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Based on joint works with Davidson, Hartz, Kerr, McCarthy, Ofek, Pandey,
Ramsey and Salomon.

Other contributors: Alpay, Arcozzi, Hartz, Lupini, Putinar, Rochberg,
Sawyer, Vinnikov...

Related works in the setting of noncommutative function theory:
Kakariadis, Muhly, Popescu, Salomon, Shamovich, Solel...

Recommended reading:
1) G. Salomon and O.M. Shalit, The Isomorphism Problem for Complete
Pick Algebras: A Survey, OTAA 2016.

2) D, Ofek, S. Pandey, O.M. Shalit, Distance between reproducing kernel
Hilbert spaces and geometry of finite sets in the unit ball, JMAA 2021.
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Prologue

A corollary of Gelfand’s theory

Theorem (1940s)

Let X and Y be compact Hausdorff topological spaces.
The algebra C(X) is isomorphic to C(Y ) if and only if X ∼= Y .
In fact, ϕ : C(X)→ C(Y ) is an isomorphism, then there exists a
homeomorphism α : Y → X such that

ϕ(f) = f ◦ α , f ∈ C(X)
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Prologue

Proof

Given ϕ : C(X)→ C(Y ).

ϕ∗ : C(Y )∗ → C(X)∗ by ϕ∗(ρ) = ρ ◦ ϕ.

Key: X ∼= the maximal ideal space M(C(X)) of C(X)

X 3 x↔ ρx ∈M(C(X))

ρx : f 7→ f(x)

ϕ∗ maps points of Y to points of X. α := ϕ∗
∣∣
Y

is a homeomorphism.

Now compute:

ϕ(f)(y) = ρy(ϕ(f)) = ϕ∗(ρy)(f) = f(α(y))

Thus ϕ(f) = f ◦ α. (The converse is obvious.)
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Prologue

Our interest: classification results in this spirit for other algebras —
quotients of the multiplier algebra of Drury-Arveson space.
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Quotients of H2
d and of Mult(H2

d)

Drury-Arveson space and its quotients

The Drury-Arveson space H2
d is the Hilbert function space on Bd with

kernel k(z, w) = kw(z) = (1− 〈z, w〉)−1. The multiplier algebra is

Md := Mult(H2
d) = {f : Bd → C : fh ∈ H2

d for all h ∈ H2
d}

Quotients of H2
d

A variety in Bd is the zero set of multipliers, i.e. a set of the form

V = {z ∈ Bd : f(z) = 0 for all f ∈ F} (for some F ⊆Md)

A quotient of H2
d is a subspace of the form

HV = span{kλ : λ ∈ V } = H2
d 	KV

∼= H2
d/KV

where KV = {h ∈ H2
d : h(z) = 0 for all z ∈ V }.
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Quotients of H2
d and of Mult(H2

d)

Quotients of Mult(H2
d)

Quotients ofMd

A quotient ofMd is an algebra of the form

MV =Md

∣∣
V

:= {f
∣∣
V

: f ∈Md}

Fact: MV is an operator algebra and

MV = Mult(HV ) ∼=Md/JV

where JV = {f ∈Md : f(z) = 0 for all z ∈ V }.

Theorem (Agler-McCarthy 2000)

Every irreducible complete Pick space is (up to rescaling) of the form HV
for some (multiplier) variety V ⊂ Bd and for some d ∈ N ∪ {∞}.
Every multiplier algebra of an irreducible Pick space is of the formMV .
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The isomorphism problem for MV The problem

The isomorphism problem forMV

We are interested in the analogue of Gelfand’s theorem for the quotient
spaces HV and quotient algebrasMV = Mult(H2

d)
∣∣
V

= Mult(HV ).

Problem A
Let V ⊂ Bd be a variety. How does the geometry of V determine the
structure ofMV ?

More concretely:

Problem B
Let V,W ⊂ Bd be two varieties. When areMV andMW isomorphic?
Isometrically isomorphic? Completely Isometrically isomorphic?
Similar/unitarily equivalent?

(Note: these algebras are semisimple, so algebraic isomorphisms are
automatically bounded.)
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The isomorphism problem for MV Working with the maximal ideal space

The maximal ideal space ofMV

M(MV ) is usually huge (think about H∞ =MD).
Let

π : M(MV )→ Bd

π(ρ) = (ρ(z1), ρ(z2), . . . , ρ(zd)) ∈ Bd
For every λ ∈ V , there exists ρλ ∈ π−1(λ) given by

ρλ(f) = f(λ)

Note:
π(ρλ) = (λ1, λ2, . . . , λd) = λ

We identify V ⊂M(MV ) — that’s what we can see.
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The isomorphism problem for MV Working with the maximal ideal space

The maximal ideal space ofMV

Theorem (Davidson-Pitts 1998, Davdison-Ramsey-S)

There is a continuous projection π : M(MV )→ Bd given by

π(ρ) = (ρ(z1), ρ(z2), . . . , ρ(zd)) , ρ ∈M(MV ).

For λ ∈ V there is a unique weak-∗ continuous ρλ ∈ π−1(λ) given by
ρλ(f) = f(λ). Every weak-∗ continuous character arises this way.
If d <∞, then

π(M(MV )) ∩ Bd = V, (1)

π−1(λ) = {ρλ}, for all λ ∈ V. (2)

If d =∞, then (1) or (2) may fail.
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The isomorphism problem for MV Some results

Isometric isomorphism = “conformal" equivalence

Theorem (Davidson-Ramsey-S 2015)

Let V,W ⊂ Bd be varieties, d <∞. The following assertions are
equivalent:
(i) MV andMW are unitarily equivalent.
(ii) MV andMW are (completely) isometrically isomorphic.
(iii) There exists a biholomorphic automorphism α ∈ Aut(Bd) such that

α(W ) = V

Proof:
(i) ⇒ (ii) is immediate.
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The isomorphism problem for MV Some results

Proof (cont’d):
(ii)⇒ (iii): IF ϕ∗ maps point evaluation at λ to point evaluation at µ, then

ϕ(zi)(λ) = ρλ ◦ ϕ(zi) = ϕ∗(ρλ)(zi) = ρµ(zi) = µi

Thus µ = (ϕ(z1)(λ), . . . , ϕ(zd)(λ)) =: α(λ) where α = (ϕ(z1), . . . , ϕ(zd)).
α is analytic on Bd, and α(W ) ⊆ V . Using complete contractivity +
invertibility + SCV one gets α ∈ Aut(Bd) and α(W ) = V .

We show ϕ∗ preserves point evaluations using a mixture of operator
algebras and SCV techniques.

(iii) ⇒ (i): We write down a unitary U : HW → HV

Ukλ = cλkα(λ)

and this unitary implements an isomorphism betweenMV andMW .

Note that the proof passes through HV ∼= HW .
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The isomorphism problem for MV Some results

Algebraic isomorphism for homogeneous varieties

For homogeneous varieties* in d <∞

algebraic isomorphism = biholomorphic equivalence

Theorem (Davidson-Ramsey-S 2011, Hartz 2012)

Let V,W ⊂ Bd be homogeneous varieties with d <∞. Then the following
are equivalent:
(i) MV andMW are similar (∃T ∈ B(HV ,HW ).MV = T−1MWT ).
(ii) MV andMW are isomorphic.
(iii) V and W are biholomorphically equivalent.
(iv) There is an invertible linear map on Cd which maps V onto W .

* - A homogeneous variety is the common vanishing locus of homogeneous
polynomials e.g. p(z) = z1z2 + z23 .
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The isomorphism problem for MV Some results

Theorem (Davidson-Ramsey-S 2011, Hartz 2012)

Let V,W ⊂ Bd be homogeneous varieties with d <∞. Then the following
are equivalent:
(i) MV andMW are similar (∃T ∈ B(HV ,HW ).MV = T−1MWT ).
(ii) MV andMW are isomorphic.
(iii) V and W are biholomorphically equivalent.
(iv) There is an invertible linear map on Cd which maps V onto W .

Proof: (i) ⇒ (ii) is immediate.
(ii) ⇒ (iii): As in isometric case, we show that ϕ∗ preserves weak-∗
continuous characters (but different argument).
(iii) ⇒ (iv): Use elementary several complex variables.
(iv) ⇒ (i): If A : V →W , define T : kλ 7→ kAλ.
One shows that T extends to a bounded isomorphism HV → HW (this is
difficult! Call Michael Hartz...).

Note that here too the proof passes through HV ∼=w HW .
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The isomorphism problem for MV Some results

Algebraic isomorphism ⇒ biholomorphic equivalence

Theorem (Davidson-Ramsey-S 2015)

Let V,W ⊂ Bd be varieties in Bd with d <∞ which are the union of
finitely many irreducible varieties and a discrete variety. IfMV andMW

are isomorphic, then V and W are biholomorphic.

Questions
1. What about the converse?
2. Are the technical conditions (finite union of irreducibles, d <∞) really
needed?
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Embedded discs

A positive result for discs

Theorem (Alpay-Putinar-Vinnikov 2003)

Let α : D→ V ⊂ Bd be a biholomorphism, d <∞. If
(1) α extends to an injective C2 function on D,
(2) α′(z) 6= 0 for z ∈ D,
(3) ||α(z)|| = 1 if and only if |z| = 1, and
ThenMV is isomorphic to H∞(D). In factMV = H∞(V ).

Extended to planar domains (in place of D) by Arcozzi-Rochberg-Sawyer
(2008), and to finite (open) Riemann surfaces by Kerr-McCarthy-S (2013).
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Embedded discs

An application

Let α : D→ V ⊂ Bd be a biholomorphism, d <∞. By [APV03]

H∞(V ) =MV := Mult(H2
d)
∣∣
V

Corollary (Alpay-Putinar-Vinnikov 2003)

Let α : D→ V ⊂ Bd be a biholomorphism as in the theorem. Then for
every f ∈ H∞(V ) there exists f̃ ∈ Mult(H2

d) such that f̃
∣∣
V

= f .

One also has control on the multiplier norm of f̃ .
Since Mult(H2

d) ( H∞(Bd), this is sharpening of Henkin’s difficult and
deep extension theorem in the one dimensional case.

Kerr-McCarthy-S generalized this to “nice" one-dimensional varieties in the
unit ball.
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Embedded discs

A negative result for discs

Theorem (Davidson-Hartz-S 2015)

There exists a rational function α mapping D onto V ⊂ B2 with poles
outside D as in the Alpay-Putinar-Vinnikov theorem, except for
α(1) = α(−1).
In this case,MV is not isomorphic to H∞, and α−1 /∈MV .

So the answer to the question whetherMV ' H∞ for V an analytic disc
is no, even when d <∞. In other words

biholomorphism ; isomorphism

To understand what’s really going on we need some more definitions...
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Embedded discs

Automorphisms of Bd and the pseudohyperbolic distance

For w ∈ Bd

Ψw(z) =
w − Pwz − (1− ‖w‖2)1/2P⊥w z

1− 〈z, w〉
is a holomorphic automorphism of the ball that maps w to 0 and 0 to w.
Here Pw is the projection onto the span of w and P⊥w = I − Pw.
The pseudohyperbolic metric dph on the open unit ball Bd is given by

dph(z, w) := ‖Ψw(z)‖ = ‖Ψz(w)‖ , z, w ∈ Bd

In particular, when d = 1, we have

Ψw(z) =
w − z
1− wz

and dph(z, w) =

∣∣∣∣ w − z1− wz

∣∣∣∣
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Embedded discs

A negative result for discs (revisited)

Theorem (Davidson-Hartz-S 2015)

There exists a rational function α mapping D onto V ⊂ B2 with poles
outside D as in the Alpay-Putinar-Vinnikov theorem, except for
α(1) = α(−1).
In this case,MV is not isomorphic to H∞, and α−1 /∈MV .

Proof: We show that if ϕ :MV →MW is an isomorphism, then α = ϕ∗

is bi-Lipschitz w.r.t. pseudo-hyperbolic distance, that is

C−1dph(z, w) ≤ dph(α(z), α(w)) ≤ Cdph(z, w)

We show that such a map α is not bi-Lipschitz.

20 / 29



Embedded discs Multiplier biholomorphism

A stronger notion of biholomorphism

Definition
A multiplier biholomorphism is a biholomorphism α : V →W such that the
coordinates of α are inMV , and the coordinates of α−1 are inMW .

Theorem (Davidson-Ramsey-S 2015, Davidson-Hartz-S 2015)

Let V,W ⊂ Bd be varieties in Bd with d <∞ which are the union of
finitely many irreducible varieties and a discrete variety. IfMV andMW

are isomorphic, then V and W are multiplier biholomorphic and
bi-Lipschitz w.r.t. pseudo-hyperbolic distance.

Question
If V and W are multiplier biholomorphic, isMV isomorphic toMW ?

..it depends...
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Noncommutative versions

More recent stuff...
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Noncommutative versions

Noncommutative versions

Recall (from Mike Jury’s series):
H2
nc is a noncommutative RKHS with multiplier algebra

Mult(H2
nc) = H∞nc(row ball)

Can consider H2
nc

∣∣
V

and Mult(H2
nc)

∣∣
V

where V an nc variety.

When is Mult(H2
nc)

∣∣
V

(isometrically) isomorphic to Mult(H2
nc)

∣∣
W

?

1) G. Salomon, O.M. Shalit and E. Shamovich, Algebras of bounded
noncommutative analytic functions on subvarieties of the noncommutative
unit ball, TAMS 2018.

2) G. Salomon, O.M. Shalit and E. Shamovich, Algebras of
noncommutative functions on subvarieties of the noncommutative ball:
The bounded and completely bounded isomorphism problem, JFA 2020.

Apologies: two different papers with same authors and similar long titles, confusing!
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Quantitative versions

The new stuff...
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Quantitative versions

A quantitative version of the problem

We now switch to varieties V,W ⊆ Bd that are finite sets of points. In this
situation we have a complete answer to the question.

Theorem (DRS 2015, Rochberg 2019)

Let V,W be two finite subsets of Bd.
(i) MV is completely isometrically isomorphic toMW if and only if there

is an automorphism Φ ∈ Aut(Bd) such that Φ(V ) = W .
(ii) MV is isomorphic toMW if and only if there is a biholomorphism

from V onto W (and this happens if and only if |V | = |W |).

Question: what happens if we move the points in (i) just a little a bit?
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Quantitative versions

Distances between subsets and algebras

Recall that the Hausdorff distance between two subsets E,F in a metric
space (X, d) is defined to be

dH(E,F ) = max{max
x∈E

d(x, F ),max
y∈F

d(y,E)}

Definition (The conformal invariant Hausdorff distance)

For V,W ⊆ Bd we define

d̃H(V,W ) = inf{dH(V,Φ(W )) : Φ ∈ Aut(Bd)}

Definition (The “Banach Mazur" multiplier distance)

For two multiplier algebras A,B we define

ρM (A,B) = log inf{‖ϕ‖cb‖ϕ−1‖cb : ϕ : A → B isomorphism* }

* We mean multiplier algebra isomorphism, i.e. ϕ(f) = f ◦ F for some F .
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Quantitative versions

Quantitative version of the isomorphism problem

Theorem (Ofek-Pandey-S 2021)

Let V ⊆ Bd be a finite set with |V | = n. Then for every ε > 0, there exists
a δ > 0 such that if W ⊆ Bd and |W | = n then
(i) d̃H(V,W ) < δ =⇒ ρM (MV ,MW ) < ε.
(ii) ρM (MV ,MW ) < δ =⇒ d̃H(V,W ) < ε.

Proof: The proofs in both directions go through the Hilbert spaces.

For RKHSs H1,H2 on sets X1, X2 we define

ρRK(H1,H1) = log inf{‖T‖‖T−1‖ : T : H1 → H2 isomorphism* }

* we mean isomorphism of reproducing kernel Hilbert spaces, i.e. T is
bounded and is determined by

Tk1x = cλk
2
F (x) , x ∈ X1

where F : X1 → X2 is a bijection.
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Quantitative versions

Quantitative version of the isomorphism problem II

Theorem (Ofek-Pandey-S 2021)

Let V ⊆ Bd be a finite set with |V | = n. Then for every ε > 0, there exists
a δ > 0 such that if W ⊆ Bd and |W | = n then
(i) d̃H(V,W ) < δ =⇒ ρRK(HV ,HW ) < ε.
(ii) ρRK(HV ,HW ) < δ =⇒ d̃H(V,W ) < ε.
(iii) ρRK(HV ,HW ) < δ =⇒ ρM (MV ,MW ) < ε.
(iv) ρM (MV ,MW ) < δ =⇒ ρRK(HV ,HW ) < ε.

Proof: (i) is basic. (ii) requires some nice idea. Note: it does NOT hold
for all reasonable RKHSs of analytic functions, it depends on the kernel in
some way (Ofek-Sofer, “Three classification results...", CAOT 2021).
(iii) is standard: T : HV → HW , T (kv) = cvkF (v) gives ϕ :MV →MW

ϕ : Mf 7→ (T−1)∗MfT
∗ = Mf◦F

and ‖ϕ‖cb ≤ ‖T‖‖T−1‖.
(iv) is the deepest part, depends CNP (think H∞, H2, L2
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Thank you!
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