Semidefinite Relaxations of Products of Nonnegative Forms

Workshop on Real Algebraic Geometry and Algorithms for Geometric Constraint Systems

Chenyang Yuan (joint work with Pablo Parrilo) June 18, 2021

Introduction

How to exploit product structure in polynomial optimization problems

Introduction

How to exploit product structure in polynomial optimization problems

Computational tractability

Introduction

How to exploit product structure in polynomial optimization problems

Computational tractability
$+$
Provable approximation guarantees

Introduction

Given $\mathcal{A}=\left(A_{1}, \ldots, A_{d}\right)$ where $A_{i} \succeq 0$, we study the following polynomial optimization problem on $\mathbb{K}^{n}=\mathbb{R}^{n}$ or \mathbb{C}^{n} :

$$
\operatorname{OPT}(\mathcal{A}):=\max _{x \in \mathbb{K}^{n},\|x\|=1}\left(\prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle\right)^{1 / d}
$$

Introduction

Given $\mathcal{A}=\left(A_{1}, \ldots, A_{d}\right)$ where $A_{i} \succeq 0$, we study the following polynomial optimization problem on $\mathbb{K}^{n}=\mathbb{R}^{n}$ or \mathbb{C}^{n} :

$$
\operatorname{OPT}(\mathcal{A}):=\max _{x \in \mathbb{K}^{n},\|x\|=1}\left(\prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle\right)^{1 / d}
$$

Properties:

- High-degree polynomial optimization problem: degree $2 d$ in n variables

Introduction

Given $\mathcal{A}=\left(A_{1}, \ldots, A_{d}\right)$ where $A_{i} \succeq 0$, we study the following polynomial optimization problem on $\mathbb{K}^{n}=\mathbb{R}^{n}$ or \mathbb{C}^{n} :

$$
\operatorname{OPT}(\mathcal{A}):=\max _{x \in \mathbb{K}^{n},\|x\|=1}\left(\prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle\right)^{1 / d}
$$

Properties:

- High-degree polynomial optimization problem: degree $2 d$ in n variables
- Compact representation: represented in $O\left(n^{2} d\right)$ space

Introduction

Given $\mathcal{A}=\left(A_{1}, \ldots, A_{d}\right)$ where $A_{i} \succeq 0$, we study the following polynomial optimization problem on $\mathbb{K}^{n}=\mathbb{R}^{n}$ or \mathbb{C}^{n} :

$$
\operatorname{OPT}(\mathcal{A}):=\max _{x \in \mathbb{K}^{n},\|x\|=1}\left(\prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle\right)^{1 / d}
$$

Properties:

- High-degree polynomial optimization problem: degree $2 d$ in n variables
- Compact representation: represented in $O\left(n^{2} d\right)$ space
- Polynomial time solution when d is fixed, NP-hard when $d=\Omega(n)$

Applications and Motivation

$$
\operatorname{OpT}(\mathcal{A}):=\max _{\|x\|=1} \prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d}
$$

Applications and Motivation

$$
\operatorname{OpT}(\mathcal{A}):=\max _{\|x\|=1} \prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d}
$$

Kantorovich's inequality ($A_{1}=Q, A_{2}=Q^{-1}$): Given $Q \succ 0$,

$$
\max _{\|x\|=1} \sqrt{\left(x^{T} Q x\right)\left(x^{T} Q^{-1} x\right)} \leq \frac{1}{4}\left(\sqrt{\frac{\lambda_{1}(Q)}{\lambda_{n}(Q)}}+\sqrt{\frac{\lambda_{n}(Q)}{\lambda_{1}(Q)}}\right)^{2}
$$

Applications and Motivation

$$
\operatorname{Opt}(\mathcal{A}):=\max _{\|x\|=1} \prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d}
$$

Kantorovich's inequality ($A_{1}=Q, A_{2}=Q^{-1}$): Given $Q \succ 0$,

$$
\max _{\|x\|=1} \sqrt{\left(x^{\top} Q x\right)\left(x^{\top} Q^{-1} x\right)} \leq \frac{1}{4}\left(\sqrt{\frac{\lambda_{1}(Q)}{\lambda_{n}(Q)}}+\sqrt{\frac{\lambda_{n}(Q)}{\lambda_{1}(Q)}}\right)^{2}
$$

Approximating permanents of PSD matrices [YP20] $\left(A_{i}=v_{i} v_{i}^{\dagger}\right)$: Let $M=V^{\dagger} V, v_{i}$ columns of V.

$$
r(M):=\max _{\|x\|=1, x \in \mathbb{C}^{n}} \prod_{i=1}^{n}\left|\left\langle x, v_{i}\right\rangle\right|^{2}, \quad \frac{n!}{n^{n}} r(M) \leq \operatorname{per}(M)
$$

Applications and Motivation

$$
\operatorname{Opt}(\mathcal{A}):=\max _{\|x\|=1} \prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d}
$$

Kantorovich's inequality ($A_{1}=Q, A_{2}=Q^{-1}$): Given $Q \succ 0$,

$$
\max _{\|x\|=1} \sqrt{\left(x^{T} Q x\right)\left(x^{T} Q^{-1} x\right)} \leq \frac{1}{4}\left(\sqrt{\frac{\lambda_{1}(Q)}{\lambda_{n}(Q)}}+\sqrt{\frac{\lambda_{n}(Q)}{\lambda_{1}(Q)}}\right)^{2}
$$

Approximating permanents of PSD matrices [YP20] $\left(A_{i}=v_{i} v_{i}^{\dagger}\right)$: Let $M=V^{\dagger} V, v_{i}$ columns of V.

$$
r(M):=\max _{\|x\|=1, x \in \mathbb{C}^{n}} \prod_{i=1}^{n}\left|\left\langle x, v_{i}\right\rangle\right|^{2}, \quad \frac{n!}{n^{n}} r(M) \leq \operatorname{per}(M)
$$

Portfolio optimization $\left(A_{i}=\operatorname{diag}\left(r_{i}\right)\right)$: Given rates of return over a time period $r_{1}, \ldots, r_{T} \in \mathbb{R}_{+}^{n}$, maximize expected profit:

$$
\max _{y \geq 0, \sum_{i} y_{i}=1}\left(\prod_{i=1}^{T}\left\langle y, r_{i}\right\rangle\right)^{1 / d}
$$

Applications and Motivation

$$
\operatorname{Opt}(\mathcal{A}):=\max _{\|x\|=1} \prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d}
$$

Kantorovich's inequality $\left(A_{1}=Q, A_{2}=Q^{-1}\right)$: Given $Q \succ 0$,

$$
\max _{\|x\|=1} \sqrt{\left(x^{T} Q x\right)\left(x^{T} Q^{-1} x\right)} \leq \frac{1}{4}\left(\sqrt{\frac{\lambda_{1}(Q)}{\lambda_{n}(Q)}}+\sqrt{\frac{\lambda_{n}(Q)}{\lambda_{1}(Q)}}\right)^{2}
$$

Approximating permanents of PSD matrices [YP20] $\left(A_{i}=v_{i} v_{i}^{\dagger}\right)$: Let $M=V^{\dagger} V, v_{i}$ columns of V.

$$
r(M):=\max _{\|x\|=1, x \in \mathbb{C}^{n}} \prod_{i=1}^{n}\left|\left\langle x, v_{i}\right\rangle\right|^{2}, \quad \frac{n!}{n^{n}} r(M) \leq \operatorname{per}(M)
$$

Portfolio optimization $\left(A_{i}=\operatorname{diag}\left(r_{i}\right)\right)$: Given rates of return over a time period $r_{1}, \ldots, r_{T} \in \mathbb{R}_{+}^{n}$, maximize expected profit:

$$
\max _{y \geq 0, \sum_{i} y_{i}=1}\left(\prod_{i=1}^{T}\left\langle y, r_{i}\right\rangle\right)^{1 / d}
$$

And more! (Solving systems of quadratic equations, linear polarization constants, Nash social welfare ...)

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms for general polynomial optimization (Sum-of-Squares):
Compute: SDP with $O\left(\binom{n+d}{d}\right)$ vars/consts Approx: $\Omega\left(\frac{1}{n}\right)$

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms for general polynomial optimization (Sum-of-Squares):
Compute: SDP with $O\left(\binom{n+d}{d}\right)$ vars/consts Approx: $\Omega\left(\frac{1}{n}\right)$
Our relaxation and approximation algorithm that exploits compact representation:
Compute: SDP with $O\left(n^{2} d\right)$ vars/consts Approx: $\Omega(1)$

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms for general polynomial optimization (Sum-of-Squares):
Compute: SDP with $O\left(\binom{n+d}{d}\right)$ vars/consts Approx: $\Omega\left(\frac{1}{n}\right)$
Our relaxation and approximation algorithm that exploits compact representation:
Compute: SDP with $O\left(n^{2} d\right)$ vars/consts Approx: $\Omega(1)$
We also:

- Prove that when $d=\Omega(n)$, NP-hard to approximate

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms for general polynomial optimization (Sum-of-Squares):
Compute: SDP with $O\left(\binom{n+d}{d}\right)$ vars/consts Approx: $\Omega\left(\frac{1}{n}\right)$
Our relaxation and approximation algorithm that exploits compact representation:
Compute: SDP with $O\left(n^{2} d\right)$ vars/consts Approx: $\Omega(1)$
We also:

- Prove that when $d=\Omega(n)$, NP-hard to approximate
- Introduce higher-degree relaxations that trade off computation with approximation quality

Our Contributions

Using semidefinite programming (SDP) based approximation algorithms for general polynomial optimization (Sum-of-Squares):
Compute: SDP with $O\left(\binom{n+d}{d}\right)$ vars/consts Approx: $\Omega\left(\frac{1}{n}\right)$
Our relaxation and approximation algorithm that exploits compact representation:
Compute: SDP with $O\left(n^{2} d\right)$ vars/consts Approx: $\Omega(1)$
We also:

- Prove that when $d=\Omega(n)$, NP-hard to approximate
- Introduce higher-degree relaxations that trade off computation with approximation quality
- Exhibit integrality gap instances that show our analysis of our SDP based relaxation is tight

Semidefinite Relaxation

Semidefinite Relaxation

$\max _{\|\times\|=1} \prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d}$

$$
\begin{aligned}
& \begin{array}{l}
\max _{X} \prod_{i=1}^{d}\left\langle X, A_{i}\right\rangle^{1 / d} \\
\text { s.t. } \operatorname{Tr}(X)=1, X \succeq 0
\end{array} \longleftrightarrow \text { dual } \begin{array}{l}
\min _{\lambda, \alpha} \lambda \\
\text { s.t. } \frac{1}{d} \sum_{i=1}^{d} \alpha_{i} A_{i} \preceq \lambda / \quad \text { (OPTSDP) }
\end{array} \\
& \prod_{i} \alpha_{i} \geq 1, \alpha_{i}>0 \\
& \text { (OptSDP) }
\end{aligned}
$$

Theorem

Let $r=\operatorname{rank}\left(X^{*}\right) \leq n, \gamma$ be Euler's constant, ϕ be digamma function

$$
c_{r}(\mathbb{K}) \mathrm{OptSDP} \leq \mathrm{OPT} \leq \mathrm{OptSDP}
$$

Semidefinite Relaxation

$$
\begin{equation*}
\max _{\|x\|=1} \prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d} \tag{Орт}
\end{equation*}
$$

$$
\begin{aligned}
& \max _{X} \prod_{i=1}^{d}\left\langle X, A_{i}\right\rangle^{1 / d} \\
& \text { s.t. } \operatorname{Tr}(X)=1, X \succeq 0
\end{aligned} \stackrel{\text { dual }}{\longleftrightarrow} \begin{gathered}
\min _{\lambda, \alpha} \lambda \\
\text { s.t. } \frac{1}{d}
\end{gathered}
$$

Theorem

Let $r=\operatorname{rank}\left(X^{*}\right) \leq n, \gamma$ be Euler's constant, ϕ be digamma function

$$
\begin{gathered}
c_{r}(\mathbb{K}) \text { OPTSDP } \leq \text { OPT } \leq \text { OPTSDP } \\
c_{r}(\mathbb{K})= \begin{cases}\exp \left(-\gamma-\log 2-\phi\left(\frac{r}{2}\right)+\log \left(\frac{r}{2}\right)\right)>0.2807 & \text { if } \mathbb{K}=\mathbb{R} \\
\exp (-\gamma-\phi(r)+\log (r))>0.5614 & \text { if } \mathbb{K}=\mathbb{C}\end{cases}
\end{gathered}
$$

Proof Sketch

Rounding algorithm: Given optimum X^{*}, produce unit vector \hat{x} by:

Proof Sketch

Rounding algorithm: Given optimum X^{*}, produce unit vector \hat{x} by:

- Sample $x \sim N\left(0, X^{*}\right)$
- Normalize $\hat{x}=x /\|x\|$

Proof Sketch

Rounding algorithm: Given optimum X^{*}, produce unit vector \hat{x} by:

- Sample $x \sim N\left(0, X^{*}\right)$
- Normalize $\hat{x}=x /\|x\|$

Lower bound expected value of objective:

$$
\begin{aligned}
\text { OPT } & \geq \mathbb{E}\left[\prod_{i=1}^{d}\left\langle\hat{x}, A_{i} \hat{x}\right\rangle^{1 / d}\right] \\
& =\mathbb{E}\left[\exp \left(\frac{1}{d} \sum_{i=1}^{d} \log \left\langle\hat{x}, A_{i} \hat{x}\right\rangle\right)\right] \\
& \geq \exp \left(\frac{1}{d} \sum_{i=1}^{d} \mathbb{E}\left[\log \left\langle\hat{x}, A_{i} \hat{x}\right\rangle\right]\right) \\
& \geq c_{r}(\mathbb{K}) \operatorname{OPTSDP}
\end{aligned}
$$

Application: convex hull of image of quadratic map

Let $\varphi(x): \mathbb{K}^{n} \rightarrow \mathbb{K}^{d}$ be a quadratic map: $x \mapsto\left(\left\langle x, A_{1} x\right\rangle, \ldots,\left\langle x, A_{d} x\right\rangle\right)$

Application: convex hull of image of quadratic map

Let $\varphi(x): \mathbb{K}^{n} \rightarrow \mathbb{K}^{d}$ be a quadratic map: $x \mapsto\left(\left\langle x, A_{1} x\right\rangle, \ldots,\left\langle x, A_{d} x\right\rangle\right)$
When is $\varphi\left(\mathbb{K}^{n}\right)$ convex? (always true for $d=2$, not in general)

Application: convex hull of image of quadratic map

Let $\varphi(x): \mathbb{K}^{n} \rightarrow \mathbb{K}^{d}$ be a quadratic map: $x \mapsto\left(\left\langle x, A_{1} x\right\rangle, \ldots,\left\langle x, A_{d} x\right\rangle\right)$
When is $\varphi\left(\mathbb{K}^{n}\right)$ convex? (always true for $d=2$, not in general)
How far is $\varphi\left(\mathbb{K}^{n}\right)$ from $\operatorname{conv}\left(\varphi\left(\mathbb{K}^{n}\right)\right)$? Measure relative entropy distance between intersection of these cones and the simplex Δ_{d}

Application: convex hull of image of quadratic map

Let $\varphi(x): \mathbb{K}^{n} \rightarrow \mathbb{K}^{d}$ be a quadratic map: $x \mapsto\left(\left\langle x, A_{1} x\right\rangle, \ldots,\left\langle x, A_{d} x\right\rangle\right)$
When is $\varphi\left(\mathbb{K}^{n}\right)$ convex? (always true for $d=2$, not in general)
How far is $\varphi\left(\mathbb{K}^{n}\right)$ from $\operatorname{conv}\left(\varphi\left(\mathbb{K}^{n}\right)\right)$? Measure relative entropy distance between intersection of these cones and the simplex Δ_{d}

Theorem

Let $a \in \operatorname{conv}\left(\varphi\left(\mathbb{K}^{n}\right)\right) \cap \Delta_{d}$. Then there exists a point $b \in \varphi\left(\mathbb{K}^{n}\right) \cap \Delta_{d}$ such that

$$
D(a \| b)=\sum_{i=1}^{d} a_{i} \ln \left(\frac{a_{i}}{b_{i}}\right) \leq \log \left(c_{r}(\mathbb{K})\right)
$$

Proved by Barvinok (2014) for a larger constant, our analysis gives asymptotically optimal constant

Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If $\prod_{i} \alpha_{i}=1$,

$$
\prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d} \leq x^{T}\left(\frac{1}{d} \sum_{i=1}^{d} \alpha_{i} A_{i}\right) x
$$

Can we get a better bound with a higher-degree polynomial on the RHS?

Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If $\prod_{i} \alpha_{i}=1$,

$$
\prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d} \leq x^{T}\left(\frac{1}{d} \sum_{i=1}^{d} \alpha_{i} A_{i}\right) x
$$

Can we get a better bound with a higher-degree polynomial on the RHS?
Let E_{k} be elementary symmetric polynomials:

$$
E_{k}\left(y_{1}, \ldots, y_{d}\right)=\binom{d}{k}^{-1} \sum_{I \subseteq[d],|| |=k} \prod_{i \in I} x_{i}
$$

Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If $\prod_{i} \alpha_{i}=1$,

$$
\prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d} \leq x^{T}\left(\frac{1}{d} \sum_{i=1}^{d} \alpha_{i} A_{i}\right) x
$$

Can we get a better bound with a higher-degree polynomial on the RHS?
Let E_{k} be elementary symmetric polynomials:

$$
E_{k}\left(y_{1}, \ldots, y_{d}\right)=\binom{d}{k}^{-1} \sum_{I \subseteq[d],|| |=k} \prod_{i \in I} x_{i}
$$

Maclaurin's inequality:

$$
\left(y_{1} \cdots y_{d}\right)^{1 / d}=E_{d}^{1 / d} \leq E_{d-1}^{1 /(d-1)} \leq \cdots \leq E_{2}^{1 / 2} \leq E_{1}=\frac{y_{1}+\cdots+y_{d}}{d}
$$

Higher-order Relaxations

OptSDP constructed using AM/GM inequality. If $\prod_{i} \alpha_{i}=1$,

$$
\prod_{i=1}^{d}\left\langle x, A_{i} x\right\rangle^{1 / d} \leq x^{T}\left(\frac{1}{d} \sum_{i=1}^{d} \alpha_{i} A_{i}\right) x
$$

Can we get a better bound with a higher-degree polynomial on the RHS?
Let E_{k} be elementary symmetric polynomials:

$$
E_{k}\left(y_{1}, \ldots, y_{d}\right)=\binom{d}{k}^{-1} \sum_{I \subseteq[d],|| |=k} \prod_{i \in I} x_{i}
$$

Maclaurin's inequality:

$$
\left(y_{1} \cdots y_{d}\right)^{1 / d}=E_{d}^{1 / d} \leq E_{d-1}^{1 /(d-1)} \leq \cdots \leq E_{2}^{1 / 2} \leq E_{1}=\frac{y_{1}+\cdots+y_{d}}{d}
$$

Use Sum-of-Squares to construct relaxations OPTSoS_{k} for $1 \leq k \leq d$

$$
\mathrm{OPT} \leq \mathrm{OptSDP}^{2}=\mathrm{OptSoS}_{1} \leq \mathrm{OPTSoS}_{d}
$$

Trades off computation for accuracy

Example: Icosahedral form

Let ψ be golden ratio, C chosen so that $\max _{x^{2}+y^{2}+z^{2}=1} p(x, y, z)=1$.

$$
p(x, y, z)=C[(x+\psi y)(x-\psi y)(y+\psi z)(y-\psi z)(z+\psi x)(z-\psi x)]^{2}
$$

Example: Icosahedral form

Let ψ be golden ratio, C chosen so that $\max _{x^{2}+y^{2}+z^{2}=1} p(x, y, z)=1$.

$$
p(x, y, z)=C[(x+\psi y)(x-\psi y)(y+\psi z)(y-\psi z)(z+\psi x)(z-\psi x)]^{2}
$$

Hard instance because of high degree of symmetry!

Example: Icosahedral form

Let ψ be golden ratio, C chosen so that $\max _{x^{2}+y^{2}+z^{2}=1} p(x, y, z)=1$. $p(x, y, z)=C[(x+\psi y)(x-\psi y)(y+\psi z)(y-\psi z)(z+\psi x)(z-\psi x)]^{2}$

Hard instance because of high degree of symmetry!
We implement a randomized rounding algorithm to obtain feasible solution from relaxations OptSoS_{k}

Distribution sampled from rounding algorithm

Distribution concentrates towards optima as k increases

Conclusion

Takeaways:

- Product of PSD forms has nice structure and generalizes many problems
- Exploiting product structure allows us to write a computationally efficient relaxation with good approximation guarantees

Conclusion

Takeaways:

- Product of PSD forms has nice structure and generalizes many problems
- Exploiting product structure allows us to write a computationally efficient relaxation with good approximation guarantees

Future work:

- Low-rank guarantees of solution from symmetry
- How to generate intermediate Sum-of-Squares relaxations for other high degree polynomial optimization problems?

