.M. Macbeath found an algebraic model for X in 1965.

A Borel subgroup $B = U.T = 2^3.7$ of PGL₂(8) acts irreducibly on $H^0(X, \Omega)$.

The unipotent subgroup acts by the seven non-trivial characters $\chi: U \to \langle \pm 1 \rangle$, and these eigenspaces are permuted transitively by the torus.

If U_{χ} be the kernel of the character χ , the quotient $E_{\chi} = X/U_{\chi}$ is an elliptic curve.

The seven elliptic curves $E = E_{\chi}$ are all isomorphic, and

$$j(E) = 1792.$$

The Jacobian J(X) is isogenous to the product E^7 .

Since E does not have complex multiplication and $J(X) \sim E^7$ the group

$$L = \operatorname{Hom}(J(X), E)$$

is free abelian of rank 7.

This is the Mordell-Weil lattice

$$L = \operatorname{\mathsf{Mor}}(X,E)/E(\mathbb{C}) = E(\mathbb{C}(X))/E(\mathbb{C}).$$

The degree of a morphism $\phi: X \to E$ defines a positive definite quadratic form on L.

The lattice *L* is isometric to $2(E_7^{\vee}) \subset E_7$ and has theta function

$$\theta_L = 1 + 56q^3 + 126q^4 + 576q^7 + 756q^8 + 1512q^{11} + \dots$$

G. Shimura, "Construction of class fields and zeta functions of algebraic curves." Annals of Math. **85** (1967).

Let $k = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$ be the cubic field of discriminant 7^2 .

The ring of integers $A = \mathbb{Z}[\zeta_7 + \zeta_7^{-1}] \subset k$ has strict class number one: every ideal has a totally positive generator.

The field k has three real embeddings v, w, w'. Let B be the quaternion algebra over k which is split at v and all finite places and is ramified at w and w'.

The maximal A orders $R \subset B$ are all conjugate.

The group $R_{N=1}^*$ contains elements of finite order 4, 6, and 14, from quadratic cyclotomic extensions of A.

The quotient $R_{N=1}^*/\langle \pm 1 \rangle$ contains elements of order 2, 3, and 7, and is isomorphic to the triangle group $\Delta(2,3,7)$.

Let *G* be the algebraic group over k, with $G(k) = B^*/k^*$.

Let $M(1) = \prod_{\lambda} \mathsf{PGL}_2(A_{\lambda}) \subset G(\mathbb{A}^f)$ and define

$$X(1) = G(k) \setminus \mathfrak{H}^{\pm 1} \times G(\mathbb{A}^f) / M(1).$$

There is only one orbit for G(k) on $G(\mathbb{A}^f)/M(1)$, with stabilizer conjugate to R^*/A^* .

$$X(1) = (R^*/A^*) \backslash \mathfrak{H}^{\pm 1} = (R^*_{N>0}/A^*) \backslash \mathfrak{H} = (R^*_{N=1}/\langle \pm 1 \rangle) \backslash \mathfrak{H}.$$

Arithmetic *H*-curves $X \to X(1) \cong \Delta(2,3,7) \backslash \mathfrak{H}$ come from normal subgroups of M(1).

Let $\mathfrak p$ be a prime ideal of A, $F_{\mathfrak p}=A/\mathfrak p$, and $q=\#F_{\mathfrak p}$.

The finite group $PGL_2(F_p)$ is a quotient of $PGL_2(A_p)$ and acts triply transitively on the q+1 points of the projective line $\mathbb{P}^1(F_p)$.

Consider the subgroups $M(\mathfrak{p}) \subset M_0(\mathfrak{p}^2) \subset M_0(\mathfrak{p}) \subset M(1)$ whose images in $PGL_2(\mathcal{F}_{\mathfrak{p}})$ fix three, two, and one point on $\mathbb{P}^1(\mathcal{F}_{\mathfrak{p}})$.

Each gives a compact Riemann surface of the form

$$X(\mathfrak{p}) = G(k) \setminus \mathfrak{H}^{\pm 1} \times G(\mathbb{A}^f) / M(\mathfrak{p}).$$

We have maps

$$X(\mathfrak{p}) \longrightarrow X_0(\mathfrak{p}^2) \longrightarrow X_0(\mathfrak{p}) \longrightarrow X(1).$$

All four curves have **canonical models** over the cubic field $k = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$, embedded in \mathbb{C} by the real place v.

The curves $X(1), X_0(\mathfrak{p}), X_0(\mathfrak{p}^2)$ are geometrically connected.

The curve $X(\mathfrak{p})$ is is a Galois extension of X(1) with group $\operatorname{PGL}_2(F_{\mathfrak{p}})=\operatorname{PGL}_2(q)$. It is geometrically connected when $\mathfrak{p}=2$ and has two components over $\mathbb C$ when q is odd.

The two components $X^{\pm}(\mathfrak{p})$ are rational over the unique quadratic extension K of k of discriminant \mathfrak{p} . They give Galois coverings of X(1) with group $\mathsf{PSL}_2(\mathfrak{p})$ and are H-curves.

The *H*-curves of genus g=3,7,14,118 correspond to prime ideals $\mathfrak{p}\subset A$ with $N\mathfrak{p}=7,8,13,27$.

When $\mathfrak{p}=2A$, the Shimura curve X(2) gives a canonical descent of the Fricke-Macbeath curve, together with its full automorphism group $G=\mathsf{PGL}_2(8)$, to $k=\mathbb{Q}(\zeta_7+\zeta_7^{-1})$.

The quotient X(2)/V by any Klein 4-group in $PGL_2(8)$ is an elliptic curve E of conductor 2^2 over k.

This is the elliptic curve 64.1-a7 in LFMDB.

E descends uniquely to \mathbb{Q} , where it has minimal equation

$$y^2 = x^3 + x^2 - 114x - 127$$
 $\Delta = 2^4.7^8$ $j(E) = 2^8.7 = 1792$.

Finally

$$J(X(2)) \sim E^7$$
.

Automorphic forms

Recall the curves

$$X(\mathfrak{p}) o X_0(\mathfrak{p}^2) o X_0(\mathfrak{p}) o X(1) = \Delta(2,3,7) ackslash \mathfrak{H}.$$

A holomorphic differential ω on $X_0(\mathfrak{p})$ or $X_0(\mathfrak{p}^2)$ which is an eigenvector for the Hecke correspondences corresponds to a new vector in an irreducible automorphic representation $\pi(\omega)$ of the group $G(\mathbb{A}) = (B \otimes \mathbb{A})^*/\mathbb{A}^*$.

Via a result of Jacquet-Langlands, $\pi(\omega)$ corresponds to a cuspidal automorphic representation $\pi=\otimes\pi_{\nu}$ of the split group $PGL_2(\mathbb{A})$, which has conductor \mathfrak{p} or \mathfrak{p}^2 and is in the discrete series of weight 2 at all three real places.

The action of $PGL_2(F_p)$ on the holomorphic differentials of X(p) helps to identify the local representation π_p of $PGL_2(k_p)$.

Assume $\mathfrak{p}=2A$. Then $X_0(2)$ has genus zero and $X_0(2^2)$ has genus one. The former is the projective line and the latter is the unique principal homogeneous space for E=X(2)/V over k, which is non-trivial at the three real places and trivial elsewhere.

There is a unique cuspidal automorphic representation π of the split group $PGL_2(\mathbb{A})$, with the following local behavior.

- At each real place v the representation π_v is the discrete series of weight 2 for $PGL_2(\mathbb{R})$.
- At the prime $\mathfrak{p}=2A$, the representation $\pi_{\mathfrak{p}}$ has conductor \mathfrak{p}^2 . It is the discrete series of depth zero which is compactly induced from the representation $V_{\mathfrak{p}}$ of $PGL_2(A_{\mathfrak{p}}) \to PGL_2(F_{\mathfrak{p}})$ of dimension 7, associated to the two cubic characters $\{\chi_3,\chi_3^{-1}\}$ of the non-split torus.
- ▶ At all other places λ , the representation π_{λ} is unramified.

Let D be the **definite** quaternion algebra over k ramified at the three real places and the prime $\mathfrak{p}=2A$, and let G^* be the algebraic group over k with points D^*/k^* .

There is a unique automorphic representation π^* of the adelic group $G^*(\mathbb{A})$ which is

- ▶ the trivial representation the compact group $G^*(\mathbb{R}) = SO_3$ at each real place,
- the two dimensional representation $W_{\mathfrak{p}}$ of the compact group $G^*(k_{\mathfrak{p}})$ at the place \mathfrak{p} , which factors through its dihedral quotient of order 6 and whose restriction to the cyclic subgroup is the direct sum of the cubic characters $\{\chi_3,\chi_3^{-1}\}$,
- isomorphic to the unramified representation π_{λ} at all remaining finite places λ .

There is a unique invariant trilinear form on the local representations π_{ν}^* , for **every** place ν .

Hence there is a $G^*(\mathbb{A})$ -invariant linear form on the automorphic representation $\pi^* \otimes \pi^* \otimes \pi^*$ of $G^*(\mathbb{A})^3$, which is unique up to scaling.

Define a linear form P on the automorphic representation $\pi^* \otimes \pi^* \otimes \pi^*$ of $G^*(\mathbb{A})^3$ by integration over the diagonal

$$P(\phi_1^*\otimes\phi_2^*\otimes\phi_3^*)=\int_{G^*(k)\backslash G^*(\mathbb{A})}\phi_1^*(g)\phi_2^*(g)\phi_3^*(g)\ dg.$$

The triple product L-function $L(\pi \otimes \pi \otimes \pi, s)$ satisfies a functional equation when $s \to 4 - s$, with sign +1.

The $G^*(\mathbb{A})$ invariant linear form P is **non-zero** if and only if

$$L(\pi \otimes \pi \otimes \pi, 2) \neq 0.$$

M. Harris and S. Kudla, "The central critical value of a triple product L-function." Annals of Math. **133** (1991).

We can test the non-triviality of P using a test vector $\phi^* = \prod \phi_{\nu}^*$ in $\pi^* \otimes \pi^* \otimes \pi^*$ for the invariant trilinear form.

The local vector ϕ_{ν}^* spans the line fixed by an open compact subgroup M_{ν} .

The test function ϕ^* is defined on the double coset space

$$G^*(k)^3\backslash G^*(\mathbb{A})^3/\prod M_V$$

which has only five elements.

One can identify ϕ^* using the Hecke operator T_{λ} with $N(\lambda) = 7$.

Integration over the diagonal is the evaluation of ϕ^* on one of the double cosets Δ , and $\phi^*(\Delta) \neq 0$.

Hence

$$L(\pi \otimes \pi \otimes \pi, 2) \neq 0.$$

Why is this computation so simple?

First, the quaternion algebra *D* is definite.

But more remarkable is the fact that, up to conjugacy, *D* contains a unique maximal *A* order, which has class number 1.

In fact, this order is

$$Ai + Aj + Ak + A(1 + i + j + k)/2$$
 $i^2 = j^2 = k^2 = ijk = -1.$

cf. A. Hurwitz, "Vorlesungen Über die Zahlentheorie der Quaternionen" (1919).

The elliptic curve $E = J_0(2^2)$ is modular over k:

$$L(H^1(E),s)=L(\pi,s).$$

It follows that

$$L(\pi \otimes \pi \otimes \pi, s) = L(H^1(E)^{\otimes 3}, s) = L(\operatorname{Sym}^3 H^1(E), s) L(H^1(E), s-1)^2.$$

Since the triple product L-function does not vanish at s = 2

$$L(\text{Sym}^3 H^1(E), 2) \neq 0$$
 $L(H^1(E), 1) \neq 0$.

The Jacobian J(2) of the Fricke-Macbeath curve X = X(2) is isogenous to E^7 over k, so we have an identity of motives of rank 14 over k: $H^1(X) = 7.H^1(E)$.

Let $Y = X^3$. The Kunneth formula gives an identity of motives of rank 2786 over k:

$$H^3(Y) = 343. \text{ Sym}^3 H^1(E) + 707. H^1(E)(-1).$$

Beilinson and Bloch suggest that the Chow group of codimension 2 cycles which are homologous to zero on a three-fold Y over k is finitely generated, of rank equal to the order of vanishing of the L-function of $H^3(Y)$ at the point s=2.

In our case, when
$$Y = X^3$$
:

$$L(H^3(Y), s) = L(Sym^3 H^1(E), s)^{343} L(H^1(E), s - 1)^{707}$$

and the order of vanishing at s = 2 is zero.

Expectation Let $k = \mathbb{Q}(\zeta_7 + \zeta_7^{-1})$ and let X be the Fricke-Macbeath curve over k. Then any codimension two cycle on $Y = X^3$ which is defined over k and is homologous to zero has finite order in the Chow group.

The modified diagonal cycle $\Delta X_e \rightarrow Y = X^3$ is defined over k and is homologous to zero.

Bisogno, Li, Litt, and Srinivasan have shown that the image of ΔX_e under the ℓ -adic Abel-Jacobi map is torsion.

Update: A few days after this talk, Wei Zhang and Congling Qiu sent me a proof that the modified diagonal cycle has finite order in the Chow group.

Their argument uses the geometric fact that there are no $SL_2(8)$ -invariant trilinear forms on the holomorphic differentials of X, and the arithmetic fact that the Mordell-Weil group of the Jacobian of X over k is finite.