Quotients of the Drury-Arveson space and their classification in terms of complex geometry

Orr Shalit (Technion)

Workshop on Drury-Arveson Space, Fields Institute November 25, 2021 Based on joint works with Davidson, Hartz, Kerr, McCarthy, Ofek, Pandey, Ramsey and Salomon.

Other contributors: Alpay, Arcozzi, Hartz, Lupini, Putinar, Rochberg, Sawyer, Vinnikov...

Related works in the setting of **noncommutative function theory**: Kakariadis, Muhly, Popescu, Salomon, Shamovich, Solel...

Recommended reading: 1) G. Salomon and O.M. Shalit, *The Isomorphism Problem for Complete Pick Algebras: A Survey*, OTAA 2016.

2) D, Ofek, S. Pandey, O.M. Shalit, *Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball*, JMAA 2021.

A corollary of Gelfand's theory

Theorem (1940s)

Let X and Y be compact Hausdorff topological spaces. The algebra C(X) is isomorphic to C(Y) if and only if $X \cong Y$. In fact, $\varphi : C(X) \to C(Y)$ is an isomorphism, then there exists a homeomorphism $\alpha : Y \to X$ such that

$$\varphi(f) = f \circ \alpha \ , \ f \in C(X)$$

Proof

Given
$$\varphi : C(X) \to C(Y)$$
.
 $\varphi^* : C(Y)^* \to C(X)^*$ by $\varphi^*(\rho) = \rho \circ \varphi$.
Key: $X \cong$ the maximal ideal space $\mathfrak{M}(C(X))$ of $C(X)$
 $X \ni x \leftrightarrow \rho_x \in \mathfrak{M}(C(X))$

 $\rho_x: f \mapsto f(x)$

 φ^* maps points of Y to points of X. $\alpha:=\varphi^*\big|_Y$ is a homeomorphism. Now compute:

$$\varphi(f)(y) = \rho_y(\varphi(f)) = \varphi^*(\rho_y)(f) = f(\alpha(y))$$

Thus $\varphi(f) = f \circ \alpha$. (The converse is obvious.)

Our interest: classification results in this spirit for other algebras — quotients of the multiplier algebra of Drury-Arveson space.

Quotients of H_d^2 and of $Mult(H_d^2)$

Drury-Arveson space and its quotients

The Drury-Arveson space H_d^2 is the Hilbert function space on \mathbb{B}_d with kernel $k(z, w) = k_w(z) = (1 - \langle z, w \rangle)^{-1}$. The multiplier algebra is

$$\mathcal{M}_d := \operatorname{Mult}(H_d^2) = \{ f : \mathbb{B}_d \to \mathbb{C} : fh \in H_d^2 \text{ for all } h \in H_d^2 \}$$

Quotients of H_d^2

A variety in \mathbb{B}_d is the zero set of multipliers, i.e. a set of the form

$$V = \{ z \in \mathbb{B}_d : f(z) = 0 \text{ for all } f \in F \} \qquad (\text{for some } F \subseteq \mathcal{M}_d)$$

A quotient of H_d^2 is a subspace of the form

$$\mathcal{H}_V = \overline{\operatorname{span}}\{k_\lambda : \lambda \in V\} = H_d^2 \ominus K_V \cong H_d^2/K_V$$

where $K_V = \{h \in H_d^2 : h(z) = 0 \text{ for all } z \in V\}.$

Quotients of H_d^2 and of $Mult(H_d^2)$

Quotients of $Mult(H_d^2)$

Quotients of \mathcal{M}_d

A quotient of \mathcal{M}_d is an algebra of the form

$$\mathcal{M}_V = \mathcal{M}_d \big|_V := \{f \big|_V : f \in \mathcal{M}_d\}$$

Fact: \mathcal{M}_V is an operator algebra and

$$\mathcal{M}_V = \operatorname{Mult}(\mathcal{H}_V) \cong \mathcal{M}_d/J_V$$

where $J_V = \{ f \in \mathcal{M}_d : f(z) = 0 \text{ for all } z \in V \}.$

Theorem (Agler-McCarthy 2000)

Every irreducible complete Pick space is (up to rescaling) of the form \mathcal{H}_V for some (multiplier) variety $V \subset \mathbb{B}_d$ and for some $d \in \mathbb{N} \cup \{\infty\}$. Every multiplier algebra of an irreducible Pick space is of the form \mathcal{M}_V .

The isomorphism problem for \mathcal{M}_V

We are interested in the analogue of Gelfand's theorem for the quotient spaces \mathcal{H}_V and quotient algebras $\mathcal{M}_V = \operatorname{Mult}(H_d^2)|_V = \operatorname{Mult}(\mathcal{H}_V)$.

Problem A

Let $V \subset \mathbb{B}_d$ be a variety. How does the **geometry** of V determine the **structure** of \mathcal{M}_V ?

More concretely:

Problem B

Let $V, W \subset \mathbb{B}_d$ be two varieties. When are \mathcal{M}_V and \mathcal{M}_W isomorphic? Isometrically isomorphic? Completely Isometrically isomorphic? Similar/unitarily equivalent?

(Note: these algebras are semisimple, so algebraic isomorphisms are automatically bounded.)

The maximal ideal space of \mathcal{M}_V

 $\mathfrak{M}(\mathcal{M}_V)$ is usually huge (think about $H^{\infty} = \mathcal{M}_{\mathbb{D}}$). Let

$$\pi:\mathfrak{M}(\mathcal{M}_V)\to\overline{\mathbb{B}}_d$$

$$\pi(\rho) = (\rho(z_1), \rho(z_2), \dots, \rho(z_d)) \in \overline{\mathbb{B}}_d$$

For every $\lambda \in V$, there exists $\rho_{\lambda} \in \pi^{-1}(\lambda)$ given by

$$\rho_{\lambda}(f) = f(\lambda)$$

Note:

$$\pi(\rho_{\lambda}) = (\lambda_1, \lambda_2, \dots, \lambda_d) = \lambda$$

We identify $V \subset \mathfrak{M}(\mathcal{M}_V)$ — that's what we can see.

The maximal ideal space of \mathcal{M}_V

Theorem (Davidson-Pitts 1998, Davdison-Ramsey-S)

There is a continuous projection $\pi : \mathfrak{M}(\mathcal{M}_V) \to \overline{\mathbb{B}_d}$ given by

$$\pi(\rho) = (\rho(z_1), \rho(z_2), \dots, \rho(z_d)) \ , \ \rho \in \mathfrak{M}(\mathcal{M}_V).$$

For $\lambda \in V$ there is a unique weak-* continuous $\rho_{\lambda} \in \pi^{-1}(\lambda)$ given by $\rho_{\lambda}(f) = f(\lambda)$. Every weak-* continuous character arises this way. If $d < \infty$, then

$$\pi(\mathfrak{M}(\mathcal{M}_V)) \cap \mathbb{B}_d = V, \tag{1}$$

$$\pi^{-1}(\lambda) = \{\rho_{\lambda}\}, \text{ for all } \lambda \in V.$$
(2)

If $d = \infty$, then (1) or (2) may fail.

Isometric isomorphism = "conformal" equivalence

Theorem (Davidson-Ramsey-S 2015)

Let $V, W \subset \mathbb{B}_d$ be varieties, $d < \infty$. The following assertions are equivalent:

- (i) \mathcal{M}_V and \mathcal{M}_W are unitarily equivalent.
- (ii) \mathcal{M}_V and \mathcal{M}_W are (completely) isometrically isomorphic.
- (iii) There exists a biholomorphic automorphism $\alpha \in Aut(\mathbb{B}_d)$ such that

$$\alpha(W) = V$$

Proof: (i) \Rightarrow (ii) is immediate.

Proof (cont'd): (ii) \Rightarrow (iii): IF φ^* maps point evaluation at λ to point evaluation at μ , then

$$\varphi(z_i)(\lambda) = \rho_\lambda \circ \varphi(z_i) = \varphi^*(\rho_\lambda)(z_i) = \rho_\mu(z_i) = \mu_i$$

Thus $\mu = (\varphi(z_1)(\lambda), \dots, \varphi(z_d)(\lambda)) =: \alpha(\lambda)$ where $\alpha = (\varphi(z_1), \dots, \varphi(z_d))$. α is analytic on \mathbb{B}_d , and $\alpha(W) \subseteq V$. Using complete contractivity + invertibility + SCV one gets $\alpha \in \operatorname{Aut}(\mathbb{B}_d)$ and $\alpha(W) = V$.

We show φ^* preserves point evaluations using a mixture of operator algebras and SCV techniques.

(iii)
$$\Rightarrow$$
 (i): We write down a unitary $U:\mathcal{H}_W
ightarrow\mathcal{H}_V$

$$Uk_{\lambda} = c_{\lambda}k_{\alpha(\lambda)}$$

and this unitary implements an isomorphism between \mathcal{M}_V and \mathcal{M}_W . Note that the proof passes through $\mathcal{H}_V \cong \mathcal{H}_W$.

Algebraic isomorphism for homogeneous varieties

For homogeneous varieties* in $d<\infty$

algebraic isomorphism = biholomorphic equivalence

Theorem (Davidson-Ramsey-S 2011, Hartz 2012)

Let $V, W \subset \mathbb{B}_d$ be homogeneous varieties with $d < \infty$. Then the following are equivalent:

- (i) \mathcal{M}_V and \mathcal{M}_W are similar $(\exists T \in B(\mathcal{H}_V, \mathcal{H}_W).\mathcal{M}_V = T^{-1}\mathcal{M}_WT).$
- (ii) \mathcal{M}_V and \mathcal{M}_W are isomorphic.
- (iii) V and W are biholomorphically equivalent.
- (iv) There is an invertible linear map on \mathbb{C}^d which maps V onto W.

* - A homogeneous variety is the common vanishing locus of homogeneous polynomials e.g. $p(z) = z_1 z_2 + z_3^2$.

Theorem (Davidson-Ramsey-S 2011, Hartz 2012)

Let $V, W \subset \mathbb{B}_d$ be homogeneous varieties with $d < \infty$. Then the following are equivalent:

- (i) \mathcal{M}_V and \mathcal{M}_W are similar $(\exists T \in B(\mathcal{H}_V, \mathcal{H}_W).\mathcal{M}_V = T^{-1}\mathcal{M}_W T).$
- (ii) \mathcal{M}_V and \mathcal{M}_W are isomorphic.
- (iii) V and W are biholomorphically equivalent.

(iv) There is an invertible linear map on \mathbb{C}^d which maps V onto W.

Proof: (i) \Rightarrow (ii) is immediate.

(ii) \Rightarrow (iii): As in isometric case, we show that φ^* preserves weak-* continuous characters (but different argument).

(iii) \Rightarrow (iv): Use elementary several complex variables.

(iv) \Rightarrow (i): If $A: V \rightarrow W$, define $T: k_{\lambda} \mapsto k_{A\lambda}$.

One shows that T extends to a bounded isomorphism $\mathcal{H}_V \to \mathcal{H}_W$ (this is difficult! Call Michael Hartz...).

Note that here too the proof passes through $\mathcal{H}_V \cong_w \mathcal{H}_W$.

Some results

Algebraic isomorphism \Rightarrow biholomorphic equivalence

Theorem (Davidson-Ramsey-S 2015)

Let $V, W \subset \mathbb{B}_d$ be varieties in \mathbb{B}_d with $d < \infty$ which are the union of finitely many irreducible varieties and a discrete variety. If \mathcal{M}_V and \mathcal{M}_W are isomorphic, then V and W are biholomorphic.

Questions

1. What about the converse?

2. Are the technical conditions (finite union of irreducibles, $d < \infty$) really needed?

A positive result for discs

Theorem (Alpay-Putinar-Vinnikov 2003)

Let $\alpha : \mathbb{D} \to V \subset \mathbb{B}_d$ be a biholomorphism, $d < \infty$. If

- (1) α extends to an injective C^2 function on $\overline{\mathbb{D}}$,
- (2) $\alpha'(z) \neq 0$ for $z \in \overline{\mathbb{D}}$,
- (3) $||\alpha(z)|| = 1$ if and only if |z| = 1, and

Then \mathcal{M}_V is isomorphic to $H^{\infty}(\mathbb{D})$. In fact $\mathcal{M}_V = H^{\infty}(V)$.

Extended to planar domains (in place of \mathbb{D}) by Arcozzi-Rochberg-Sawyer (2008), and to finite (open) Riemann surfaces by Kerr-McCarthy-S (2013).

An application

Let $\alpha : \mathbb{D} \to V \subset \mathbb{B}_d$ be a biholomorphism, $d < \infty$. By [APV03]

$$H^{\infty}(V) = \mathcal{M}_V := \operatorname{Mult}(H_d^2)|_V$$

Corollary (Alpay-Putinar-Vinnikov 2003)

Let $\alpha : \mathbb{D} \to V \subset \mathbb{B}_d$ be a biholomorphism as in the theorem. Then for every $f \in H^{\infty}(V)$ there exists $\tilde{f} \in \text{Mult}(H^2_d)$ such that $\tilde{f}|_V = f$.

One also has control on the multiplier norm of \tilde{f} . Since $\operatorname{Mult}(H_d^2) \subsetneq H^{\infty}(\mathbb{B}_d)$, this is sharpening of Henkin's difficult and deep extension theorem in the one dimensional case.

Kerr-McCarthy-S generalized this to "nice" one-dimensional varieties in the unit ball.

A negative result for discs

Theorem (Davidson-Hartz-S 2015)

There exists a rational function α mapping \mathbb{D} onto $V \subset \mathbb{B}_2$ with poles outside $\overline{\mathbb{D}}$ as in the Alpay-Putinar-Vinnikov theorem, except for $\alpha(1) = \alpha(-1)$. In this case, \mathcal{M}_V is not isomorphic to H^{∞} , and $\alpha^{-1} \notin \mathcal{M}_V$.

So the answer to the question whether $\mathcal{M}_V \simeq H^\infty$ for V an analytic disc is **no**, even when $d < \infty$. In other words

 $biholomorphism \not\Rightarrow isomorphism$

To understand what's really going on we need some more definitions...

Automorphisms of \mathbb{B}_d and the pseudohyperbolic distance

For $w \in \mathbb{B}_d$

$$\Psi_w(z) = \frac{w - P_w z - (1 - \|w\|^2)^{1/2} P_w^{\perp} z}{1 - \langle z, w \rangle}$$

is a holomorphic automorphism of the ball that maps w to 0 and 0 to w. Here P_w is the projection onto the span of w and $P_w^{\perp} = I - P_w$.

The pseudohyperbolic metric $d_{\rm ph}$ on the open unit ball \mathbb{B}_d is given by

$$d_{\rm ph}(z,w) := \|\Psi_w(z)\| = \|\Psi_z(w)\|, \quad z, w \in \mathbb{B}_d$$

In particular, when d = 1, we have

$$\Psi_w(z) = \frac{w-z}{1-\overline{w}z} \text{ and } d_{\rm ph}(z,w) = \left|\frac{w-z}{1-\overline{w}z}\right|$$

A negative result for discs (revisited)

Theorem (Davidson-Hartz-S 2015)

There exists a rational function α mapping \mathbb{D} onto $V \subset \mathbb{B}_2$ with poles outside $\overline{\mathbb{D}}$ as in the Alpay-Putinar-Vinnikov theorem, except for $\alpha(1) = \alpha(-1)$. In this case, \mathcal{M}_V is not isomorphic to H^{∞} , and $\alpha^{-1} \notin \mathcal{M}_V$.

Proof: We show that if $\varphi : \mathcal{M}_V \to \mathcal{M}_W$ is an isomorphism, then $\alpha = \varphi^*$ is bi-Lipschitz w.r.t. pseudo-hyperbolic distance, that is

$$C^{-1}d_{\mathrm{ph}}(z,w) \le d_{\mathrm{ph}}(\alpha(z),\alpha(w)) \le Cd_{\mathrm{ph}}(z,w)$$

We show that such a map α is not bi-Lipschitz.

A stronger notion of biholomorphism

Definition

A multiplier biholomorphism is a biholomorphism $\alpha : V \to W$ such that the coordinates of α are in \mathcal{M}_V , and the coordinates of α^{-1} are in \mathcal{M}_W .

Theorem (Davidson-Ramsey-S 2015, Davidson-Hartz-S 2015)

Let $V, W \subset \mathbb{B}_d$ be varieties in \mathbb{B}_d with $d < \infty$ which are the union of finitely many irreducible varieties and a discrete variety. If \mathcal{M}_V and \mathcal{M}_W are isomorphic, then V and W are multiplier biholomorphic and bi-Lipschitz w.r.t. pseudo-hyperbolic distance.

Question

If V and W are multiplier biholomorphic, is \mathcal{M}_V isomorphic to \mathcal{M}_W ?

..it depends...

More recent stuff...

Noncommutative versions

Recall (from Mike Jury's series): \mathcal{H}^2_{nc} is a noncommutative RKHS with multiplier algebra

$$\operatorname{Mult}(\mathcal{H}_{nc}^2) = \mathcal{H}_{nc}^{\infty}(\operatorname{row \ ball})$$

Can consider $\mathcal{H}_{nc}^2|_V$ and $\operatorname{Mult}(\mathcal{H}_{nc}^2)|_V$ where V an nc variety.

When is $\operatorname{Mult}(\mathcal{H}_{nc}^2)|_V$ (isometrically) isomorphic to $\operatorname{Mult}(\mathcal{H}_{nc}^2)|_W$?

1) G. Salomon, O.M. Shalit and E. Shamovich, *Algebras of bounded noncommutative analytic functions on subvarieties of the noncommutative unit ball*, TAMS 2018.

2) G. Salomon, O.M. Shalit and E. Shamovich, *Algebras of* noncommutative functions on subvarieties of the noncommutative ball: The bounded and completely bounded isomorphism problem, JFA 2020.

Apologies: two different papers with same authors and similar long titles, confusing!

The new stuff...

A quantitative version of the problem

We now switch to varieties $V, W \subseteq \mathbb{B}_d$ that are finite sets of points. In this situation we have a complete answer to the question.

Theorem (DRS 2015, Rochberg 2019)

Let V, W be two finite subsets of \mathbb{B}_d .

- (i) \mathcal{M}_V is completely isometrically isomorphic to \mathcal{M}_W if and only if there is an automorphism $\Phi \in \operatorname{Aut}(\mathbb{B}_d)$ such that $\Phi(V) = W$.
- (ii) \mathcal{M}_V is isomorphic to \mathcal{M}_W if and only if there is a biholomorphism from V onto W (and this happens if and only if |V| = |W|).

Question: what happens if we move the points in (i) just a little a bit?

Quantitative versions

Distances between subsets and algebras

Recall that the Hausdorff distance between two subsets E,F in a metric space (X,d) is defined to be

$$d_H(E,F) = \max\{\max_{x\in E} d(x,F), \max_{y\in F} d(y,E)\}$$

Definition (The conformal invariant Hausdorff distance)

For $V, W \subseteq \mathbb{B}_d$ we define

$$\tilde{d}_H(V,W) = \inf\{d_H(V,\Phi(W)) : \Phi \in \operatorname{Aut}(\mathbb{B}_d)\}$$

Definition (The "Banach Mazur" multiplier distance)

For two multiplier algebras \mathcal{A}, \mathcal{B} we define

$$\rho_M(\mathcal{A}, \mathcal{B}) = \log \inf \{ \|\varphi\|_{cb} \|\varphi^{-1}\|_{cb} : \varphi : \mathcal{A} \to \mathcal{B} \text{ isomorphism}^* \}$$

* We mean multiplier algebra isomorphism, i.e. $\varphi(f) = f \circ F$ for some F.

Quantitative version of the isomorphism problem

Theorem (Ofek-Pandey-S 2021)

Let $V \subseteq \mathbb{B}_d$ be a finite set with |V| = n. Then for every $\varepsilon > 0$, there exists a $\delta > 0$ such that if $W \subseteq \mathbb{B}_d$ and |W| = n then (i) $\tilde{d}_H(V,W) < \delta \Longrightarrow \rho_M(\mathcal{M}_V,\mathcal{M}_W) < \varepsilon$. (ii) $\rho_M(\mathcal{M}_V,\mathcal{M}_W) < \delta \Longrightarrow \tilde{d}_H(V,W) < \varepsilon$.

Proof: The proofs in both directions go through the Hilbert spaces. For RKHSs $\mathcal{H}_1, \mathcal{H}_2$ on sets X_1, X_2 we define

 $\rho_{RK}(\mathcal{H}_1, \mathcal{H}_1) = \log \inf\{\|T\| \| \|T^{-1}\| : T : \mathcal{H}_1 \to \mathcal{H}_2 \text{ isomorphism}^* \}$

* we mean isomorphism of reproducing kernel Hilbert spaces, i.e. T is bounded and is determined by

$$Tk_x^1 = c_\lambda k_{F(x)}^2 \quad , \quad x \in X_1$$

where $F: X_1 \to X_2$ is a bijection.

Quantitative version of the isomorphism problem II

Theorem (Ofek-Pandey-S 2021)

Let $V \subseteq \mathbb{B}_d$ be a finite set with |V| = n. Then for every $\varepsilon > 0$, there exists a $\delta > 0$ such that if $W \subseteq \mathbb{B}_d$ and |W| = n then

- (i) $\tilde{d}_H(V,W) < \delta \Longrightarrow \rho_{RK}(\mathcal{H}_V,\mathcal{H}_W) < \varepsilon.$
- (ii) $\rho_{RK}(\mathcal{H}_V, \mathcal{H}_W) < \delta \Longrightarrow \tilde{d}_H(V, W) < \varepsilon.$
- (iii) $\rho_{RK}(\mathcal{H}_V, \mathcal{H}_W) < \delta \Longrightarrow \rho_M(\mathcal{M}_V, \mathcal{M}_W) < \varepsilon.$
- (iv) $\rho_M(\mathcal{M}_V, \mathcal{M}_W) < \delta \Longrightarrow \rho_{RK}(\mathcal{H}_V, \mathcal{H}_W) < \varepsilon.$

Proof: (i) is basic. (ii) requires some nice idea. Note: it does NOT hold for all reasonable RKHSs of analytic functions, it depends on the kernel in some way (Ofek-Sofer, "Three classification results...", CAOT 2021). (iii) is standard: $T : \mathcal{H}_V \to \mathcal{H}_W$, $T(k_v) = c_v k_{F(v)}$ gives $\varphi : \mathcal{M}_V \to \mathcal{M}_W$

$$\varphi: M_f \mapsto (T^{-1})^* M_f T^* = M_{f \circ F}$$

28 / 29

and $\|\varphi\|_{cb} \leq \|T\| \|T^{-1}\|$. (iv) is the deepest part, depends CNP (think H^{∞}, H^2, L_a^2). Thank you!