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Some historical developments in noncommutative
convexity

A unital operator system is a closed unital self-adjoint subspace of a
C*-algebra (1 ∈ S = S∗ ⊆ A for some A).

(Arveson 1969, 1972, 1998): Considers unital operator systems as
noncommutative analogues of function systems (categorically dual to
compact convex sets). Proves his extension theorem and conjectures
existence of analogue of Choquet boundary for operator systems.

(Wittstock 1981): Introduces notion of matrix convex set.

(Effros-Winkler 1997): Establishes analogue of Hahn-Banach separation
theorem for matrix convex sets.

(Webster-Winkler 1999): Establishes dual equivalence between category of
unital operator systems and category of matrix convex sets.

(Arveson 2007, DK 2015): Proof of existence of Choquet boundary of an
operator system.



Subsequently: Major developments in operator spaces/systems.
Interesting examples of matrix convex sets arising from e.g.
noncommutative real algebraic geometry (Helton-McCullough et al.). But
also serious issues e.g. (provably) no good notion of extreme point for
matrix convex sets.

Today: Discuss refined notion of nc convex set, existence of extreme
points, categorical equivalence between nc convex sets and operator
systems (both unital and non-unital case), nc function theory,
noncommutative Choquet theory and some application, including to
Drury-Arveson space.



Classical (dual) equivalence of categories:

Unital commutative C*-algebras
with unital*-homomorphisms

Compact Hausdorff spaces
with continuous maps

C(X ) ←→ X = Ω(C(X ))

A unital function system (archimedean order unit space) is a closed
unital self-adjoint subspace of a commutative C*-algebra
(1 ∈ F = F ∗ ⊆ C(X ) for some X ).

Theorem (Kadison 1951)

A unital function system F with state space K is unitally order isomorphic
to the function system A(C ) of continuous affine functions on C = S(F ).

Function systems
with unital order homomorphisms

Compact convex sets
with continuous affine maps

A(C ) ←→ K = S(A(C ))



Noncommutative convex sets

Let S be a unital operator system (i.e. 1 ∈ S = S∗ ⊆ A).

Definition
The nc state space of S is K =

∐
n≤κ Kn,

Kn = {x : A→ Mn unital completely positive},

for a suitably large infinite cardinal κ (if S is separable then can take
κ = ℵ0).

Refines notion of matrix convex set where n <∞. Subtle but extremely
important difference.

Note: each Kn is compact in the point-weak* topology and K is closed
under nc convex combinations:∑

α∗i xiαi ∈ Kn

for xi ∈ Kni and αi ∈ Mn,ni satisfying
∑
α∗i αi = 1n.



Definition (DK2019)

A compact nc convex set over a dual operator space E is a graded set
K =

∐
n≤κ Kn with Kn ⊆ Mn(E ) such that each Kn is compact in the dual

topology on Mn(E ) and K is closed under nc convex combinations:∑
α∗i xiαi ∈ Kn

for xi ∈ Kni and αi ∈ Mn,ni satisfying
∑
α∗i αi = 1n.

Example

The nc d-ball K =
∐

n≤ℵ0 Kn, consisting of “row contractions,”

Kn = {α = (α1, . . . , αd) ∈ Md
n : ‖(α1, . . . , αd)‖ ≤ 1}.

Let Od = C∗(v1, . . . , vd) denote the Cuntz algebra. Then K is the nc
state space of the Cuntz operator system

span{1, v1, v∗1 . . . , vn, v∗n }.



Noncommutative functions

For a unital operator system S with nc state space K =
∐

Kn, an element
a ∈ S gives rise to a function â : K →

∐
Mn,

â(x) = x(a), x ∈ K .

The function â is graded, respects direct sums and is equivariant with
respect to isometries:

1. â(Kn) ⊆ Mn for all n

2. â(⊕xi ) = ⊕â(xi ) for all xi ∈ Kni

3. â(α∗xα) = α∗â(x)α for all x ∈ Kn and isometries α ∈ Mn,m



Definition (DK2019)

Let K be a compact nc convex set. A function f : K →
∐

Mn is an nc
function if it is graded, respects direct sums and is equivariant with
respect to unitaries:

1. f (Kn) ⊆ Mn for all n

2. f (⊕xi ) = ⊕f (xi ) for all xi ∈ Kni

3. f (α∗xα) = α∗f (x)α for all x ∈ Kn and unitaries α ∈ Mn

The function f is affine if in addition it is equivariant with respect to
isometries:

3’. f (β∗xβ) = β∗f (x)β for all x ∈ Kn and isometries α ∈ Mn,m

Analogous to notion of nc holomorphic function on nc domain defined by
Taylor (1973) and Voiculescu (2000).



We write C(K ) for the C*-algebra of continuous nc functions on K , A(K )
for the unital operator system of continuous affine nc functions on K .
Elements in C(K ) are “uniform” limits of nc *-polynomials in A(K ).

For a1, a2, a3 ∈ A(K ), define f ∈ C (K ) to be the nc polynomial

f = a1a22a∗3 − a1a∗3a22.

Then for x ∈ Kn,

f (x) = a1(x)a22(x)a3(x)∗ − a1(x)a3(x)∗a22(x)

= x(a1)x(a2)x(a2)x(a3)∗ − x(a1)x(a3)∗x(a2)x(a2) ∈ Mn.

Theorem (DK 2019)

We have
C (K ) = C∗(A(K )) ∼= C∗max(A(K )),

where C∗max(A(K )) is the maximal C*-cover of A(K ). Moreover, C (K )∗∗ is
the C*-algebra of bounded nc functions on K.

Proof uses noncommutative Gelfand representation theorem of Takesaki
(1967) and Bichteler (1969).



Categorical (dual) equivalence

Theorem (DK 2019, Webster-Winkler 1999)

A unital operator system with nc state space K is unitally completely order
isomorphic to the operator system A(K ). The category of unital operator
systems with unital completely positive maps is (dually) equivalent to the
category of compact nc convex sets with continuous affine nc maps:

A(K ) ←→ K



More generally, can consider generalized (i.e. potentially non-unital)
operator systems of Werner (2002) and Connes-van Suijlekom (2020).

A (generalized) operator system is a closed self-adjoint subspace of a
C*-algebra (i.e. S = S∗ ⊆ A).

Definition
The nc quasistate space of S is the pair (K , z), where K =

∐
n≤κ Kn,

Kn = {x : A→ Mn contractive completely positive},

and z ∈ K1 is the zero map.

A pair (K , z) consisting of a compact nc convex set K and a point z ∈ K1
is pointed if (K , z) is the nc quasistate space of the operator system
A(K , z) ⊆ A(K ) of functions that vanish at z .

Theorem (KKM 2021)

An operator system with nc quasistate space (K , z) is isomorphic
(completely isometric and completely order isomorphic) to the operator
system A(K , z). The category of operator systems with completely
positive maps is (dually) equivalent to the category of pointed compact nc
convex sets with continuous pointed affine nc maps:

A(K , z) ←→ (K , z)



Extreme points

There is a robust notion of extreme point for compact nc convex sets.

Theorem (DK 2019)

A compact nc convex set is the closed nc convex hull of its extreme points.

Extreme points are dual to Arveson’s notion of boundary representation of
a unital operator system. Proof of existence is difficult (DK 2019, DK
2015, Arveson 2007).

Example

Let K be the nc d-ball, i.e. the nc state space of the Cuntz operator
system

span{1, v1, v∗1 . . . , vn, v∗n }.
The extreme points ∂K are irreducible “cuntz isometries” corresponding to
irreducible representations of Od . Note: ∂K ⊆ Kℵ0 .

More generally, if S is a unital operator system with nc state space K and
A = C∗(S), then ∂K can be identified with an (often very complicated)
subset of the irreducible representations of A.



Review of some classical Choquet theory

Classical Choquet theory: the study of compact convex sets C via the
interplay between A(C ) and C(C ).



Let C be a compact convex set. A probability measure
µ ∈ P(C ) = S(C(C )) represents a point x ∈ C if µ|A(C) = δx . Hence

x =

∫
C

y dµ(y).

Theorem (Choquet 1956, Bishop-de Leeuw 1959)

Let C be a compact convex set. For x ∈ C there is a probability measure
µ on C that represents x and is maximal in the Choquet order:

µ ≺ ν ⇐⇒ µ(f ) ≤ ν(f ) for all convex f ∈ C (C )sa.

Maximality in Choquet order is an order-theoretic condition equivalent to
supp(µ) ⊆ ∂C when C is metrizable (and in an appropriate sense more
generally).



Definition
A compact convex set C is a (Choquet) simplex if there is a unique
representing probability measure µx ∈ C (C )∗ for each x ∈ K that is
maximal in the Choquet order.

Intuition: C is a simplex if every point in C can be uniquely expressed as
a convex combination of extreme points of C .

For C ⊆ Rd , Caratheodory’s theorem implies there are finitely supported
Choquet maximal representing measures for x ∈ C ,

µ =
n∑

i=1

αiδxi ⇐⇒ x =
n∑

i=1

αixi ,

and the above statement is literally true.



Application 1: State spaces of unital commutative C*-algebras

A simplex C is a Bauer simplex if it has closed extreme boundary ∂C .

Theorem (Bauer 1963)

A function system A(C ) is a C*-algebra if and only if C is a Bauer simplex.

The d-simplex is unique up to affine homeomorphism. Hence there is a
unique commutative C*-algebra of dimension d + 1, namely Cd+1.

More generally, C is a Bauer simplex if and only if it is affinely
homeomorphic to the space of probability measures P(X ) on a compact
Hausdorff space X , i.e. K is the state space of C (X ). So Bauer’s theorem
implies Gelfand’s representation theorem.



Application 2: Dynamical characterization of property (T)

Theorem (Glasner-Weiss 1997)

A group G has property (T) if and only if for every flow (X ,G ), the set
P(X )G of invariant probability measures is a Bauer simplex.

By Bauer’s theorem, equivalent to the statement that G has property (T)
if and only if for every commutative C*-dynamical system (C (X ),G ), the
set P(X )G of invariant states is the state space of (some) commutative
C*-algebra.





Noncommutative Choquet theory

Noncommutative Choquet theory: the study of K or A(K ) via the
interplay between A(K ) and C (K ).





Definition
A self-adjoint nc function f ∈ C (K ) is convex if its epigraph

Epi(f ) =
∐
n

{(x , α) : f (x) ≤ α} ⊆
∐
n

Kn ×Mn

is an nc convex set.

Equivalently, f (α∗xα) ≤ α∗f (x)α for all x ∈ K and all isometries α.

Example

Let I ⊆ R be a compact interval. Define K =
∐

Kn by

Kn = {α ∈ (Mn)sa : σ(α) ⊆ I}.

Then K is a compact nc convex set with K1 = I . A self-adjoint function
f ∈ C (K ) is convex as an nc function iff the restriction f |K1 is operator
convex, i.e.

f (tα + (1− t)β) ≤ tf (α) + (1− t)f (β)

for t ∈ [0, 1] and self-adjoint α, β ∈ Mn with σ(α), σ(β) ⊆ I .

Essentially the Hansen-Pedersen-Jensen inequality.



An nc state µ : C (K )→ Mn represents a point x ∈ K if µ|A(K) = δx , i.e.

µ(a) = a(x), for all a ∈ A(K).

Theorem (NC Choquet-Bishop-de Leeuw - DK 2019)

For x ∈ K there is an nc state µ : C (K )→ Mn that represents x and is
maximal in the nc Choquet order:

µ ≺nc ν ⇐⇒ µ(f ) ≤ ν(f ) for all convex f ∈ C (K )sa.

Theorem (DK 2019)

Maximality in the nc Choquet order implies that supp(µ) ⊆ ∂K in an
appropriate sense.



Theorem (Noncommutative integral representation -
DK 2019)

For x ∈ K there is a nc probability measure λ on K that represents x and
is supported on ∂K, meaning that

a(x) =

∫
K

a dλ, for all a ∈ A(K ).

Idea: An nc measure is a cp map valued measure. For f ∈ C (K ) and an
nc measure λ on K , ∫

K

f dλ ≈
∑
x∈K

λ(x)(f (x)).

More generally, obtain integral representations of nc states on C (K ).
Applies to e.g. ucp maps on C*-algebras.



Noncommutative Choquet simplices



Definition
A compact nc convex set K is an nc (Choquet) simplex if each point
x ∈ K has a unique nc state µx : C(K )→ Mn that represents it and is
maximal in the nc Choquet order.

Intuition: K is an nc simplex if every point in K can be uniquely
expressed as an nc convex combination of extreme points of K .

Theorem (KS 2019)

If C is a (classical) simplex, then there is a unique nc convex set K with
K1 = C and K is an nc simplex.

Hence generalizes classical simplices.



Theorem (KS 2019)

The following are equivalent for a compact nc convex set K:

1. K is an nc Choquet simplex

2. A(K )∗∗ is a von Neumann algebra, i.e. A(K ) is a C*-system in the
terminology of Kirchberg-Wassermann

3. A(K ) is (c,max)-nuclear in the sense of
Kavruk-Paulsen-Todorov-Tomforde, i.e.

A(K )⊗c S = A(K )⊗max S

for every operator system S .

Generalization of the fact that a compact convex set C is a simplex if and
only if A(C )∗∗ is a von Neumann algebra.

Corollary (KS 2019)

Let S be an operator system with nc state space K . If S is a C*-algebra or
has the weak expectation property (in particular if it is nuclear) then K is
an nc simplex.



Application 1: State spaces of C*-algebras

Definition
A nc Choquet simplex K is an nc Bauer simplex if ∂K is closed.

Theorem (KKM 2021, KS 2019)

1. A compact nc convex set K is affinely homeomorphic to the nc state
space of a unital C*-algebra if and only if it is an nc Bauer simplex.

2. A pointed compact nc convex set (K , z) is affinely homeomorphic ot
the nc quasistate space of a C*-algebra if and only if K is an nc
Bauer simplex and z ∈ ∂K.

Compare to (deep) characterization of state spaces of C*-algebras by
Alfsen-Shultz (1978) in terms of compact convex sets with an orientation.



Application 2: Noncommutative dynamical characterization of
property (T)

Theorem (KS 2019)

A group G has property (T) if and only if whenever (A,G ) is a
C*-dynamical system with nc state space K (resp. nc quasistate space
(K , z)), the set KG of invariant nc states is an nc Bauer simplex, and
hence affinely homeomorphic to the nc state space of (some) C*-algebra.

Corollary

A group G has property (T) if and only if whenever (A,G ) is a
C*-dynamical system, then the set KG

1 of invariant states (resp.
quasistates) is the state space (resp. quasistate space) of a C*-algebra.



Drury-Arveson space



Let H2
d denote the Drury-Arveson space. Let Mz = (Mz1 , . . . ,Mzd ) denote

the d-shift,
Mzi f = zi f , f ∈ H2

d .



Let K = tnKn denote the nc state space of the “Drury-Arveson operator
system” span{1,Mz1 ,M

∗
z1 , . . . ,Mzd ,M

∗
zd}.

Theorem (Arveson 1998)

The extreme points of K are ∂K = {U id U∗ : U ∈ U(H2
d )} t ∂Bd .



Write C[z] = C[z1, . . . , zd ]. Let I ≤ C[z] be an ideal. The closure M = I
in H2

d is a finitely generated C[z]-module via

p · f = Mp(z)f , f ∈ M.

Let S = (S1, . . . ,Sd) denote the compression of Mz = (Mz1 , . . . ,Mzd ) to
H2

d 	M. Let S = span{1,S1,S
∗
1 , . . . ,Sd ,S

∗
d } and let L denote the nc

state space of S.

Theorem (K-Shalit 2015)

The extreme points of L satisfy

∂L ⊆ {U id U∗ : U ∈ U(H2
d )} t ∂V ,

where ∂V = Z (I ) ∩ ∂Bd .

Question
Is this an equality?



Motivation

Theorem (K-Shalit 2015)

The C[z ]-module M is essentially normal if and only if the operator system
S = span{1,S1,S

∗
1 , . . . ,Sd ,S

∗
d } is hyperrigid.

Equivalent to the statement that the restriction π|S of every representation
π of C∗(S) has a unique extension to a ucp map (which is necessarily π).

Hyperrigidity implies equality:

∂L = {U id U∗ : U ∈ U(H2
d )} t ∂V ,

Hence a negative anwer would provide a counterexample to the
Arveson-Douglas essential normality conjecture.

On the other hand, a positive answer when essential normality fails would
provide a counterexample to Arveson’s hyperrigidity conjecture



Thanks!


