Commutant lifting and Nevanlinna-Pick interpolation in several variables

Jaydeb Sarkar

Indian Statistical Institute Bangalore

November 23, 2021.

Joint work with: Deepak K. D., Deepak Pradhan, and Dan Timotin 2020

Notation

(1) $\mathscr{H}, \mathscr{E}, \mathscr{E}_{*}$, etc. : Hilbert spaces (separable and over \mathbb{C}).
(2) Linear operators are bounded: $T \in \mathscr{B}(\mathscr{H})$.
(3) $\mathbb{D}^{n}=\left\{\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{i}\right|<1, i=1, \ldots, n\right\}$: open polydisc.
(9) $\mathbb{B}^{n}=\left\{\boldsymbol{z} \in \mathbb{C}^{n}: \sum_{i=1}^{n}\left|z_{i}\right|^{2}<1\right\}$: open ball.
(6) $H^{\infty}(\Omega)=\left\{\varphi \in \mathscr{O}(\Omega):\|\varphi\|:=\sup _{z \in \Omega}|\varphi(z)|<\infty\right\}$. Here $\Omega=\mathbb{B}^{n}$ or \mathbb{D}^{n}.
(c) $\mathscr{S}(\Omega)=\left\{\varphi \in H^{\infty}(\Omega):\|\varphi\| \leq 1\right\}$.
(1) $P_{\mathscr{S}}=$ orthogonal projection onto \mathscr{S}, where $\mathscr{S} \subseteq \mathscr{H}$ is a closed subspace.
(3) $i_{\mathscr{S}}: \mathscr{S} \hookrightarrow \mathscr{H}$ is the inclusion map.
(9) RKHS = Reproducing kernel Hillbert space.

Road map

(T) The classical Nevanlinna-Pick interpolation theorem
(2) Sarason's commutant lifting theorem
(3) Dilations
(1) A halt at the bidisc
(6) Commutant lifting theorem
(© Factorizations, and
(2) Nevanlinna-Pick interpolation on \mathbb{B}^{n}.

Nevanlinna-Pick interpolation

Theorem 1 (Nevanlinna (1919) and Pick (1916))

Given distinct p points $\left\{z_{i}\right\}_{i=1}^{p} \subseteq \mathbb{D}$ and p points $\left\{w_{i}\right\}_{i=1}^{p} \subseteq \mathbb{D}$, there exists $a \varphi \in \mathscr{S}(\mathbb{D})$ such that

$$
\varphi\left(z_{i}\right)=w_{i} \quad(i=1, \ldots, p),
$$

if and only if the Pick matrix

$$
\left(\frac{1-w_{i} \bar{w}_{j}}{1-z_{i} \bar{z}_{j}}\right)_{p \times p} \geq 0 .
$$

$$
\exists \varphi \in \mathscr{S}(\mathbb{D}) \text { s.t } \varphi\left(z_{i}\right)=w_{i} \rightleftarrows\left(\frac{1-w_{i} \bar{w}_{j}}{1-z_{i} \bar{z}_{j}}\right)_{p \times p} \geq 0
$$

NP interpolation and Sarason

$$
\begin{array}{|l|}
\hline \exists \varphi \in \mathscr{S}(\mathbb{D}) \text { s.t } \varphi\left(z_{i}\right)=w_{i} \\
\text { Complex Ana cyris }
\end{array} \frac{\left(\frac{1-w_{i} \bar{w}_{j}}{1-z_{i} \bar{z}_{j}}\right)_{p \times p} \geq 0}{\text { Linear Abgebra. }}
$$

Commutant lifting theorem
operator Theony.
Note: See the article by J. McCarthy. Pick's theorem-what's the big deal? 2003.

CLT: Hardy space

The Hardy space over \mathbb{D} :

$$
H^{2}(\mathbb{D}):=\left\{f=\sum_{m=0}^{\infty} a_{m} z^{m} \in \mathscr{O}(\mathbb{D}):\|f\|=\left(\sum_{m=0}^{\infty}\left|a_{m}\right|^{2}\right)^{\frac{1}{2}}<\infty\right\}
$$

And, the shift M_{z} on $H^{2}(\mathbb{D})$ is the multiplication operator

$$
M_{z} f=z f \quad\left(f \in H^{2}(\mathbb{D})\right)
$$

Note:
(1) S on $I^{2}\left(\mathbb{Z}_{+}\right) \cong M_{z}$ on $H^{2}(\mathbb{D})$.
(2) $\left\{M_{z}\right\}^{\prime}=\left\{M_{\varphi}: \varphi \in H^{\infty}(\mathbb{D})\right\}$.
(3) $H^{2}(\mathbb{D})$ is a RKHS corresponding to the Szegö kernel

$$
s(z, w)=(1-z \bar{w})^{-1} \quad(z, w \in \mathbb{D})
$$

(4) $M_{\varphi}^{*} s(\cdot, w)=\overline{\varphi(w)} s(\cdot, w)$ for all $\varphi \in H^{\infty}(\mathbb{D})$ and $w \in \mathbb{D}$.

CLT (and Sarason)

Theorem 2 (Sarason, 1967)

Suppose \mathscr{Q}_{1} and \mathscr{Q}_{2} are M_{z}^{*}-invariant closed subspaces of $\mathrm{H}^{2}(\mathbb{D})$. Let $X \in \mathscr{B}\left(\mathscr{Q}_{1}, \mathscr{Q}_{2}\right)$ and $\|X\| \leq 1$. If $X\left(P_{\mathscr{Q}_{1}} M_{z} \mid \mathscr{Q}_{1}\right)=\left(P_{\mathscr{Q}_{2}} M_{z} \mid \mathscr{Q}_{2}\right) X$, then there exists a $\varphi \in \mathscr{S}(\mathbb{D})$ such that

$$
X=\left.P_{2_{2}} M_{\varphi}\right|_{Q_{1}} .
$$

That is, we have the following commutative diagram:

Sarason's CLT yields a simple and elegant proof of the interpolation theorem.
The easy direction: If $\varphi\left(z_{i}\right)=w_{i}$ for $\varphi \in \mathscr{S}(\mathbb{D})$, then $\left\|M_{\varphi}\right\| \leq 1$ and $M_{\varphi}^{*} s(\cdot, w)=\overline{\varphi(w)} s(\cdot, w), w \in \mathbb{D} \Rightarrow$ the Pick matrix ≥ 0. The not so easy direction: Suppose the Pick matrix ≥ 0. Then one proceeds as follows:
(1) Consider the M_{z}^{*}-invariant finite dimensional subspace

$$
\mathscr{Q}=\operatorname{span}\left\{s\left(\cdot, z_{i}\right): i=1, \ldots, p\right\} .
$$

(2) Define $X: \mathscr{Q} \rightarrow \mathscr{Q}$ by $X s\left(\cdot, z_{i}\right)=\bar{w}_{i} s\left(\cdot, z_{i}\right), i=1, \ldots, p$.
(3) Positivity of the Pick matrix $\Rightarrow X$ is a contraction.
(4) On the other hand, $X^{*}\left(\left.P_{\mathscr{Q}} M_{z}\right|_{\mathscr{Q}}\right)=\left(\left.P_{\mathscr{Q}} M_{z}\right|_{\mathscr{Q}}\right) X^{*}$.
(5) Apply the CLT to get a solution $\varphi \in \mathscr{S}(\mathbb{D})$.

Interconnections

(1) Commutant lifting theorem
(2) Nevanlinna-Pick interpolation
(3) Dilations
(1) von Neumann inequality
© Invariant subspaces
© Toeplitz corona (if not corona) theorem, etc.

Groundwork

Drury-Arveson space

Definition 3

The Drury-Arveson space H_{n}^{2} is a RKHS corresponding to the kernel

$$
k_{1}(\boldsymbol{z}, \boldsymbol{w})=\left(1-\sum_{i=1}^{n} z_{i} \bar{w}_{i}\right)^{-1} \quad\left(\boldsymbol{z}, \boldsymbol{w} \in \mathbb{B}^{n}\right) .
$$

Remark 4

$\left(M_{z_{1}}, \ldots, M_{z_{n}}\right)$ defines a row contraction on H_{n}^{2}, that is

$$
\sum_{i=1}^{n} M_{z_{i}} M_{z_{i}}^{*} \leq I_{H_{n}^{2}} .
$$

Unification and more examples

Definition 5

Let $k: \mathbb{B}^{n} \times \mathbb{B}^{n} \rightarrow \mathbb{C}$ be a kernel such that k is analytic in the first variables $\left\{z_{1}, \ldots, z_{n}\right\}$. We say that k is regular if there exists a kernel \tilde{k} on \mathbb{B}^{n} such that

$$
k(\boldsymbol{z}, \boldsymbol{w})=k_{1}(\boldsymbol{z}, \boldsymbol{w}) \tilde{k}(\boldsymbol{z}, \boldsymbol{w}) \quad\left(\boldsymbol{z}, \boldsymbol{w} \in \mathbb{B}^{n}\right)
$$

The RKHS $\mathscr{H}_{k} \subseteq \mathscr{O}\left(\mathbb{B}^{n}\right)$ corresponding to the kernel k will be referred as a regular RKHS.

The above factorization essentially implies that ($M_{z_{1}}, \ldots, M_{z_{n}}$) defines a commuting row contraction on \mathscr{H}_{k} (cf. Douglas - Misra - S. 2012):

$$
\sum_{i=1}^{n} M_{z_{i}} M_{z_{i}}^{*} \leq I_{\mathscr{H}_{k}}
$$

Example 6

For each $\lambda>1, \mathscr{H}_{k_{\lambda}}$ is a regular RKHS, where

$$
k_{\lambda}(\boldsymbol{z}, \boldsymbol{w})=\left(1-\sum_{i=1}^{n} z_{i} \bar{w}_{i}\right)^{-\lambda} \quad\left(\boldsymbol{z}, \boldsymbol{w} \in \mathbb{B}^{n}\right)
$$

Note that $\mathscr{H}_{k_{\lambda}}$ is the Hardy/Bergman/weighted Bergman space for $\lambda=n, n+1$, and $n+1+\alpha$ for any $\alpha>0$, respectively.

Vector-valued spaces: If \mathscr{E} is a Hilbert space and k is a regular kernel, then we simply say that $\mathscr{H}_{k} \otimes \mathscr{E}$ is a (vector-valued) regular RKHS.

Dilations

Definition 7

Suppose $T=\left(T_{1}, \ldots, T_{n}\right)$ is a commuting tuple on \mathscr{H}. We say that T dilates to $\left(M_{z_{1}} \otimes I_{\mathscr{E}_{*}}, \ldots, M_{z_{n}} \otimes I_{\mathscr{E}_{*}}\right)$ on $H_{n}^{2} \otimes \mathscr{E}_{*}$ if there exists an isometry $\Pi: \mathscr{H} \rightarrow H_{n}^{2} \otimes \mathscr{E}_{*}$ such that

$$
\Pi T_{i}^{*}=\left(M_{z_{i}} \otimes I_{\mathscr{\delta}_{*}}\right)^{*} \Pi \quad(i=1, \ldots, n) .
$$

We often say that $\Pi: \mathscr{H} \rightarrow H_{n}^{2} \otimes \mathscr{E}_{*}$ is a dilation of T.

From now on: We assume that \mathscr{H}_{k} is a regular RKHS.

Dilations

Theorem 8 (Muller-Vasilescu, Arveson, Athavale, Douglas-Misra-S, Kumari-Sarkar-S-Timotin)

$\left(M_{z_{1}} \otimes I_{\mathscr{E}}, \ldots, M_{z_{n}} \otimes I_{\mathscr{E}}\right)$ on $\mathscr{H}_{k} \otimes \mathscr{E}$ dilates to $\left(M_{z_{1}} \otimes I_{\mathscr{E}_{*}}, \ldots, M_{z_{n}} \otimes I_{\mathscr{E}_{*}}\right)$ on $H_{n}^{2} \otimes \mathscr{E}_{*}$ for some Hilbert space \mathscr{E}_{*}.

More specifically: There exist a Hilbert space \mathscr{E}_{*} and an isometry

$$
\Pi_{k}: \mathscr{H}_{k} \otimes \mathscr{E} \rightarrow H_{n}^{2} \otimes \mathscr{E}_{*},
$$

such that

$$
\Pi_{k}\left(M_{z_{i}} \otimes I_{\mathscr{E}}\right)^{*}=\left(M_{z_{i}} \otimes I_{\mathscr{E}_{*}}\right)^{*} \Pi_{k} \quad(i=1, \ldots, n)
$$

Multipliers

Definition 9

Given regular RKHSs $\mathscr{H}_{k_{1}} \otimes \mathscr{E}_{1}$ and $\mathscr{H}_{k_{2}} \otimes \mathscr{E}_{2}$, a function $\Phi: \mathbb{B}^{n} \rightarrow \mathscr{B}\left(\mathscr{E}_{1}, \mathscr{E}_{2}\right)$ is called a multiplier from $\mathscr{H}_{k_{1}} \otimes \mathscr{E}_{1}$ to $\mathscr{H}_{k_{2}} \otimes \mathscr{E}_{2}$ if

$$
\Phi\left(\mathscr{H}_{k_{1}} \otimes \mathscr{E}_{1}\right) \subseteq \mathscr{H}_{k_{2}} \otimes \mathscr{E}_{2}
$$

In this case, $M_{\Phi} f=\Phi f$ defines a bounded linear operator from $\mathscr{H}_{k_{1}} \otimes \mathscr{E}_{1}$ to $\mathscr{H}_{k_{2}} \otimes \mathscr{E}_{2}$.

The multiplier space $\mathscr{M}\left(\mathscr{H}_{k_{1}} \otimes \mathscr{E}_{1}, \mathscr{H}_{k_{2}} \otimes \mathscr{E}_{2}\right)$ is the set of all multipliers from $\mathscr{H}_{k_{1}} \otimes \mathscr{E}_{1}$ to $\mathscr{H}_{k_{2}} \otimes \mathscr{E}_{2}$.

Theorem 10 (cf. S: 2016)

Suppose $X \in \mathscr{B}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, \mathscr{H}_{k} \otimes \mathscr{E}_{2}\right)$. Then

$$
X\left(M_{z_{1}} \otimes I_{\mathscr{E}_{1}}\right)=\left(M_{z_{i}} \otimes I_{\delta_{2}}\right) X \quad(i=1, \ldots, n) .
$$

if and only if $X=M_{\Phi}$ for some $\Phi \in \mathscr{M}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, \mathscr{H}_{k} \otimes \mathscr{E}_{2}\right)$.

Proof.

Consider $\left(M_{z_{i}}^{*} \otimes I_{\mathscr{E}_{1}}\right) X^{*}=X^{*}\left(M_{z_{i}} \otimes I_{\mathscr{E}_{2}}\right)^{*}$, and use the fact that

$$
\cap_{i=1}^{n} \operatorname{ker}\left(M_{z_{i}}-w_{i} l_{H_{n}^{2}}\right)^{*}=\mathbb{C} k_{1}(\cdot, w) \quad\left(\boldsymbol{w} \in \mathbb{B}^{n}\right)
$$

Denote by

$$
\mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, \mathscr{H}_{k} \otimes \mathscr{E}_{2}\right)=\left\{\Phi \in \mathscr{M}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, \mathscr{H}_{k} \otimes \mathscr{E}_{2}\right):\left\|M_{\Phi}\right\| \leq 1\right\}
$$

CLT on H_{n}^{2}

Definition 11

A closed subspace $\mathscr{Q} \subseteq \mathscr{H}_{k} \otimes \mathscr{E}$ is said to be quotient module if $\left(M_{z_{i}} \otimes I_{\mathscr{E}}\right)^{*} \mathscr{Q} \subseteq \mathscr{Q}, i=1, \ldots, n$.

Theorem 12 (Ambrozie-Timotin, Ball-Trent-Vinnikov)

Suppose $\mathscr{Q}_{1} \subseteq H_{n}^{2} \otimes \mathscr{E}_{1}$ and $\mathscr{Q}_{2} \subseteq H_{n}^{2} \otimes \mathscr{E}_{2}$ be quotient modules, and $X \in \mathscr{B}\left(\mathscr{Q}_{1}, \mathscr{Q}_{2}\right)$ be a contraction. If

$$
X\left(\left.P_{\mathscr{Q}_{1}}\left(M_{z_{i}} \otimes I_{\mathscr{E}_{1}}\right)\right|_{\mathscr{Q}_{1}}\right)=\left(\left.P_{\mathscr{Q}_{2}}\left(M_{z_{i}} \otimes I_{\mathscr{E}_{2}}\right)\right|_{\mathscr{Q}_{2}}\right) X \quad(i=1, \ldots, n),
$$

then there exists $\Phi \in \mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, H_{n}^{2} \otimes \mathscr{E}_{2}\right)$ such that $\left.P_{\mathscr{Q}_{2}} M_{\Phi}\right|_{\mathscr{Q}_{1}}=X$.
Also see: Davidson and Le, Commutant lifting for commuting row contractions. 2010.

The bidisc

Theorem 13 (Agler)

Given p points $\left\{\left(\alpha_{i}, \beta_{i}\right)\right\}_{i=1}^{p} \subseteq \mathbb{D}^{2}$ and p points $\left\{w_{i}\right\}_{i=1}^{p} \subseteq \mathbb{D}$, there exists $a \varphi \in \mathscr{S}\left(\mathbb{D}^{2}\right)$ such that

$$
\varphi\left(\left(\alpha_{i}, \beta_{i}\right)\right)=w_{i} \quad(i=1, \ldots, p)
$$

if and only if there exist positive $p \times p$ matrices Γ and Δ such that

$$
\left(1-\bar{w}_{i} w_{j}\right)=\left(1-\bar{\alpha}_{i} \alpha_{j}\right) \Gamma_{i j}+\left(1-\bar{\beta}_{i} \beta_{j}\right) \Delta_{i j}
$$

Note $1: \mathbb{D}^{n}, n \geq 2$, is another story and with different kinds of challenges (and surprises)! (However, see: Kosiński and Zwonek, Nevanlinna-Pick interpolation problem in the ball. 2018.)

Note 2: See the paper: J. McCarthy, Shining a Hilbertian lamp on the bidisk. 2012.

On today's agenda

Dilations and a variation of the H_{n}^{2}-CLT

The following is a variation, in terms of dilations, of the $H_{n}^{2}-$ CLT (Theorem 12).

Theorem 14

Suppose $T=\left(T_{1}, \ldots, T_{n}\right)$ and $\hat{T}=\left(\hat{T}_{1}, \ldots, \hat{T}_{n}\right)$ are commuting tuples on \mathscr{H} and $\hat{\mathscr{H}}$, respectively, $X \in \mathscr{B}(\mathscr{H}, \hat{\mathscr{H}}),\|X\| \leq 1$, and

$$
X T_{i}=\hat{T}_{i} X \quad(i=1, \ldots, n)
$$

If $\Pi: \mathscr{H} \rightarrow H_{n}^{2} \otimes \mathscr{E}$ and $\hat{\Pi}: \hat{\mathscr{H}} \rightarrow H_{n}^{2} \otimes \hat{\mathscr{E}}$ are dilations of T and \hat{T}, respectively, then there exists $\Phi \in \mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}, H_{n}^{2} \otimes \hat{\mathscr{E}}\right)$ such that

$$
X=\hat{\Pi}^{*} M_{\Phi} \Pi .
$$

Proof: We need to chase the following commutative diagram:

Consider the quotient modules $\mathscr{Q}:=\Pi \mathscr{H} \subseteq H_{n}^{2} \otimes \mathscr{E}$ and $\hat{\mathscr{Q}}:=\hat{\Pi} \hat{\mathscr{H}} \subseteq H_{n}^{2} \otimes \mathscr{E}_{*}$. If

$$
\tilde{X}=\left.\hat{\Pi} X \Pi^{*}\right|_{\mathscr{Q}},
$$

then a little computation shows that $\tilde{X} \in \mathscr{B}(\mathscr{Q}, \hat{\mathscr{Q}})$ and

$$
\tilde{X}\left(\left.P_{\mathscr{Q}}\left(M_{z_{i}} \otimes I_{\mathscr{E}}\right)\right|_{\mathscr{2}}\right)=\left(\left.P_{\hat{\mathscr{Q}}}\left(M_{z_{i}} \otimes I_{\hat{E}}\right)\right|_{\hat{\mathscr{V}}}\right) \tilde{X} \quad(i=1, \ldots, n) .
$$

It then follows from the H_{n}^{2}-CLT that

$$
\tilde{X}=\left.P_{\hat{2}} M_{\Phi}\right|_{\mathscr{Q}}
$$

for some $\Phi \in \mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}, H_{n}^{2} \otimes \hat{\mathscr{E}}\right)$. By a repeated application of $P_{\mathscr{Q}}=\Pi \Pi^{*}$ and $\mathscr{Q}=$ ran $\Pi=$ ran $\Pi \Pi^{*}$, it follows that $X=\hat{\Pi}^{*} M_{\Phi} \Pi$.

Prologue (to the CLT)

Definition 15 (Dilations of 2)

Let $\mathscr{Q} \subseteq \mathscr{H}_{k} \otimes \mathscr{E}$ be a quotient module. An isometry
$\Pi: \mathscr{Q} \rightarrow H_{n}^{2} \otimes \mathscr{E}_{*}$ is said to be a dilation of \mathscr{Q} if Π is a dilation of $\left(P_{\mathscr{Q}} M_{z_{1}}\left|{ }_{\mathscr{Q}}, \ldots, P_{\mathscr{Q}} M_{z_{n}}\right| \mathscr{Q}\right)$.

Lemma 16

Let $\mathscr{Q} \subseteq \mathscr{H}_{k} \otimes \mathscr{E}$ be a quotient module. If $\Pi: \mathscr{H}_{k} \otimes \mathscr{E} \rightarrow H_{n}^{2} \otimes \mathscr{E}_{*}$ is a dilation of $\mathscr{H}_{k} \otimes \mathscr{E}$, then

$$
\Pi_{\mathscr{Q}}:=\Pi \circ \dot{\mathscr{Q}}_{\mathscr{Q}}: \mathscr{Q} \rightarrow H_{n}^{2} \otimes \mathscr{E}_{*},
$$

is a dilation \mathscr{Q}.

Proof.

Some elementary computations with projections and inclusions. Essentially, we have the following:

$$
\mathscr{Q} \hookrightarrow \mathscr{H}_{k} \otimes \mathscr{E} \xrightarrow{\square} H_{n}^{2} \otimes \mathscr{E}_{*} .
$$

The CLT

Theorem 17

Let $\mathscr{Q}_{1} \subseteq H_{n}^{2} \otimes \mathscr{E}_{1}$ and $\mathscr{Q}_{2} \subseteq \mathscr{H}_{k} \otimes \mathscr{E}_{2}$ be quotient moudles. Let $X \in \mathscr{B}\left(\mathscr{Q}_{1}, \mathscr{Q}_{2}\right),\|X\| \leq 1$, and let

$$
X\left(\left.P_{\mathscr{Q}_{1}}\left(M_{z_{i}} \otimes I_{\mathscr{E}_{1}}\right)\right|_{\mathscr{Q}_{1}}\right)=\left(\left.P_{\mathscr{R}_{2}}\left(M_{z_{i}} \otimes I_{\mathscr{E}_{2}}\right)\right|_{\mathscr{Q}_{2}}\right) X,
$$

for all i. Then there exists $\Phi \in \mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, \mathscr{H}_{k} \otimes \mathscr{E}_{2}\right)$ such that

$$
X=\left.P_{\mathscr{Q}_{2}} M_{\Phi}\right|_{\mathscr{Q}_{1}} .
$$

Proof: Clearly, $i_{\mathscr{Q}_{1}}: \mathscr{Q}_{1} \hookrightarrow H_{n}^{2} \otimes \mathscr{E}_{1}$ is a dilation of \mathscr{Q}_{1}. Let $\Pi_{k}: \mathscr{H}_{k} \otimes \mathscr{E}_{2} \rightarrow H_{n}^{2} \otimes \hat{E}$ be a dilation of $\mathscr{H}_{k} \otimes \mathscr{E}_{2}$ (assured by Theorem 8). By Lemma 16:

$$
\Pi_{\mathscr{Q}_{2}}=\Pi_{k} i_{\mathscr{Q}_{2}}: \mathscr{Q}_{2} \rightarrow H_{n}^{2} \otimes \hat{\mathscr{E}},
$$

is a dilation of \mathscr{Q}_{2}. That is:

Then Theorem 14 yields $X=\Pi_{\mathscr{Q}_{2}}^{*} M_{\Phi_{1}} \dot{\mathscr{Q}}_{1}$ for some $\Phi_{1} \in \mathscr{M}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, H_{n}^{2} \otimes \hat{\mathscr{E}}\right)$. Hence

$$
X=i_{\mathscr{Q}_{2}}^{*}\left(\Pi_{k}^{*} M_{\Phi_{1}}\right) i_{\mathscr{Q}_{1}}
$$

One checks that $\Pi_{k}^{*} M_{\Phi_{1}}: H_{n}^{2} \otimes \mathscr{E}_{1} \rightarrow \mathscr{H}_{k} \otimes \mathscr{E}_{2}$ intertwines the shifts, that is

$$
\Pi_{k}^{*} M_{\Phi_{1}}=M_{\Phi},
$$

for some $\Phi \in \mathscr{M}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, \mathscr{H}_{k} \otimes \mathscr{E}_{2}\right)$. Then $X=i_{\mathscr{Q}_{2}}^{*} M_{\Phi} i_{\mathscr{Q}_{1}}$, and thus $\ldots \ldots . . . X=\left.P_{\mathscr{Q}_{2}} M_{\Phi}\right|_{\mathscr{Q}_{1}}$.

The diagram

That is, the following diagram commutes:

Factorizations - I

Theorem 18

Suppose $\mathscr{H}_{\tilde{k}}$ is the RKHS corresponding to \tilde{k}, where $k=k_{1} \tilde{k}$. If \mathscr{E} is a Hilbert space, then there exists a co-isometric multiplier $\Psi_{k} \in \mathscr{M}\left(H_{n}^{2} \otimes\left(\mathscr{H}_{\hat{k}} \otimes \mathscr{E}\right), \mathscr{H}_{k} \otimes \mathscr{E}\right)$ such that

$$
k(\boldsymbol{z}, \boldsymbol{w}) \mathscr{I}_{\mathscr{E}}=\frac{\Psi_{k}(\boldsymbol{z}) \Psi_{k}(\boldsymbol{w})^{*}}{1-\langle\boldsymbol{z}, \boldsymbol{w}\rangle} \quad\left(\boldsymbol{z}, \boldsymbol{w} \in \mathbb{B}^{n}\right) .
$$

Factorizations - I (Example)

Let $m>1$ be an integer. Set

$$
k_{m}(\boldsymbol{z}, \boldsymbol{w})=\left(1-\sum_{i=1}^{n} z_{i} \bar{w}_{i}\right)^{-m} \quad\left(\boldsymbol{z}, \boldsymbol{w} \in \mathbb{B}^{n}\right)
$$

Then $\tilde{k}_{m}(\boldsymbol{z}, \boldsymbol{w})=k_{m-1}(\boldsymbol{z}, \boldsymbol{w})$, and $\Psi_{k_{m}}(\boldsymbol{w})^{*}: \mathscr{E} \rightarrow \mathscr{H}_{k_{m-1}} \otimes \mathscr{E}$ is given by

$$
\Psi_{k_{m}}(\boldsymbol{w})^{*} \eta=k_{m-1}(\cdot, \boldsymbol{w}) \otimes \eta
$$

for all $\boldsymbol{z}, \boldsymbol{w} \in \mathbb{B}^{n}$ and $\eta \in \mathscr{E}$.

Factorizations - II

Theorem 19

Let \mathscr{E}_{1} and \mathscr{E}_{2} be Hilbert spaces, and let $\Theta: \mathbb{B}^{n} \rightarrow \mathscr{B}\left(\mathscr{E}_{1}, \mathscr{E}_{2}\right)$ be an analytic function. In the setting of Theorem 18, the following conditions are equivalent:
(i) $\Theta \in \mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, \mathscr{H}_{k} \otimes \mathscr{E}_{2}\right)$,
(ii) there exists $\tilde{\Theta} \in \mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, H_{n}^{2} \otimes\left(\mathscr{H}_{\tilde{k}} \otimes \mathscr{E}_{2}\right)\right)$ such that

$$
M_{\Theta}=M_{\Psi_{k}} M_{\tilde{\Theta}} .
$$

Also see (the scalar case): Ball - Bolotnikov (2017); and Aleman Hartz - McCarthy - Richter (2019).

More specifically, the multiplier Ψ_{k} makes the following diagram commutative:

NP interpolation

Let $\mathscr{B}_{1}\left(\mathscr{E}_{1}, \mathscr{E}_{2}\right)=\left\{A \in \mathscr{B}\left(\mathscr{E}_{1}, \mathscr{E}_{2}\right):\|A\|<1\right\}$.
Problem: Given $\left\{\boldsymbol{z}_{i}\right\}_{i=1}^{m} \subseteq \mathbb{B}^{n},\left\{W_{i}\right\}_{i=1}^{m} \subseteq \mathscr{B}_{1}\left(\mathscr{E}_{1}, \mathscr{E}_{2}\right)$, find necessary and sufficient conditions for the existence of a multiplier $\Phi \in \mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, \mathscr{H}_{k} \otimes \mathscr{E}_{2}\right)$ such that

$$
\begin{equation*}
\Phi\left(\boldsymbol{z}_{i}\right)=W_{i} \quad(i=1, \ldots, m) . \tag{1}
\end{equation*}
$$

Theorem 20

Let $\left\{\boldsymbol{z}_{i}\right\}_{i=1}^{m} \subseteq \mathbb{B}^{n}$ and $\left\{W_{i}\right\}_{i=1}^{m} \subseteq \mathscr{B}_{1}\left(\mathscr{E}_{1}, \mathscr{E}_{2}\right)$. TFAE:
(i) There exists $\Phi \in \mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, \mathscr{H}_{k} \otimes \mathscr{E}_{2}\right)$ such that $\Phi\left(\boldsymbol{z}_{i}\right)=W_{i}$,
$i=1, \ldots, m$.
(ii) $\sum_{1 \leq i, j \leq m}\left\langle\left(k\left(\mathbf{z}_{i}, \mathbf{z}_{j}\right) I_{\mathscr{E}_{2}}-\frac{W_{i} W_{j}^{*}}{1-\left\langle\mathbf{z}_{i}, \mathbf{z}_{j}\right\rangle}\right) \eta_{j}, \eta_{i}\right\rangle$ for all $\eta_{1}, \ldots, \eta_{m} \in \mathscr{E}_{2}$.
(iii) There exists $\tilde{\Phi} \in \mathscr{M}_{1}\left(H_{n}^{2} \otimes \mathscr{E}_{1}, H_{n}^{2} \otimes\left(\mathscr{H}_{\tilde{k}} \otimes \mathscr{E}_{2}\right)\right)$ such that

$$
\Psi_{k}\left(\boldsymbol{z}_{i}\right) \tilde{\Phi}\left(\boldsymbol{z}_{i}\right)=W_{i} \quad(i=1, \ldots, n)
$$

In the case of scalar-valued multipliers:
(i) \Leftrightarrow (ii) is due to Aleman, Hartz, McCarthy and Richter (2019). In addition, if $n=1$ and $\tilde{k}(z, w)=(1-z \bar{w})^{-m}, m \in \mathbb{N}$, then $(i) \Leftrightarrow(i i)$ was proved by Ball and Bolotnikov (2017).

NP interpolation - Example

Consider the RKHS $\mathscr{H}_{m}, m>1$, corresponding to the kernel

$$
k_{m}(\boldsymbol{z}, \boldsymbol{w})=\left(1-\sum_{i=1}^{n} z_{i} \bar{w}_{i}\right)^{-m} \quad\left(\boldsymbol{z}, \boldsymbol{w} \in \mathbb{B}^{n}\right) .
$$

Then we have the following:
Given distinct m points $\left\{\boldsymbol{z}_{i}\right\}_{i=1}^{m} \subseteq \mathbb{B}^{n}$ and m points $\left\{w_{i}\right\}_{i=1}^{m} \subseteq \mathbb{D}$, there exists a $\varphi \in \mathscr{M}_{1}\left(H_{n}^{2}, \mathscr{H}_{m}\right)$ such that $\varphi\left(\boldsymbol{z}_{i}\right)=w_{i}, i=1, \ldots, m$, if and only if

$$
\left(\frac{1}{\left(1-\left\langle\mathbf{z}_{i}, \boldsymbol{z}\right\rangle\right)^{m}}-\frac{w_{i} \bar{w}_{j}}{1-\left\langle z_{i}, \bar{z}\right\rangle}\right)_{m \times m} \geq 0 .
$$

Thanks!!

