On the central path of semidefinite optimization Degree and worst-case convergence rate

Ali Mohammad-Nezhad
Joint work with Saugata Basu

Workshop on Real Algebraic Geometry and Algorithms for Geometric Constraint Systems

June 18, 2021

$\underset{\text { UN I V E R S I T Y }}{\mathrm{m}}$

Overview

- Part 1: Semidefinite optimization
- Part 2: Central path
- Part 3: Convergence rate and degree

Part 1: Semidefinite optimization

Semidefinite optimization

Let $A^{1}, \ldots, A^{m} \in \mathbb{S}^{n}, C \in \mathbb{S}^{n}$, and $b:=\left(b_{1}, \ldots, b_{m}\right)^{T} \in \mathbb{R}^{m}$. \mathbb{S}^{n} : the vector space of symmetric $n \times n$ real matrices.

A semidefinite optimization (SDO) problem in primal-dual form:

$$
\begin{aligned}
& \text { (P) } \inf _{X}\left\{\langle C, X\rangle \mid\left\langle A^{i}, X\right\rangle=b_{i}, \quad i=1, \ldots, m, X \succeq 0\right\}, \\
& \text { (D) } \sup _{(y, S)}\left\{b^{T} y \mid \sum_{i=1}^{m} y_{i} A^{i}+S=C, S \succeq 0\right\} .
\end{aligned}
$$

$$
\langle X, S\rangle=\operatorname{tr}(X S), \quad \forall X, S \in \mathbb{S}^{n}
$$

- We assume that all the coefficients (\mathbf{A}, b, C) belong to \mathbb{Z}.

A SDO example

Minimization of $4 x-4 y-2 z$ over the 3 -elliptope:

$$
\min \left\{4 x-4 y-2 z \left\lvert\,\left(\begin{array}{lll}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right) \succeq 0\right.\right\} .
$$

A unique optimal solution exists $\left(X^{*}+S^{*} \nsucc 0\right)$:

$$
X^{*}=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right), \quad y^{*}=(-4,-1,-1)^{T}, \quad S^{*}=\left(\begin{array}{rrr}
4 & 2 & -2 \\
2 & 1 & -1 \\
-2 & -1 & 1
\end{array}\right) .
$$

Optimality conditions

We assume that

- A^{i} for $i=1, \ldots, m$ are linearly independent.
- \exists a feasible $\left(X^{\circ}, y^{\circ}, S^{\circ}\right)$ s.t. $X^{\circ}, S^{\circ} \succ 0$.

Let $\operatorname{Sol}(\mathrm{P})$ and $\operatorname{Sol}(\mathrm{D})$ denote the primal and dual optimal sets.

- $\operatorname{Sol}(\mathrm{P}) \times \operatorname{Sol}(\mathrm{D})$ is equal to all (X, y, S) s.t.

$$
\begin{aligned}
\left\langle A^{i}, X\right\rangle & =b_{i}, \quad i=1, \ldots, m, & & X \succeq 0, \\
\sum_{i=1}^{m} y_{i} A^{i}+S & =C, & & S \succeq 0, \\
X S & =0 . & &
\end{aligned}
$$

- $\operatorname{Sol}(\mathrm{P})$ and $\operatorname{Sol}(\mathrm{D})$ are both nonempty and compact.

How to solve $(\mathrm{P})-(\mathrm{D}) ?$

Algebraically (Basu, Pollack, and Roy (BPR), Algorithm 14.9)

- $\left\{\left\langle A^{i}, X\right\rangle=b_{i}, i=1, \ldots, m, X \succeq 0\right\}$ is a basic semi-algebraic set.
- $2^{n}-1+m$ polynomials of degree n.

Numerically (Interior point methods (IPMs))

- Iteratively solves a linear approximation of the central path:

$$
\begin{aligned}
\left\langle A^{i}, X\right\rangle & =b_{i}, \quad i=1, \ldots, m \\
\sum_{i=1}^{m} y_{i} A^{i}+S & =C \\
X S+S X & =2 \mu I
\end{aligned}
$$

while taking $\mu \downarrow 0$.

- Iteration complexity $O\left(\sqrt{n} L_{\epsilon}\right)$ for an ϵ-approximate solution.

Trajectory of IPMs solutions

3-elliptope example:

$$
X(\mu)=\left(\begin{array}{ccc}
1 & X_{12}(\mu) & -X_{12}(\mu) \\
X_{12}(\mu) & 1 & -2 X_{12}^{2}(\mu)+\frac{\mu}{2} X_{12}(\mu)+1 \\
-X_{12}(\mu) & -2 X_{12}^{2}(\mu)+\frac{\mu}{2} X_{12}(\mu)+1 & 1
\end{array}\right)
$$

- $X_{12}(\mu)$ is a real root of $2 T^{3}+(2-\mu / 2) T^{2}-(\mu+2) T-2=0$.

Figure: IPMs follow the central path to solve (P) - (D).

Part 2: Central path

Central path(CP)

CP is a smooth semi-algebraic path $\phi(\mu):(0, \infty) \rightarrow \mathbb{S}^{n} \times \mathbb{R}^{m} \times \mathbb{S}^{n}$

$$
\begin{aligned}
\mathcal{C}:=\left\{(X, y, S, \mu)\left|A^{i}, X\right\rangle\right. & =b_{i}, \quad i=1, \ldots, m, \\
\sum_{i=1}^{m} y_{i} A^{i}+S & =C, \\
X S+S X-2 \mu I_{n} & =0, \quad X, S \succ 0\} .
\end{aligned}
$$

- $\phi(\mu)=(X(\mu), y(\mu), S(\mu))$ is called a central solution.
- For every positive $\bar{\mu},\left.\phi\right|_{(0, \bar{\mu}]}$ is bounded.

Using real algebraic geometry:

Theorem (BPR, Prop. 3.18)

$\phi(\mu)$ can be continuously extended to $\mu=0$, i.e., $\lim _{\mu \downarrow 0} \phi(\mu)$ exists.

Distance from the limit point (special case)

Let $\left(X^{* *}, y^{* *}, S^{* *}\right)$ be the limit point of CP .

$$
\text { If } X^{* *}+S^{* *} \succ 0 \text { (strict complementarity): }
$$

Theorem (Sturm et al., 2001)

$\left(X^{* *}, y^{* *}, S^{* *}\right)$ is the analytic center of the optimal set. Furthermore,

$$
\left\|X(\mu)-X^{* *}\right\|=O(\mu) \quad \text { and } \quad\left\|S(\mu)-S^{* *}\right\|=O(\mu) .
$$

- IPMs are superlinearly convergent under this condition.

Figure: $\min \left\{-2 z \left\lvert\,\left(\begin{array}{lll}1 & x & y \\ x & 1 & z \\ y & z & 1\end{array}\right) \succeq 0\right.\right\}$.

Distance from the limit point (general case)

How about when $X^{* *}+S^{* *} \nsucc 0$?

- IPMs convergence is no better than linear.
- Unknown worst-case convergence rate.
- The Lipschitzian bounds in previous case fails to exist.

The 3-elliptope example (using Newton-Puiseux theorem):

$$
\left\|X(\mu)-X^{* *}\right\|=O(\sqrt{\mu}) \text { and }\left\|S(\mu)-S^{* *}\right\|=O(\sqrt{\mu}) .
$$

What happens if $X^{* *}+S^{* *} \nsucc 0$?

We already know that:

Theorem (M and Terlaky, 2019)

$$
\operatorname{dist}(X(\mu), \operatorname{Sol}(\mathrm{P}))=O\left(\mu^{2^{1-n}}\right), \quad \operatorname{dist}((y(\mu), S(\mu)), \operatorname{Sol}(\mathrm{D}))=O\left(\mu^{2^{1-n}}\right)
$$

A lower bound exists (De Klerk, 2001):

$$
\begin{aligned}
& \quad \max \left\{-y_{n} \left\lvert\, S=\left(\begin{array}{ccccc}
1 & y_{1} & y_{2} & \ldots & y_{n-1} \\
y_{1} & y_{2} & 0 & \cdots & 0 \\
y_{2} & 0 & y_{3} & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
y_{n-1} & 0 & \cdots & 0 & y_{n}
\end{array}\right) \succeq 0\right.\right\} . \\
& -\left\|S(\mu)-S^{* *}\right\|=\Omega\left(\mu^{2^{-n}}\right) .
\end{aligned}
$$

Our goal here is to bound $\left\|X(\mu)-X^{* *}\right\|$ and $\left\|S(\mu)-S^{* *}\right\|$.

Part 3: Convergence rate and degree

Representation of CP (a semi-algebraic approach)

We identify symmetric matrices by vectors

$$
X \mapsto\left(X_{11}, \sqrt{2} X_{12}, \ldots, \sqrt{2} X_{1 n}, X_{22}, \sqrt{2} X_{23}, \ldots, \sqrt{2} X_{2 n}, \ldots, X_{n n}\right)^{T} .
$$

Then the CP system can be represented as

$$
\mathcal{P}:=\left\{\mathbf{A} x-b, \mathbf{A}^{T} y+s-c,\left(x \otimes_{s} I_{n}\right) s-2 \mu 1_{t(n)}\right\} \subset \mathbb{Z}[\mu, V] .
$$

$\mathbf{A}:=\left(\operatorname{svec}\left(A^{1}\right), \ldots, \operatorname{svec}\left(A^{m}\right)\right)^{T} ;$
$v:=(x ; y ; s)$;
\otimes_{s} : the symmetric Kronecker product;
$t(n):=\binom{n}{2}$.

- A central solution is an isolated solution of $\operatorname{Zer}\left(\mathcal{P}, \mathbb{R}^{m+2 t(n)}\right)$.

real k-univariate representation

We compute real univariate representations describing $\operatorname{Zer}\left(\mathcal{P}, \mathbb{R}^{m+2 t(n)}\right)$.

Let $\mathcal{Q} \subset \mathbb{R}\left[X_{1}, \ldots, X_{k}\right]$ s.t. $\operatorname{Zer}\left(\mathcal{Q}, \mathbb{C}^{k}\right)$ is finite.

- A real k-univariate representation of $\hat{x} \in \operatorname{Zer}\left(\mathcal{Q}, \mathbb{R}^{k}\right)$ is (u, σ) with $u=\left(f, g_{0}, \ldots, g_{k}\right) \in \mathbb{R}[T]^{k+2}$ such that

$$
\hat{x}=x_{u}\left(t_{\sigma}\right):=\left(\frac{g_{1}\left(t_{\sigma}\right)}{g_{0}\left(t_{\sigma}\right)}, \ldots, \frac{g_{k}\left(t_{\sigma}\right)}{g_{0}\left(t_{\sigma}\right)}\right) \in \mathbb{R}^{k} .
$$

σ : the Thom encoding of a real root $t_{\sigma} \in \mathbb{R}$ of $f(T)$. f and g_{0} are coprime.

A bounded hypersurface

$\operatorname{Zer}\left(\mathcal{P}, \mathbb{R}^{m+2 t(n)}\right)$ may have an unbounded component. However,

$$
\left.\forall \bar{\mu}>0 \quad \exists \epsilon_{\bar{\mu}} \in \mathbb{Q}_{+} \text {s.t. } \phi(0, \bar{\mu}]\right) \subset \bigcup_{\mu} \operatorname{Zer}\left(\mathcal{P}, \mathbb{R}^{m+2 t(n)}\right) \cap B\left(0,1 / \epsilon_{\bar{\mu}}\right) .
$$

Thus, we can define

$$
\begin{aligned}
& Q=\|\mathbf{A} x-b\|^{2}+\left\|\mathbf{A}^{T} y+s-c\right\|^{2}+\left\|\left(x \otimes_{s} I_{n}\right) s-2 \mu 1_{t(n)}\right\|^{2}, \\
& \tilde{Q}=Q^{2}+\left(\epsilon_{\bar{\mu}}^{2}\left(V_{1}^{2}+\ldots+V_{m+2 t(n)+1}^{2}\right)-1\right)^{2} .
\end{aligned}
$$

- $\operatorname{Zer}\left(\tilde{Q}, \mathbb{R}^{m+2 t(n)+1}\right)$ is the intersection of a ball and a cylinder based on $\operatorname{Zer}\left(\mathcal{P}, \mathbb{R}^{m+2 t(n)}\right)$.

Real univariate representation of CP

Parameterized Bounded Algebraic Sampling (PBAS):

Theorem (Basu and M, 2021)

There exists $((f, g), \sigma)$ s.t. $f\left(\mu, t_{\sigma}\right)=0, g_{0}\left(\mu, t_{\sigma}\right) \neq 0$, and $\forall \mu \in(0, \bar{\mu}]$:

$$
\begin{array}{ll}
x_{i}(\mu)=\frac{g_{i}\left(\mu, t_{\sigma}\right)}{g_{0}\left(\mu, t_{\sigma}\right)} \in \mathbb{R}, & i=1 \ldots, t(n), \\
y_{i}(\mu)=\frac{g_{t(n)+i}\left(\mu, t_{\sigma}\right)}{g_{0}\left(\mu, t_{\sigma}\right)} \in \mathbb{R}, & i=1 \ldots, m, \\
s_{i}(\mu)=\frac{g_{t(n)+m+i}\left(\mu, t_{\sigma}\right)}{g_{0}\left(\mu, t_{\sigma}\right)} \in \mathbb{R}, & i=1 \ldots, t(n) .
\end{array}
$$

- PBAS computes X_{1}-pseudo critical points on $\operatorname{Zer}\left(\tilde{Q}, \mathbb{R}^{m+2 t(n)+1}\right)$.

Complexity of PBAS

The polynomials $f, g_{0}, g_{1}, \ldots, g_{m+2 t(n)}$ are

- of degree $O(1)^{m+2 t(n)}$ in T;
- of degree $2^{O\left(m+n^{2}\right)}$ in μ.

As a consequence:

Theorem (Basu and M, 2021)

The degree of Zariski closure of the image $\phi((0, \bar{\mu}])$ is $2^{O\left(m+n^{2}\right)}$.

- There exists a bound n^{m} for generic SDO (Hosten et. al, 2021).

Limit point of CP

The CP system can be viewed as a μ-infinitesimal deformation of

$$
\left\{\mathbf{A} x-b, \quad \mathbf{A}^{T} y+s-c, \quad\left(x \otimes_{s} I_{n}\right) s\right\} .
$$

$\mathcal{G} \subset \mathbb{R}[\mu][V]:$ the μ-infinitesimally deformed polynomial system.

The set of all μ s.t. a given (f, g) describes $\phi(\mu)$ is semi-algebraic.

- $\exists(\check{f}, \check{g})$ and $\check{\mu}>0$ such that (\check{f}, \check{g}) describes $\phi((0, \check{\mu}))$.
- $\left(x^{* *} ; y^{* *} ; s^{* *}\right) \in \lim _{\mu}\left(\operatorname{Zer}_{b}\left(\mathcal{G}, \mathbb{R}\langle\mu\rangle^{m+2 t(n)}\right)\right)$.
$\operatorname{Zer}_{b}\left(\mathcal{G}, \mathbb{R}\langle\mu\rangle^{m+2 t(n)}\right)$: bounded zeros of \mathcal{G} over $\mathbb{R}\langle\mu\rangle$.

Our goal is to describe $\lim _{\mu}\left(\operatorname{Zer}_{b}\left(\mathcal{G}, \mathbb{R}\langle\mu\rangle^{m+2 t(n)}\right)\right)$.

Limit point of CP

We describe $\lim _{\mu}$ of bounded points represented by $((f, g), \sigma)$:

$$
\bar{u}=\left(\bar{f},\left(\bar{g}_{0}, \bar{g}_{1}, \ldots, \bar{g}_{m+2 t(n)}\right)\right) \in \mathbb{Z}[T]^{m+2 t(n)+2},
$$

where

$$
\begin{aligned}
& \bar{f}(T)=\lim _{\mu} \mu^{-o(f(T))} f(T), \\
& \bar{g}_{i}(T)=\lim _{\mu} \mu^{-o\left(g_{i}^{\left(k_{\bar{\sigma}}-1\right)}(T)\right)} g_{i}^{\left(k_{\bar{\sigma}}-1\right)}(T), \quad i=0, \ldots, m+2 t(n) .
\end{aligned}
$$

$k_{\bar{\sigma}}$: multiplicity of a real root $t_{\bar{\sigma}}$ of $\bar{f}(T)$ with Thom encoding $\bar{\sigma}$.
$(\bar{u}, \bar{\sigma})$ represents the limit of CP if the ball centered at

$$
\bar{x}_{i}=\frac{\bar{g}_{i}\left(t_{\bar{\sigma}}\right)}{\bar{g}_{0}\left(t_{\bar{\sigma}}\right)}, \quad \bar{y}_{i}=\frac{\bar{g}_{t(n)+i}\left(t_{\bar{\sigma}}\right)}{\bar{g}_{0}\left(t_{\bar{\sigma}}\right)}, \quad \bar{s}_{i}=\frac{\bar{g}_{t(n)+m+i}\left(t_{\bar{\sigma}}\right)}{\bar{g}_{0}\left(t_{\bar{\sigma}}\right)}
$$

contains $\phi(\mu)$ in its infinitesimal radius $0<\delta \ll \mu<1$.

Description of the limit point

In summary:

Theorem (Basu and M, 2021)

There exists an algorithm which represents $\left(x^{* *}, y^{* *}, s^{* *}\right)$ as follows

$$
\begin{array}{ll}
x_{i}^{* *}=\frac{\bar{g}_{i}\left(t_{\bar{\sigma}}\right)}{\bar{g}_{0}\left(t_{\bar{\sigma}}\right)}, & i=1 \ldots, t(n), \\
y_{i}^{* *}=\frac{\bar{g}_{t(n)+i}\left(t_{\bar{\sigma}}\right)}{\bar{g}_{0}\left(t_{\bar{\sigma}}\right)}, & i=1 \ldots, m, \\
s_{i}^{* *}=\frac{\bar{g}_{t(n)+m+i}\left(t_{\bar{\sigma}}\right)}{\bar{g}_{0}\left(t_{\bar{\sigma}}\right)}, & i=1 \ldots, t(n),
\end{array}
$$

where $t_{\bar{\sigma}}$ is a real root of $\bar{f}(T)=0$ and $\bar{g}_{0}\left(t_{\bar{\sigma}}\right) \neq 0$.

Worst-case convergence rate

Now, we have a semi-algebraic description of the convergence rate.

- The quantities $\left\|X(\mu)-X^{* *}\right\|$ and $\left\|S(\mu)-S^{* *}\right\|$.

Let $P_{x}, P_{s} \in \mathbb{Z}\left[\mu, D, T_{1}, T_{2}\right]$ defined by

$$
\begin{aligned}
& P_{x}=D\left(g_{0}\left(\mu, T_{1}\right) \bar{g}_{0}\left(T_{2}\right)\right)^{2}-\sum_{i=1}^{t(n)}\left(g_{i}\left(\mu, T_{1}\right) \bar{g}_{0}\left(T_{2}\right)-\bar{g}_{i}\left(T_{2}\right) g_{0}\left(\mu, T_{1}\right)\right)^{2}, \\
& P_{s}=D\left(g_{0}\left(\mu, T_{1}\right) \bar{g}_{0}\left(T_{2}\right)\right)^{2}-\sum_{i=m+t(n)+1}^{m+2 t(n)}\left(g_{i}\left(\mu, T_{1}\right) \bar{g}_{0}\left(T_{2}\right)-\bar{g}_{i}\left(T_{2}\right) g_{0}\left(\mu, T_{1}\right)\right)^{2} .
\end{aligned}
$$

- $d_{x}=\left\|X(\mu)-X^{* *}\right\|^{2}$ is a root of $P_{x}\left(\mu, D, t_{\sigma}, t_{\bar{\sigma}}\right)$.
- $d_{s}=\left\|S(\mu)-S^{* *}\right\|^{2}$ is a root of $P_{s}\left(\mu, D, t_{\sigma}, t_{\bar{\sigma}}\right)$.

Distance in terms of first-order formulas

In summary, $\left(\mu, d_{x}\right) \in \operatorname{Reali}\left(\Psi_{x}, \mathbb{R}^{2}\right)$ and $\left(\mu, d_{s}\right) \in \operatorname{Reali}\left(\Psi_{s}, \mathbb{R}^{2}\right)$:

$$
\begin{aligned}
\Psi_{x}(\mu, D):\left(\exists T_{1}\right) & \left(\exists T_{2}\right)\left(P_{x}\left(\mu, D, T_{1}, T_{2}\right)=0\right) \\
& \wedge\left(f^{(k)}\left(\mu, T_{1}\right)=\sigma\left(f^{(k)}\right), k=0,1, \ldots\right) \\
& \wedge\left(\bar{f}^{(k)}\left(T_{2}\right)=\bar{\sigma}\left(\bar{f}^{(k)}\right), k=0,1, \ldots\right), \\
\Psi_{s}(\mu, D):\left(\exists T_{1}\right) & \left(\exists T_{2}\right)\left(P_{s}\left(\mu, D, T_{1}, T_{2}\right)=0\right) \\
& \wedge\left(f^{(k)}\left(\mu, T_{1}\right)=\sigma\left(f^{(k)}\right), k=0,1, \ldots\right) \\
& \wedge\left(\bar{f}^{(k)}\left(T_{2}\right)=\bar{\sigma}\left(\bar{f}^{(k)}\right), k=0,1, \ldots\right)
\end{aligned}
$$

Using the quantifier elimination algorithm:
Theorem (Basu and M, 2021)
$\left\|X(\mu)-X^{* *}\right\|,\left\|S(\mu)-S^{* *}\right\|=O\left(\mu^{\frac{1}{\gamma}}\right)$, with $\gamma=2^{O\left(m+n^{2}\right)}$.

The idea of the proof

Proof.

- \mathbb{R}-realization of the formulas contains a unique $(\mu, d), \forall \mu \in(0, \check{\mu})$. \Downarrow
- A q.f. formula involves an atom $R=0$ with $\operatorname{deg}(R)=2^{O\left(m+n^{2}\right)}$. \Downarrow
- By the Newton-Puiseux theorem, $R(\mu, D)=0$ has a root $d \in \mathbb{C}\langle\mu\rangle$. \Downarrow
- The valuation of d is positive and bounded below by $1 / \operatorname{deg}_{D}(R)$.

We investigated the worst-case convergence of $C P$:

- Real univariate representations describing CP and its limit point.
- The complexity of PBAS plays a central rule here.
- The degree of polynomials leads to a bound $2^{O\left(m+n^{2}\right)}$ on the degree of CP.
- We described the limit point of CP by taking the limit of points in $\operatorname{Zer}_{b}\left(\mathcal{G}, \mathbb{R}\langle\mu\rangle^{m+2 t(n)}\right)$.

Using quantifier elimination and Newton-Puiseux theorem:

- We provided a bound $O\left(\mu^{1 / \gamma}\right)$, with $\gamma=2^{O\left(m+n^{2}\right)}$, on the worst-case convergence rate.

Reference: https://arxiv.org/abs/2105.06630

Thank you for your attention Any questions?

