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The story of Drury-Arveson space goes back to the von Neumann
inequality for contractions.

A linear operator T on a Hilbert space H is called a contraction if
‖T‖ ≤ 1, i.e., if ‖Tx‖ ≤ ‖x‖ for every vector x ∈ H.

von Neumann’s famous inequality (1951): If T is a contraction,
then

‖p(T )‖ ≤ sup
|z|≤1
|p(z)|

for every polynomial p.



Generalization to operator tuples:

Suppose that (T1, . . . ,Tn) is a commuting tuple of operators, and
suppose that each Ti is a contraction, i = 1, . . . , n. Then one
might expect that the inequality

(∗) ‖p(T1, . . . ,Tn)‖ ≤ sup
|z1|≤1,...,|zn|≤1

|p(z1, . . . , zn)|

holds for every n-variable polynomial p.

This is true in the case n = 2 (Ando, 1963) . But this is false for
n ≥ 3 (Varopoulos, 1973).

This raises the following issues:



• What is the right notion of contraction for a commuting tuple of
operators?

• What is the right domain on which to consider the problem?

• What is the right norm for the “right-hand side”? (Note that the
right-hand side of (∗) is ‖p‖∞, the supremum norm of p on the
domain in question. Varopoulos’ construction shows that for
general n, ‖p‖∞ is too small.)

All of these were figured out by 1978.



A commuting tuple (A1, . . . ,An) on a Hilberts space H is said to
be a row contraction if

A1A
∗
1 + · · ·+ AnA

∗
n

is a contraction. Equivalently, (A1, . . . ,An) is a row contraction if

‖A1x1 + · · ·+ Anxn‖2 ≤ ‖x1‖2 + · · ·+ ‖xn‖2

for all x1, . . . , xn ∈ H. Note that this is stronger than requiring
that each individual Ai be a contraction, in fact much stronger.



von Neumann inequality for row contractions:

Drury (1978), Arveson (1998) : If (A1, . . . ,An) is a commuting
row contraction, then

‖p(A1, . . . ,An)‖ ≤ ‖p‖M

for every p ∈ C[z1, . . . , zn].

The right-hand side, ‖p‖M, has to be explained on a new space,
the Drury-Arveson space H2

n .



The space H2
n consists of analytic functions on B. The inner

product on H2
n is defined by the formula

〈h, g〉 =
∑
α∈Zn

+

α!

|α|!
aαb̄α

for
h(ζ) =

∑
α∈Zn

+

aαζ
α and g(ζ) =

∑
α∈Zn

+

bαζ
α,

where we use the standard multi-index notation. For z ∈ B, define

Kz(ζ) =
1

1− 〈ζ, z〉
.

Kz is the reproducing kernel for the Drury-Arveson space H2
n . That

is, if h ∈ H2
n and z ∈ B, then h(z) = 〈h,Kz〉.



This space H2
n has quite a bit of history.

In 1977, Lubin used this space to produce the first example of a
tuple of commuting subnormal operators that does not admit a
joint normal extension. At present, this is the earliest known
appearance of the space H2

n .

The space H2
n was then introduced by Drury in 1978 and by

Arveson in 1998 for the purpose of generalizing von Nuemann’s
original inequality to the multi-variable setting.

After Arveson’s 1998 paper, H2
n has been the subject of intense

studies.



One of Arveson’s main contributions in his 1998 paper is the
introduction of multipliers for H2

n . An f ∈ H2
n is said to be a

multiplier of H2
n if

fg ∈ H2
n for every g ∈ H2

n .

We will write M for the collection of multipliers of H2
n .

For every f ∈M, the multiplication operator Mf is bounded on
H2
n by the closed graph theorem.



Obviously, we have C[z1, . . . , zn] ⊂M.

For each f ∈M, define

‖f ‖M = ‖Mf ‖ = sup{‖fg‖ : g ∈ H2
n , ‖g‖ ≤ 1}.

This is called the multiplier norm of f .

Recall von Neumann inequality for commuting row contractions:

(∗∗) ‖p(A1, . . . ,An)‖ ≤ ‖p‖M.

It is the multiplier norm of p ∈ C[z1, . . . , zn] that appears on the
right-hand side.



If n = 1, then (∗∗) reverts back to von Neumann’s original
inequality for a single contraction. This corresponds to the fact
that H2

1 is the familiar Hardy space H2 of analytic functions on the
unit disc D. Moreover, if n = 1, then ‖p‖M = ‖p‖∞.

Recall that the inner product on one-variable Hardy space H2 is
given by the formula

〈h, g〉 =

∫
h(τ)g(τ)dm(τ),

where dm is the Lebesgue measure on the unit circle T =
{τ ∈ C : |τ | = 1}.

Alternately, one can describe H2 as the norm closure of the
collection of polynomials in L2(T, dm).

The point is this: There is an L2 naturally associated with H2
1 .



Suppose that n ≥ 2.

Then there is no constant 0 < C <∞ such that ‖p‖M ≤ C‖p‖∞
for every p ∈ C[z1, . . . , zn]. Here ‖p‖∞ = supz∈B |p(z)|. That is,
the multiplier norm ‖ · ‖M is strictly stronger than ‖ · ‖∞. Both
Drury and Arveson knew this in their original papers.

Arveson (1998): There is no L2 naturally associated with H2
n .

More specifically, the tuple

(Mζ1 , · · · ,Mζn)

of multiplication by the coordinate functions on H2
n is not jointly

subnormal.

This means that H2
n is fundamentally different from the more

familiar reproducing-kernel Hilbert spaces such as the Hardy space
and the Bergman space.



Recall that a commuting tuple (S1, · · · ,Sn) of operators on a
Hilbert space H is said to be jointly subnormal if there is a Hilbert
space L containing H and a commuting tuple of normal operators
(N1, · · · ,Nn) on L such that H is invariant under each Ni and
such that each Si is the restriction of Ni to H; that is,

Six = Nix for every x ∈ H,

i = 1, . . . , n.



Drury’s proof: In order to prove

(∗∗) ‖p(A1, . . . ,An)‖ ≤ ‖p‖M,

it suffices to consider commuting tuples (A1, . . . ,An) for which
that is an r ∈ [0, 1) such that

〈(A1A
∗
1 + · · ·+ AnA

∗
n)x , x〉 ≤ r2‖x‖2, x ∈ H.

For such a tuple, we can resolve the identity operator 1 in the form∑
α∈Zn

+

|α|!
α!

Aα(1− A1A
∗
1 − · · · − AnA

∗
n)A∗α = 1.

This enables us to define an isometry Z : H → H2
n ⊗H:

(Zx)(ζ) =
∑
α∈Zn

+

|α|!
α!

(1− A1A
∗
1 − · · · − AnA

∗
n)1/2A∗αxζα.



It is then straightforward to verify that

Zp(A∗1, . . . ,A
∗
n) = (p(M∗ζ1

, . . . ,M∗ζn)⊗ 1)Z

for every p ∈ C[z1, . . . , zn]. This implies (∗∗).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The Drury-Arveson space H2
n is just one member in a family of

reproducing-kernel Hilbert spaces of analytic functions on the unit
ball B.



For each real number −n ≤ t <∞, we can define H(t), the Hilbert
space of analytic functions on B with the reproducing kernel

K
(t)
z (ζ) =

1

(1− 〈ζ, z〉)n+1+t
, z , ζ ∈ B.

Alternately, one can describe H(t) as the completion of
C[z1, . . . , zn] with respect to the norm ‖ · ‖t arising from the inner
product 〈·, ·〉t defined according to the following rules:
〈ζα, ζβ〉t = 0 whenever α 6= β,

〈ζα, ζα〉t =
α!∏|α|

j=1(n + t + j)

if α ∈ Zn
+\{0}, and 〈1, 1〉t = 1.



One can think of the parameter t as the “weight” of the space,
although t can be negative.

We have

H(0) = L2
a(B, dv), the Bergman space,

H(−1) = H2(S), the Hardy space on the sphere,

H(−n) = H2
n , the Drury-Arveson space.

In fact, for each −1 < t <∞, H(t) is a weighted Bergman space.

One can think of the Bergman space H(0) as a benchmark, against
which the other spaces in the family should be compared.

For all −n ≤ s ≤ t <∞, we have the inclusion H(s) ⊂ H(t).



Arazy and G. Zhang (2003): Similar to the case of Drury-Arveson
space, if −n < t < −1, then the tuple of multiplication operators
(Mζ1 , . . . ,Mζn) on H(t) is not jointly subnormal.

In other words, if −n < t < −1, then H(t) is more like the
Drury-Arveson space t H(−n) than the Hardy space H(−1).

The practical consequence of this is that it is difficult to do
estimates on H(t) if −n ≤ t < −1, since there is no measure or L2

associated with these spaces.

Consequently, results on H(t), −n ≤ t < −1, are hard to obtain.

Thus, while we know quite a about these spaces by now, there is
plenty more that we don’t know. In fact, there are some seemingly
elementary questions about these spaces to which we do not know
the answer.



The inner-function problem.

Arveson was the first to notice that, when n ≥ 2, H2
n does not

contain H∞(B), the collection of bounded analytic function on B.
He explicitly constructed an f ∈ H∞(B) that does not belong to
H2
n . This construction was based on the function

θ(ζ1, . . . , ζn) = ζ1 · · · ζn

on B. Arveson observed that

‖θk‖∞ =
1

nkn/2
while ‖θk‖H2

n
=

(
(k!)n

(nk)!

)1/2

≈ k(n−1)/4

nkn/2
.

Once this is seen, for n ≥ 2 it is easy to come up with coefficients
a0, a1, . . . ak , . . . such that f =

∑∞
k=0 akθ

k is in H∞(B) but not in
H2
n . In fact, one can even require f to be continuous on the

closure of the unit ball B.



It should be mentioned that examples of f ∈ H∞(B), f /∈ H2
n

actually existed in plain sight. From the last chapter of Rudin’s
famous book “Function theory in the unit ball of Cn” we know
that when n ≥ 2, if u is a non-constant inner function on B, then
|∇u| is not square-integrable with respect to the volume measure
on B. Using the spaces introduced in this section, we can rephrase
this result as saying that if u is a non-constant inner function on
B, then u /∈ H(−2). In particular, H(−n) = H2

n does not contain
any non-constant inner function.

When Rudin’s book was published in 1980, it was not yet known
whether non-constant inner functions existed in the case n ≥ 2. In
fact, Rudin offered the gradient result in his book as evidence
against the existence of non-constant inner functions. But in 1982,
Aleksandrov and Løw independently succeeded in the construction
of non-constant inner functions.



In 2012, Stoll showed that H(−3/2) contains no non-constant inner
functions. (Thanks to Michael Hartz for informing me of this fact.)

We know that the Hardy space H2(S) = H(−1) contains all the
inner functions, whereas H(−3/2) contains none, other than the
constants.

This comparison raises an interesting question:

For −3/2 < t < −1, does H(t) contain any non-constant inner
functions?

This seems to be a very challenging problem.



Corona Theorem.

Costea, Sawyer and Wick (2011): The corona theorem holds for
the multiplier algebra M of the Drury-Arveson space. That is, for
g1, . . . , gk ∈M, if there is a c > 0 such that

|g1(ζ)|+ · · ·+ |gk(ζ)| ≥ c

for every ζ ∈ B, then there exist f1, . . . , fk ∈M such that

f1g1 + · · ·+ fkgk = 1.

This is the first result that truly deserves the appellation “corona
theorem” in the multi-variable setting.



Carleson Measure.

A regular Borel measure dµ on B is said to be an Carleson measure
for the Drury-Arveson space H2

n if there is a constant C such that∫
|h(ζ)|2dµ(ζ) ≤ C‖h‖2

for every h ∈ H2
n . In 2008, Arcozzi, Rochberg and Sawyer gave a

characterization for all the Carleson measures for H2
n .

But unfortunately, this characterization is quite complicated, which
can be interpreted as a reflection of the structure of H2

n .



Essential Norm.

The essential norm of an operator A on a Hilbert space H is
defined by

‖A‖ess = inf{‖A + K‖ : K is compact on H}.

Despite the fact that, when n ≥ 2, ‖p‖∞ does not dominate the
multiplier norm ‖p‖M = ‖Mp‖, Arveson showed in his 1998 paper
that the identity

‖Mp‖ess = ‖p‖∞
holds for every p ∈ C[z1, . . . , zn]. Nevertheless:

Fang and X. (2011): For multipliers f ∈M in general, ‖f ‖∞ does
not dominate the essential norm ‖Mf ‖ess on H2

n if n ≥ 2. That is,
there is NO 0 < C <∞ such that

‖Mf ‖ess ≤ C‖f ‖∞ for every f ∈M.



Essential Commutativity.

Arveson (1998): For all i , j ∈ {1, . . . , n}, the commutators
[Mζi ,M

∗
ζj

] are compact on H2
n . In fact, these operators belong to

the Schatten class Cp for p > n.

The corresponding result for the Hardy space is well known. So
perhaps one can interpret the above as saying that H2

n retains
some similarity to the Hardy space. Moreover, we have

Fang and X. (2011): For every j ∈ {1, . . . , n} and every f ∈M,
the commutator [Mf ,M

∗
ζj

] on H2
n belongs to the Schatten class Cp

for p > 2n. Furthermore, for each p > 2n, there is a
0 < C (p) <∞ such that

‖[Mf ,M
∗
ζj

]‖p ≤ C (p)‖f ‖M

for every multiplier f ∈M and every j ∈ {1, . . . , n}, where ‖ · ‖p is
the Schatten p-norm.



Recall that for each 1 ≤ p <∞, the Schatten class Cp consists of
operators A satisfying the condition

‖A‖p =
{

tr((A∗A)p/2)
}1/p

<∞.

If A ∈ Cp , then A is compact.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

To obtain our Schatten-class result mentioned above, we had to
use a number of new techniques to overcome the difficulty that
there is no measure or L2 associated with the Drury-Arveson space.
In particular, we had to use the fact that even though the tuple
(Mζ1 , · · · ,Mζn) is not jointly subnormal, each individual Mζj

actually is subnormal on H2
n .



Essential Normality of Submodules.

For each −n ≤ t <∞ the Hilbert space H(t) is also a Hilbert
module over the polynomial ring C[z1, . . . , zn].

In this context, a submodule is a closed linear subspace of H(t)

that is invariant under the multiplication by polynomials.

A submodule Σ of H(t) is said to be essentially normal if the
restricted operators

ZΣ,j = Mζj |Σ, j = 1, . . . , n,

have the property that all commutators [ZΣ,i ,Z
∗
Σ,j ], 1 ≤ i , j ≤ n,

are compact.

A submodule Σ of H(t) is said to be p-essentially normal if all
commutators [ZΣ,i ,Z

∗
Σ,j ], 1 ≤ i , j ≤ n, belong to the Schatten class

Cp.



Arveson Conjecture (circa 2000): Every graded submodule of
H2
n ⊗ Cm is essentially normal.

Graded: the submodule has an orthogonal decomposition in terms
of degree. But the problem becomes much more interesting and
challenging for submodules that have NO such orthogonal
decomposition.

Arveson first verified his conjecture in the case where the
submodule is generated by a finite set of monomials (2005).

Later in 2006, Douglas proposed a similar but more refined
conjecture for submodules of the Bergman module H(0) =
L2(B, dv).



Guo and Wang (2008): In the case n = 2, 3, every graded
submodule of H2

n is p-essentially normal for p > n. For arbitrary n,
every submodule of H2

n generated by a single homogeneous
polynomial is p-essentially normal for p > n.

Then, came something of a surprise:

Douglas and Wang (2011): For every q ∈ C[z1, . . . , zn], the
submodule of the Bgerman module L2(B, dv) = H(0) generated by
q is p-essentially normal for p > n.

The emphasis of the Douglas-Wang result is on the arbitrariness of
q ∈ C[z1, . . . , zn]. This takes us outside the realm of graded
submodules and requires analysis that is truly non-trivial. This is
an unconditional result in the sense that it makes no assumption
about the polynomial q.



Fang and X. (2013): Suppose that −2 < t <∞. Then for every
q ∈ C[z1, . . . , zn], the submodule of H(t) generated by q is
p-essentially normal for p > n.

In particular, if we apply this to the case t = −1, we see that for
every q ∈ C[z1, . . . , zn], the submodule of the Hardy module H(−1)

= H2(S) generated by q is p-essentially normal for p > n.

The Hardy-space problem was specifically mentioned in the
Douglas-Wang paper as a challenge, and our 2013 paper was
motivated by this. But more interesting is the range of weights
−2 < t < −1, for which spaces start to mimic the Drury-Arveson
space.



Fang and X. (2018): Suppose that −3 < t ≤ −2. Then for every
q ∈ C[z1, . . . , zn], the submodule of H(t) generated by q is
p-essentially normal for p > n.

The consequence of this is that the range −3 < t ≤ −2 gives us
the first unconditional essential normality in the case of
Drury-Arveson space. Note that if n = 2, then H(−2) = H2

2 , the
two-variable Drury-Arveson space. Thus we have

Corollary: For every q ∈ C[z1, z2], the submodule of H2
2 generated

by q is p-essentially normal for p > 2.

But the case t = −3, which would give us the three-variable
Drury-Arveson space H2

3 , is a major hurdle that is yet to be
overcome ...

More generally, we would like to extend our results to the full
weight range t ≥ −n for arbitrary n. But this seems beyond reach
at the moment.



Characterization of Multipliers.

Suppose that n ≥ 2.

A big mystery in the theory of Drury-Arveson space is the
membership in M, the algebra of multipliers. So far, there is no
good characterization of the membership f ∈M.

In his 1998 paper, Arveson showed that for an analytic function h
on B, the finiteness of ‖h‖∞ does not guarantee h ∈ H2

n . More
generally, for h ∈ H2

n ∩H∞, the norm ‖h‖∞ does not dominate the
H2
n -norm of h.

But, does the membership f ∈ H2
n ∩ H∞ imply f ∈M?



Let k ∈ N be such that 2k ≥ n. Then given any f ∈ H2
n , one can

define the measure dµf on B by the formula

(∗ ∗ ∗) dµf (z) = |(Rk f )(z)|2(1− |z |2)2k−ndv(z),

where R = z1∂1 + · · ·+ zn∂n, the radial derivative, and dv is the
normalized volume measure on B.

In 2000, Ortega and Fàbrega showed that f ∈M if and only if
dµf is a Carleson measure for H2

n .

Recall that in 2008, Arcozzi, Rochberg and Sawyer characterized
all Carleson measures for H2

n .



So the combination of the result of Arcozzi, Rochberg and Sawyer
and the result of Ortega and Fàbrega is a characterization of the
membership f ∈M. But this characterization is quite
complicated, because the condition for a general dµ to be a
Carleson measure for H2

n is quite complicated.

But if we are only interested in multipliers, then we are only
interested in the dµf given by (∗ ∗ ∗), not the general dµ on B.

So the question is, for the subclass of measures dµf given by
(∗ ∗ ∗), is there a simpler, or more direct, condition that determines
when it is a Carleson measure for H2

n?

Equivalently, is there a simpler, or more direct, characterization of
the membership f ∈M?



Since the Drury-Arveson space is a reproducing-kernel Hilbert
space, it is natural to turn to the reproducing kernel for possible
answers. The normalized reproducing kernel for H2

n is given by

kz(ζ) =
(1− |z |2)1/2

1− 〈ζ, z〉
,

z , ζ ∈ B. One of the frequent tools in the study of
reproducing-kernel Hilbert spaces is the Berezin transform. But for
any f ∈ H2

n , the Berezin transform

〈fkz , kz〉

is none other than f (z) itself, whose boundedness on B is not
sufficient for the membership f ∈M.

But what about something stronger than the Berezin transform?
For example, anyone who gives any thought about the multipliers
is likely to come up with the following:



Question 1.1. For f ∈ H2
n , does the condition

sup
|z|<1
‖fkz‖ <∞

imply the membership f ∈M?

Prima facie, one would think that there is at least a fair chance
that the answer to Question 1.1 might be affirmative. And that
was what we thought for quite a while. What makes this question
particularly tempting is that an affirmative answer would give a
very simple characterization of the membership f ∈M. But that
would be too simple a characterization, as it turns out. After a long
struggle, we have finally arrived at the conclusion that, tempting
though the question may be, its answer is actually negative.



Fang and X. (2015): There exists an f ∈ H2
n satisfying the

conditions f /∈M and

sup
|z|<1
‖fkz‖ <∞.

A consequence of this is that in general, the membership
f ∈ H2

n ∩ H∞ does not imply f ∈M.



Later, a different condition kind of condition for determining the
membership f ∈M was examined, one that is in terms of the
unnormalized reproducing kernel Kz :

Aleman, Hartz, McCarthy and Richter (2018): For f ∈ H2
n , the

condition
sup
|z|<1

Re〈f ,Kz f 〉 <∞,

implies f ∈M.

Thus a natural question arises: is the above condition a necessary
condition for the membership f ∈M. In the same 2018 paper,
Aleman et al showed that on the Dirichlet space Dα, 0 < α < 1,
on the unit disc in C, the analogue of the above condition is not
necessary for the multipliers of Dα. But it would be nice to know
the answer for the Drury-Arveson space H2

n .



Fang and X. (2020): The function

ϕ(ζ) =
ζ2√

1− ζ1
,

ζ = (ζ1, . . . , ζn) ∈ B, is a multiplier of the Drury-Arveson space
H2
n . Moreover, there is a constant c > 0 such that

sup
|z|=r

Re〈ϕ,Kzϕ〉 ≥ c

(
1 + log

1

1− r

)
for every 0 ≤ r < 1. In particular,

sup
|z|<1

Re〈ϕ,Kzϕ〉 =∞.



After the publication of our 2020 paper, Aleman, Hartz, McCarthy
and Richter also produced f ∈M with

sup
|z|<1

Re〈f ,Kz f 〉 =∞.

Their main idea is to embed the multiplier algebra of D1/2 into M.

In essence, they showed that the negative answer for the
multipliers of Dα in their 2018 paper can be transformed into a
negative answer for M.



But the explicit growth rate

sup
|z|=r

Re〈ϕ,Kzϕ〉 ≥ c

(
1 + log

1

1− r

)
, 0 < r < 1,

for

ϕ(ζ) =
ζ2√

1− ζ1

leads to more:

Fang and X. (2020): Let F denote the collection of f ∈M
satisfying the condition

sup
|z|<1

Re〈f ,Kz f 〉 <∞.

With respect to the multiplier norm ‖ · ‖M, F is nowhere dense in
M.



The Reciprocal Problem.

This is a really elementary problem, but one to which we do not
have a general answer. This illustrates how little we know about
the Drury-Arveson space.

Problem. Let f ∈ H2
n . Suppose that there is a c > 0 such that

|f (ζ)| ≥ c for every ζ ∈ B. Does it follow that 1/f ∈ H2
n?

The answer is “yes” for n = 2, 3 by an argument due to Ricther
and Sundberg.

But the problem is completely open for n ≥ 4.



Submodules

Arveson (2000): Let N be a closed linear subspace of H2
n that is

invariant under the multiplication by the polynomials. If N 6= {0},
then N contains a nonzero multiplier of H2

n .

An immediate consequence of this is that for invariant subspaces
N1,N2 of H2

n , if N1 6= {0} and N2 6= {0}, then N1 ∩ N2 6= {0}.

In the jargon of invariant-subspace theory, this fact says that there
are no non-trivial invariant subspaces of H2

n that are disjoint.

This is definitely not the case for some of the other
reproducing-kernel Hilbert spaces. For example, one can easily
construct invariant subspaces N1, N2 of the Bergman space
L2
a(B, dv) such that N1 ∩ N2 = {0} while N1 6= {0} and N2 6= {0}.

In particular, this implies that N1 ∩ H∞(B) = {0} and
N2 ∩ H∞(B) = {0}.

What about the Hardy space?



This result of Arveson can also be proved using Drury’s ideas.

Recall that Drury’s proof of the von Neumann inequality for row
contraction (A1, . . . ,An) is the identity

(#) Zp(A∗1, . . . ,A
∗
n) = (p(M∗ζ1

, . . . ,M∗ζn)⊗ 1)Z

for p ∈ C[z1, . . . , zn], where

(Zx)(ζ) =
∑
α∈Zn

+

|α|!
α!

(1− A1A
∗
1 − · · · − AnA

∗
n)1/2A∗αxζα,

x ∈ H, is an isometry from H to H2
n ⊗H.



Now if we take adjoints on both sides of (#), we get

(##) p(A1, . . . ,An)Z ∗ = Z ∗(p(Mζ1 , . . . ,Mζn)⊗ 1)

for every p ∈ C[z1, . . . , zn].

Let N be a submodule (i.e., an invariant subspace) of H2
n .

Consider the Z for the case where H = N and

(A1, . . . ,An) = (Mζ1 |N, . . . ,Mζn |N).

For each y ∈ N, set ϕy = Z ∗(1⊗ y) ∈ N. Then (##) gives us

‖pϕy‖H2
n

= ‖pϕy‖N ≤ ‖p ⊗ y‖H2
n⊗N = ‖p‖H2

n
‖y‖N

for every p ∈ C[z1, . . . , zn]. This means that ϕy ∈M. Finally,
since the linear span of all pϕy = Z ∗(p ⊗ y) is dense in N, the
condition N 6= {0} implies that ϕy 6= 0 for some y ∈ N.



Based on this proof, we can say that Arveson’s result that N 6= {0}
implies N ∩M 6= {0} for any submodule N of H2

n is actually a
“close cousin” of the von Neumann inequality for row contractions.

Note that when n = 1, this result is a consequence of Beurling’s
theorem. So one say that this one particular aspect of Beurling’s
theorem is retained by H2

n for all n ≥ 2.



Thank you!


