Wold decompositions for representations of *C**-algebras associated with noncommutative varieties

GELU POPESCU

University of Texas at San Antonio

The Fields Institute, November 2021

GELU POPESCU Wold decompositions for representations of C*-algebras associations

イロト イポト イヨト イヨト

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains, varieties, universal models

Wold decomposition, 1954

S is the unilateral shift defined on the Hardy space H²(D) by (Sφ)(z) := zf(z).

Theorem

If $V \in B(\mathcal{K})$ is an isometry, then \mathcal{K} admits an orthogonal decomposition $\mathcal{K} = \mathcal{K}_0 \oplus \mathcal{K}_1$, where \mathcal{K}_0 and \mathcal{K}_1 are reducing subspaces for V such that

- (i) V_{K0} is unitarily equivalent to a direct sum of copies of the unilateral shift S,
- (ii) $V|_{\mathcal{K}_1}$ is a unitary operator.

Moreover, the decomposition is uniquely determined :

 $\mathcal{K}_1 = \bigcap_{n=0}^{\infty} V^n \mathcal{K}, \qquad \mathcal{K}_0 = \oplus_{n=0}^{\infty} V^n \mathcal{L}, \quad \textit{where } \mathcal{L} = \mathcal{K} \ominus V \mathcal{K}.$

ヘロト 人間 ト ヘヨト ヘヨト

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains varieties universal model

Multivariable noncommutative case

• Let H_n be a complex Hilbert space with orthonormal basis e_1, e_2, \ldots, e_n . The full Fock space of H_n defined by

$$F^2(H_n) := \bigoplus_{k\geq 0} H_n^{\otimes k},$$

where $H_n^{\otimes 0} := \mathbb{C}1$.

The left creation operators S_i : F²(H_n) → F²(H_n) are defined by

$$S_i \varphi := e_i \otimes \varphi, \qquad \varphi \in F^2(H_n).$$

• (*S*₁,..., *S*_n) plays the role of universal model for row contractions :

$$\{(T_1,\ldots,T_n)\in B(\mathcal{H})^n: T_1T_1^*+\cdots+T_nT_n^*\leq I\}.$$

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains.varieties. universal mod

Wold decomposition

• Popescu, Trans. AMS, 1989

Theorem

Let V_1, \ldots, V_n be isometries on a Hilbert space \mathcal{K} such that $V_1 V_1^* + \cdots + V_n V_n^* \leq I$. Then $\mathcal{K} = \mathcal{K}_0 \oplus \mathcal{K}_1$, where \mathcal{K}_0 and \mathcal{K}_1 are reducing subspaces for V_1, \ldots, V_n such that

- (i) [V₁|_{K₀} · · · V_n|_{K₀}] is a pure row isometry, i.e unitarily equivalent to [S₁ ⊗ I_L · · · S_n ⊗ I_L],
- (ii) $[V_1|_{\mathcal{K}_1} \cdots V_n|_{\mathcal{K}_1}]$ is a Cuntz row isometry, i.e

$$V_1 V_1^*|_{\mathcal{K}_1} + \cdots + V_n V_n^*|_{\mathcal{K}_1} = I_{\mathcal{K}_1}.$$

The decomposition is uniquely determined.

ヘロン ヘアン ヘビン ヘビン

- Let \mathbb{F}_n^+ be the unital free semigroup on *n* generators g_1, \ldots, g_n and the identity g_0 .
- If $\alpha = g_{i_1} \cdots g_{i_k} \in \mathbb{F}_n^+$ and $X := (X_1, \dots, X_n) \in B(\mathcal{H})^n$, we denote $X_\alpha := X_{i_1} \cdots X_{i_k}$ and $X_{g_0} := I_{\mathcal{H}}$.
- Let Z₁,..., Z_n be noncommutative indeterminates. A formal power series f := ∑_{α∈ℝ⁺} a_αZ_α, a_α ∈ ℂ, is called free holomorphic function on the noncommutative ball

$$[B(\mathcal{H})^{n}]_{1} = \{(X_{1}, \ldots, X_{n}) \in B(\mathcal{H})^{n} : \|X_{1}X_{1}^{*} + \cdots + X_{n}X_{n}^{*}\| < 1\},\$$

if the series $\sum_{k=0}^{\infty} \sum_{|\alpha|=k} a_{\alpha} X_{\alpha}$ is convergent in the operator norm topology for any $(X_1, \ldots, X_n) \in [B(\mathcal{H})^n]_1$, and any \mathcal{H} .

• *f* is called positive regular free holomorphic function if $a_{\alpha} \geq 0$ for any $\alpha \in \mathbb{F}_{n}^{+}$, $a_{g_{0}} = 0$, and $a_{g_{i}} > 0$ if i = 1, ..., n.

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains, varieties, universal models

Noncommutative domains

 We define the noncommutative regular domain D^m_f(H), m = 1, 2, ..., to be the set of all X := (X₁,..., X_n) ∈ B(H)ⁿ such that

$$\Phi_{f,X}(I) \leq I$$
 and $(id - \Phi_{f,X})^m(I) \geq 0$

where $\Phi_{f,X}:B(\mathcal{H})\to B(\mathcal{H})$ is defined by

$$\Phi_{f,X}(Y) := \sum_{|lpha| \ge 1} a_{lpha} X_{lpha} Y X_{lpha}^*, \quad Y \in B(\mathcal{H}),$$

and the convergence is in the weak operator topology.

Define b_{g0} := 1 and

$$b_{\alpha} := \sum_{j=1}^{|\alpha|} \sum_{\substack{\gamma_1 \cdots \gamma_j = \alpha \\ |\gamma_1| \ge 1, \dots, |\gamma_j| \ge 1}} a_{\gamma_1} \cdots a_{\gamma_j} \begin{pmatrix} j+m-1 \\ m-1 \end{pmatrix} \quad \text{if } |\alpha| \ge 1.$$

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains,varieties, universal models

Universal model

Let D_i : F²(H_n) → F²(H_n), i ∈ {1,..., n}, be the diagonal operators defined by setting

$$D_i e_{lpha} := \sqrt{rac{b_{lpha}}{b_{g_i lpha}}} e_{lpha}, \qquad lpha \in \mathbb{F}_n^+,$$

where $\{e_{\alpha}\}_{\alpha \in \mathbb{F}_{n}^{+}}$ is the orthonormal basis of $F^{2}(H_{n})$.

• The *n*-tuple (W_1, \ldots, W_n) of weighted shifts,

$$W_i := S_i D_i,$$

associated with the noncommutative domain \mathcal{D}_{f}^{m} , plays the role of universal model for the pure elements of \mathcal{D}_{f}^{m} (Popescu, Mem. AMS, 2010, JFA, 2008).

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains,varieties, universal models

Noncommutative varieties $\mathcal{V}_{f,\mathcal{Q}}^{m}(\mathcal{H})$

- Let Q ⊂ C (Z₁,..., Z_n) be a fixed set of noncommutative polynomials such that q(0) = 0 for any q ∈ Q
- Define the noncommutative variety $\mathcal{V}_{f,\mathcal{Q}}^{m}(\mathcal{H})$ to be the set

 $\{(X_1,\ldots,X_n)\in\mathcal{D}_f^m(\mathcal{H}):\ q(X_1,\ldots,X_n)=0\quad\text{ for any }\quad q\in\mathcal{Q}\}$

and assume that $\mathcal{V}_{f,\mathcal{Q}}^{m}(\mathcal{H}) \neq \{\mathbf{0}\}.$

The universal model (B₁,..., B_n) associated with V^m_{f,Q}(H) is given by

$$B_i^* = W_i^*|_{\mathcal{N}_{f,\mathcal{Q}}}, \quad 1 = 1,\ldots,n,$$

acting on a model space $\mathcal{N}_{f,\mathcal{Q}} \subset F^2(H_n)$ which is a joint invariant subspace under the adjoints W_1^*, \ldots, W_n^* .

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains,varieties, universal models

Single variable case : n = 1 and Q = 0

If m = 1 and f = Z, the corresponding domain D^m_f(H) coincides with

$$[B(\mathcal{H})]_1 := \{ X \in B(\mathcal{H}) : \|X\| \le 1 \}.$$

In this case, the universal model is the unilateral shift *S* acting on the Hardy space $H^2(\mathbb{D})$.

• If $m \ge 2$ and f = Z, the corresponding domain coincides with the set of all *m*-hypercontractions studied by Agler, Olofsson, Ball-Bolotnikov. The corresponding universal model is the unilateral shift acting on the weighted Bergman space, which is a reproducing kernel Hilbert space corresponding to the kernel $k_m(z, w) = \frac{1}{(1-z\bar{w})^m}$, $z, w \in \mathbb{D}$.

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains.varieties, universal models

Multivariable commutative case : $n \ge 2$

Case : $\mathcal{Q} := \{Z_i Z_j - Z_j Z_i, i, j = 1, \dots, n\}$

• If $m \ge 1$ and $f = Z_1 + \dots + Z_n$ the corresponding commutative variety was studied by Drury, Arveson, Bhattacharyya-Eschmeier-Sarkar, Popescu (when m = 1), Athavale, Müller, Müler-Vasilescu, and Curto-Vasilescu (when $m \ge 2$). The corresponding universal model is the *n*-tuple $(M_{Z_1}, \dots, M_{Z_n})$ of multipliers by the coordinate functions, acting on the reproducing kernel Hilbert space

corresponding to the kernel

$$k_m(\mathbf{z},\mathbf{w}) = rac{1}{(1-z_1 ar{w}_1 - \cdots - z_n ar{w}_n)^m}, \qquad \mathbf{z}, \mathbf{w} \in \mathbb{B}_n,$$

on the unit ball of \mathbb{C}^n .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains.varieties, universal models

Multivariable commutative case : $n \ge 2$

Case : $Q := \{Z_i Z_j - Z_j Z_i, i, j = 1, ..., n\}$

• When $m \ge 1$ and f is a positive regular commutative polynomial, the commutative variety $\mathcal{V}_{f,\mathcal{Q}}$ was studied by S. Pott . In this case, the universal model $(M_{z_1}, \ldots, M_{z_n})$ acts on a reproducing kernel Hilbert space of holomorphic functions on a Reinhardt domain in \mathbb{C}^n uniquely determined by f.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains, varieties, universal models

Multivariable noncommutative case

Case : $n \ge 2$ and Q = 0

- When m = 1, $f = Z_1 + \cdots + Z_n$, the noncommutative domain $\mathcal{D}_f^m(\mathcal{H})$ coincides with the closed unit ball $[B(\mathcal{H})^n]_1$, the study of which has generated a free analogue of Sz.-Nagy-Foiaş theory. The corresponding universal model is the *n*-tuple of left creation operators (S_1, \ldots, S_n) .
- When $m \ge 1$, $n \ge 1$, and f is any positive regular free holomorphic function the domain \mathcal{D}_f^m was studied by Popescu (Mem. AMS, 2010 and JFA 2008). In this case, the corresponding universal model is the *n*-tuple of weighted left creation operators (W_1, \ldots, W_n) acting on the full Fock space with *n* generators.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Wold decomposition of an isometry Multivariable noncommutative case Noncommutative domains,varieties, universal models

Multivariable noncommutative case

Case : $n \ge 2$, $m \in \mathbb{N}$, and $\mathcal{Q} \subset \mathbb{C} \langle Z_1, \dots, Z_n \rangle$

The study of general noncommutative varieties V^m_{f,Q}(H) in B(H)ⁿ, where m ≥ 1, f is a positive regular free holomorphic function, and Q ⊂ C (Z₁,..., Z_n) is any set of noncommutative polynomials such that q(0) = 0 for any q ∈ Q, was initiated in 2006 (m = 1, f = Z₁ + ··· + Z_n).

• G. POPESCU, Operator theory on noncommutative varieties, *Indiana Univ. Math. J.*, 2006.

• G. POPESCU, Noncommutative Berezin transforms and multivariable operator model theory, *J. Funct. Anal.*, 2008.

• G. POPESCU, Operator theory on noncommutative domains, Mem. Amer. Math. Soc., 2010 (Case m = 1).

Noncommutative Berezin kernels, Wold decompositions Representations of C* -algebras and classification Exact sequences of C* -algebras

Noncommutative Berezin kernel

• Let $T := (T_1, \ldots, T_n) \in \mathcal{D}_f^m(\mathcal{H})$. The noncommutative Berezin kernel is the map $K_{f,T} : \mathcal{H} \to F^2(\mathcal{H}_n) \otimes \overline{\Delta_{f,T}(\mathcal{H})}$ defined by

$$\mathcal{K}_{f,T}h := \sum_{lpha \in \mathbb{F}_n^+} \sqrt{b_lpha} \boldsymbol{e}_lpha \otimes \Delta_{f,T} T^*_lpha h, \qquad h \in \mathcal{H},$$

where $\Delta_{f,T} := \left[(I - \Phi_{f,T})^m (I) \right]^{1/2}$ and

$$\Phi_{f,T}(Y) = \sum_{|lpha| \ge 1} a_{lpha} T_{lpha} Y T_{lpha}^*, \quad Y \in B(\mathcal{H})$$

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Wold decomposition

Definition

We say that $X = (X_1, \ldots, X_n)$ is a *pure tuple* in $\mathcal{D}_f^m(\mathcal{H})$ if

SOT-
$$\lim_{s\to\infty} \Phi^s_{f,\chi}(I_{\mathcal{H}}) = 0.$$

If X satisfies the relation

$$\Phi_{f,X}(I_{\mathcal{H}})=I_{\mathcal{H}},$$

we say that *X* is a *Cuntz tuple* in the domain $\mathcal{D}_{f}^{m}(\mathcal{H})$.

Let W := (W₁,..., W_n) be the universal model of D^m_f. We denote by C^{*}(W) the C^{*}-algebra generated by W₁,..., W_n and the identity.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Wold decomposition

Theorem

Let π be a unital *-representation of the C*-algebra C*(**W**) on a separable Hilbert space \mathcal{K} and set $V_i := \pi(W_i)$. Then the noncommutative Berezin kernel $K_{f,V}$ is a partial isometry. Setting

$$\mathcal{K}^{(0)} := ext{range} \, K^*_{f,V} \, \, and \, \, \mathcal{K}^{(1)} := ext{ker} \, K_{f,V},$$

the orthogonal decomposition $\mathcal{K} = \mathcal{K}^{(0)} \bigoplus \mathcal{K}^{(1)}$ has the properties.

(i) $\mathcal{K}^{(0)}$ and $\mathcal{K}^{(1)}$ are reducing subspaces for each operator V_i . (ii) $V|_{\mathcal{K}^{(0)}} := (V_1|_{\mathcal{K}^{(0)}}, \dots, V_n|_{\mathcal{K}^{(0)}})$ is a pure tuple in $\mathcal{D}_f^m(\mathcal{K}^{(0)})$. (iii) $V|_{\mathcal{K}^{(1)}} := (V_1|_{\mathcal{K}^{(1)}}, \dots, V_n|_{\mathcal{K}^{(1)}})$ is a Cuntz tuple in $\mathcal{D}_f^m(\mathcal{K}^{(1)})$.

ヘロン 人間 とくほ とくほ とう

3

Noncommutative Berezin kernels, Wold decompositions Representations of *C**-algebras and classification Exact sequences of *C**-algebras

Moreover, $K_{f,V}|_{\mathcal{K}^{(0)}}$ is a unitary operator satisfying relation

$$V_{i}|_{\mathcal{K}^{(0)}} = \left(K_{f,V}|_{\mathcal{K}^{(0)}}\right)^{*} \left(W_{i} \otimes I_{\mathcal{D}}\right) \left(K_{f,V}|_{\mathcal{K}^{(0)}}\right),$$

where $\mathcal{D} := \operatorname{range} \Delta_{f,V}(I_{\mathcal{K}})$.

In addition, the orthogonal decomposition of ${\cal K}$ is uniquely determined by the properties (i), (ii), and (iii) and we have

$$\mathcal{K}^{(0)} = igoplus_{lpha \in \mathbb{F}_n^+} V_lpha(\mathcal{D}), \qquad ext{where} \quad \mathcal{D} = \mathcal{K} \ominus \left(igoplus_{i=1}^n \overline{V_i \mathcal{K}}
ight),$$

and

$$\mathcal{K}^{(1)} = igcap_{s=0}^{\infty} \left(igoplus_{lpha \in \mathbb{F}_n^+, |lpha| = s} \overline{V_lpha(\mathcal{K})}
ight).$$

ヘロン 人間 とくほ とくほう

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Constrained Berezin kernel

Definition

The *constrained noncommutative Berezin kernel* associated with the *n*-tuple $T \in \mathcal{V}_{f,\mathcal{Q}}^{m}(\mathcal{H})$ is the bounded operator $\mathcal{K}_{f,\mathcal{T},\mathcal{Q}}: \mathcal{H} \to \mathcal{N}_{f,\mathcal{Q}} \otimes \overline{\Delta_{f,\mathcal{T}}(\mathcal{H})}$ defined by

$$\mathcal{K}_{f,T,\mathcal{Q}} := (\mathcal{P}_{\mathcal{N}_{f,\mathcal{Q}}} \otimes \mathcal{I}_{\overline{\Delta_{f,T}(\mathcal{H})}})\mathcal{K}_{f,T},$$

where $K_{f,T}$ is the Berezin kernel associated with $T \in \mathcal{D}_{f}^{m}(\mathcal{H})$ and $\mathcal{N}_{f,\mathcal{Q}} \subset F^{2}(\mathcal{H}_{n})$ is the model space on which the universal model (B_{1}, \ldots, B_{n}) is acting.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Constrained Berezin kernel

Properties :

- $K_{f,T,\mathcal{Q}}T_i^* = (B_i^* \otimes I)K_{f,T,\mathcal{Q}}, \quad i \in \{1,\ldots,n\}.$
- When *T* is a pure *n*-tuple, i.e. Φ^k_{f,T}(*I*) → 0, as k → ∞, the constrained noncommutative Berezin kernel K_{f,T,Q} is an isometry.
- Assume that f = ∑_{α∈𝔽n}⁺ a_αZ_α is a positive regular free holomorphic function such that ∑_{α∈𝔽n}⁺ a_α W_α W_α^{*} is convergent in the operator norm.

イロト 不得 とくほ とくほ とう

3

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Wold decomposition : *C**-version

Theorem

Let $\mathbf{B} := (B_1, \ldots, B_n)$ be the universal model associated with the noncommutative variety $\mathcal{V}_{f,\mathcal{Q}}^m$ and let $\pi : C^*(\mathbf{B}) \to B(\mathcal{K})$ be a unital *-representation of $C^*(\mathbf{B})$ on a separable Hilbert space \mathcal{K} . Then π decomposes into a direct sum

$$\pi = \pi_0 \oplus \pi_1$$
 on $\mathcal{K} = \mathcal{K}_0 \oplus \mathcal{K}_1$,

where π_0 and π_1 are disjoint representations of $C^*(\mathbf{B})$ on the Hilbert spaces

$$\mathcal{K}_{\mathbf{0}} := \overline{\operatorname{span}} \left\{ \pi(\mathcal{B}_{\beta}) [\left(\mathit{id} - \Phi_{f, \pi(\mathbf{B})}
ight)^m (\mathit{I}_{\mathcal{K}})] \mathcal{K} : \ eta \in \mathbb{F}_n^+
ight\} \quad ext{ and }$$

 $\mathcal{K}_1 := \mathcal{K} \ominus \mathcal{K}_0$, where $\pi(\mathbf{B}) := (\pi(B_1), \dots, \pi(B_n))$.

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Wold decomposition : *C**-version

Moreover, up to an isomorphism,

$$\mathcal{K}_0\simeq \mathcal{N}_{f,\mathcal{Q}}\otimes \mathcal{G}, \quad \pi_0(X)=X\otimes \mathit{I}_\mathcal{G} \quad ext{ for } X\in C^*(\mathbf{B}),$$

where \mathcal{G} is a Hilbert space with

dim
$$\mathcal{G}$$
 = dim $\left[\text{range} \left(i \mathbf{d} - \Phi_{f,\pi(\mathbf{B})} \right)^m (I_{\mathcal{K}}) \right]$,

and π_1 is a *-representation which annihilates the compact operators in $C^*(B_1, \ldots, B_n)$ and $\Phi_{f,\pi_1(\mathbf{B})}(I_{\mathcal{K}_1}) = I_{\mathcal{K}_1}$.

• When $f = Z_1 + \cdots + Z_n$, m = 1, and $Q = \{Z_i Z_j - Z_j Z_i\}$, then **B** is the universal model on the Drury-Arveson space. The theorem was obtained by Arveson, Acta Math., 1998.

- 3

Noncommutative Berezin kernels, Wold decompositions Representations of *C**-algebras and classification Exact sequences of *C**-algebras

Wold decomposition : geometric version

Theorem

Let π be a unital *-representation of the C*-algebra C*(**B**) on a separable Hilbert space \mathcal{K} and set $V_i := \pi(B_i)$. Then the noncommutative Berezin kernel $K_{f,V,Q}$ associated with the noncommutative variety $\mathcal{V}_{f,Q}^m$ is a partial isometry. Setting

$$\mathcal{K}^{(0)} := \operatorname{range} K^*_{f,V,\mathcal{Q}}$$
 and $\mathcal{K}^{(1)} := \ker K_{f,V,\mathcal{Q}}$,

the orthogonal decomposition $\mathcal{K} = \mathcal{K}^{(0)} \oplus \mathcal{K}^{(1)}$ has the following properties.

(i) $\mathcal{K}^{(0)}$ and $\mathcal{K}^{(1)}$ are reducing subspaces for each operator V_i . (ii) $V|_{\mathcal{K}^{(0)}} := (V_1|_{\mathcal{K}^{(0)}}, \dots, V_n|_{\mathcal{K}^{(0)}})$ is a pure tuple in $\mathcal{V}_{f,\mathcal{Q}}^m(\mathcal{K}^{(0)})$. (iii) $V|_{\mathcal{K}^{(1)}} := (V_1|_{\mathcal{K}^{(1)}}, \dots, V_n|_{\mathcal{K}^{(1)}})$ is a Cuntz tuple in $\mathcal{V}_{f,\mathcal{Q}}^m(\mathcal{K}^{(1)})$.

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Wold decomposition : geometric version

Moreover, the constrained Berezin kernel $K_{f,V,Q}|_{\mathcal{K}^{(0)}}$ is a unitary operator satisfying relation

$$V_i|_{\mathcal{K}^{(0)}} = \left(K_{f,V,\mathcal{Q}}|_{\mathcal{K}^{(0)}}
ight)^* \left(B_i \otimes I_{\mathcal{D}}
ight) \left(K_{f,V,\mathcal{Q}}|_{\mathcal{K}^{(0)}}
ight),$$

where $\mathcal{D} := \operatorname{range} \Delta_{f,V}(I_{\mathcal{K}})$ and

$$\Delta_{f,V}(I_{\mathcal{K}}) := [(id - \Phi_{f,V})^m(I_{\mathcal{K}})]^{1/2}$$

is an orthogonal projection. In addition, the space $\mathcal{K}^{(0)}$ admits the decomposition

$$\mathcal{K}^{(\mathbf{0})} = \mathcal{D} \bigoplus \overline{\operatorname{span}} \left\{ V_{\alpha}(\mathcal{D}) : \ \alpha \in \mathbb{F}_{n}^{+}, |\alpha| \geq 1 \right\}.$$

イロト イポト イヨト イヨト

3

Noncommutative Berezin kernels, Wold decompositions Representations of *C**-algebras and classification Exact sequences of *C**-algebras

Wold decomposition : operator version

Theorem

Let π be a unital *-representation of the C*-algebra C*(**B**) on a separable Hilbert space \mathcal{K} and set $V_i := \pi(B_i)$. Then there are two subspaces $\mathcal{K}^{(0)}$ and $\mathcal{K}^{(1)}$ of \mathcal{K} such that

- (i) $I_{\mathcal{K}} = P_{\mathcal{K}^{(0)}} + P_{\mathcal{K}^{(1)}}$ and $P_{\mathcal{K}^{(0)}}P_{\mathcal{K}^{(1)}} = 0$, where $P_{\mathcal{K}^{(0)}}$ and $P_{\mathcal{K}^{(1)}}$ are orthogonal projections.
- (ii) $P^{(0)}$ and $P^{(1)}$ commute with each operator V_i .
- (iii) The orthogonal projection $P_{\mathcal{K}^{(0)}}$ satisfies the relations

$$P_{\mathcal{K}^{(0)}} = \lim_{q \to \infty} \sum_{s=0}^{q} {s+m-1 \choose m-1} \left\{ \Phi_{f,V}^{s} [\Delta_{f,V}(I_{\mathcal{K}})]^{2} \right\}$$
$$= I_{\mathcal{K}} - \text{SOT-} \lim_{s \to \infty} \Phi_{f,V}^{s}(I_{\mathcal{K}})$$

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Wold decomposition : operator version

and

$$\mathcal{K}^{(0)} = \left\{ \xi \in \mathcal{K} : \lim_{s \to \infty} \Phi^s_{f,V}(I_{\mathcal{K}}) \xi = 0 \right\}.$$

(iv) The orthogonal projection $P_{\mathcal{K}^{(1)}}$ satisfies the relation

$$P_{\mathcal{K}^{(1)}} = \text{SOT-} \lim_{s \to \infty} \Phi_{f, V}^{s}(I_{\mathcal{K}})$$

and

$$\mathcal{K}^{(1)} = \{\xi \in \mathcal{K}: \; \Phi^{m{s}}_{f,m{V}}(m{l}_{\mathcal{K}})\xi = \xi \; ext{ for every } \; m{s} \in \mathbb{N} \}$$

(v) SOT- $\lim_{s\to\infty} \Phi_{f,V}^s(I_{\mathcal{K}})P_{\mathcal{K}^{(0)}} = 0$ and $\Phi_{f,V}^s(I_{\mathcal{K}})P_{\mathcal{K}^{(1)}} = P_{\mathcal{K}^{(1)}}$ for any $s \in \mathbb{N}$.

2

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Uniqueness of Wold decomposition

Theorem

Let $\pi : C^*(\mathbf{B}) \to B(\mathcal{K})$ be a unital *-representation of $C^*(\mathbf{B})$ on a separable Hilbert space \mathcal{K} and let $V_i := \pi(B_i)$.

- (i) If M, N are reducing subspaces under each operator V_i such that (V₁|_M,..., V_n|_M) is a pure tuple in V^m_{f,Q}(M) and (V₁|_N,..., V_n|_N) is a Cuntz tuple in V^m_{f,Q}(N), then M ⊥ N.
- (ii) If $\mathcal{K} = \mathcal{M} \oplus \mathcal{N}$ (algebraically) and \mathcal{M}, \mathcal{N} are as in part (i), then

$$\mathcal{M} = \mathcal{K}^{(0)}$$
 and $\mathcal{N} = \mathcal{K}^{(1)}$.

(iii) A subspace $\mathcal{M} \subset \mathcal{K}$ is reducing under each operator V_i if and only if $\mathcal{M} = \mathcal{M}^{(0)} \oplus \mathcal{M}^{(1)}$, where $\mathcal{M}^{(0)} \subset \mathcal{K}^{(0)}$ and $\mathcal{M}^{(1)} \subset \mathcal{K}^{(1)}$ are reducing subspaces under each V_i .

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○

Noncommutative Berezin kernels, Wold decompositions Representations of C*-algebras and classification Exact sequences of C*-algebras

Representations of *C**-algebras

Theorem

Let $\pi : C^*(\mathbf{B}) \to B(\mathcal{K})$ be a unital *-representation on a separable Hilbert space \mathcal{K} and let $V_i := \pi(B_i)$. Then the following statements are equivalent.

- (i) (V_1, \ldots, V_n) is a pure *n*-tuple in $\mathcal{V}_{f,\mathcal{Q}}^m(\mathcal{K})$.
- (ii) (V_1, \ldots, V_n) is unitarily equivalent to $(B_1 \otimes I_{\mathcal{G}}, \ldots, B_n \otimes I_{\mathcal{G}})$ for some Hilbert space \mathcal{G} .
- (iii) The only reducing subspace M ⊂ K for every V_i such that (V₁|_M,..., V_n|_M) is a Cuntz tuple in V^m_{f,Q}(K) is M = {0}.
 (iv) K_{f,V,Q} is a unitary operator,

$$V_i = K_{f,V,\mathcal{Q}}^* (B_i \otimes I_{\mathcal{D}}) K_{f,V,\mathcal{Q}}, \quad \mathcal{D} := \operatorname{range} \Delta_{f,V} (I_{\mathcal{K}}).$$

ヘロア 人間 アメヨア 人口 ア

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Representations of C*-algebras

A subspace *ε* of *H* is called *cyclic* for *T* := (*T*₁,...,*T_n*) if *H* = span{*T_αε* : *α* ∈ 𝔽⁺_n}. The *multiplicity* of *T* is the minimum dimension of a cyclic subspace of *T*.

Theorem

Let $\pi : C^*(\mathbf{B}) \to B(\mathcal{K})$ be a pure, unital *-representation on a separable Hilbert space \mathcal{K} and let $V_i := \pi(B_i)$. Then the following statements hold.

- (i) The multiplicity of V := (V₁,..., V_n) is equal to dim Δ_{f,V}(I_K)K.
- (ii) If σ : C*(B) → B(K') is another pure, unital
 *-representation, then π and σ are unitarily equivalent if and only if they have the same multiplicity.

ヘロト ヘワト ヘビト ヘビト

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Representations of *C**-algebras

(iii) The reducing subspaces $\mathcal{M} \subset \mathcal{K}$ of V_1, \ldots, V_n are precisely of the form

$$\mathcal{M} = K_{f,V,\mathcal{Q}}(\mathcal{N}_{f,\mathcal{Q}} \otimes \mathcal{D}_0),$$

where \mathcal{D}_0 is a subspace of \mathcal{D} .

(iv) The joint invariant subspaces $\mathcal{M} \subset \mathcal{K}$ under V_1, \ldots, V_n are precisely of the form

$$\mathcal{M} = K_{f,V,\mathcal{Q}}(\mathcal{G}),$$

where $\mathcal{G} \subset \mathcal{N}_{f,\mathcal{Q}} \otimes \mathcal{D}$ is a joint invariant subspace under $B_1 \otimes I_{\mathcal{D}}, \dots B_n \otimes I_{\mathcal{D}}$.

イロト イポト イヨト イヨト

3

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Representations of *C**-algebras

 A Beurling type characterization of the joint invariant subspaces under (B₁ ⊗ I_D,...B_n ⊗ I_D) was obtained by Popescu, Math. Ann., 2018.

Theorem

Let $\pi : C^*(\mathbf{B}) \to B(\mathcal{K})$ be a unital *-representation on a separable Hilbert space \mathcal{K} and let $V_i := \pi(B_i)$. Then the following statements are equivalent.

(i)
$$(V_1, \ldots, V_n)$$
 is a Cuntz n-tuple in $\mathcal{V}_{f,\mathcal{Q}}^m(\mathcal{M})$.

(ii) There is no nonzero $\xi \in \mathcal{K}$ such that $\lim_{k \to \infty} \left\langle \Phi_{f,V}^{k}(I_{\mathcal{K}})\xi, \xi \right\rangle = 0.$

(iii) The only reducing subspace $\mathcal{M} \subset \mathcal{K}$ for every operator V_i such that $(V_1|_{\mathcal{M}}, \ldots, V_n|_{\mathcal{M}})$ is a pure tuple in $\mathcal{V}_{f,\mathcal{Q}}^m(\mathcal{M})$ is $\mathcal{M} = \{0\}.$

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Representations of *C**-algebras

Theorem

Let $\pi : C^*(\mathbf{B}) \to B(\mathcal{K})$ be a Cuntz type unital *-representation on a separable Hilbert space \mathcal{K} and let $V_i := \pi(B_i)$. Then

(i) $\mathcal{M} \subset \mathcal{K}$ is an invariant subspace under each V_i if and only if

$$\Phi_{f,V}(P_{\mathcal{M}}) \leq P_{\mathcal{M}};$$

(ii) $\mathcal{M} \subset \mathcal{K}$ is a reducing subspace under each V_i if and only if

$$\Phi_{f,V}(P_{\mathcal{M}})=P_{\mathcal{M}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Irreducible representations

Theorem

Let $\pi : C^*(\mathbf{B}) \to B(\mathcal{K})$ be a unital *-representation on a separable Hilbert space \mathcal{K} and let $V_i := \pi(B_i)$. Then π is irreducible if and only if one of the following conditions is satisfied :

- (i) SOT- $\lim_{s\to\infty} \Phi_{f,V}^s(I_{\mathcal{K}}) = 0$ and $\dim \Delta_{f,V}(I_{\mathcal{K}})\mathcal{K} = 1$;
- (ii) $\Phi_{f,V}(I_{\mathcal{K}}) = I_{\mathcal{K}}$ and there is no nontrivial subspace $\mathcal{M} \subset \mathcal{K}$ such that $\Phi_{f,V}(P_{\mathcal{M}}) = P_{\mathcal{M}}$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Classification

Noncommutative Berezin kernels, Wold decompositions Representations of C* -algebras and classification Exact sequences of C* -algebras

Theorem

Let π and π' be two unital *-representations of $C^*(\mathbf{B})$ on separable Hilbert spaces \mathcal{K} and \mathcal{K}' , respectively, and let $\mathcal{K} = \mathcal{K}^{(0)} \oplus \mathcal{K}^{(1)}$ and $\mathcal{K} = \mathcal{K'}^{(0)} \oplus \mathcal{K'}^{(1)}$ be the corresponding Wold decompositions. Set $V_i := \pi(B_i)$ and $V_i := \pi'(B_i)$. Then π is unitarily equivalent to π' if and only if the following conditions are satisfied :

(i) dim \mathcal{D} = dim \mathcal{D}' , where \mathcal{D} := $\Delta_{f,V}(I_{\mathcal{K}})\mathcal{K}$ and \mathcal{D} := $\Delta_{f,V'}(I_{\mathcal{K}'})\mathcal{K}'$;

(ii) the n-tuples $V|_{\mathcal{K}^{(1)}}$ and $V'|_{\mathcal{K}^{(1)}}$ are unitarily equivalent.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Noncommutative Berezin kernels, Wold decompositions Representations of *C**-algebras and classification Exact sequences of *C**-algebras

Exact sequences of C*-algebras

Definition

The algebra $\mathcal{O}(\mathcal{V}_{f,\mathcal{Q}}^m)$ is the universal C^* -algebra generated by $\pi(B_1), \ldots, \pi(B_n)$ and the identity, where $\mathbf{B} = (B_1, \ldots, B_n)$ is the universal model of a noncommutative variety $\mathcal{V}_{f,\mathcal{Q}}^m$ and π is a *Cuntz type* *-representation of the C^* -algebra $C^*(\mathbf{B})$, i.e. $\Phi_{f,\pi(\mathbf{B})}(I) = I$, where $\pi(\mathbf{B}) := (\pi(B_1), \ldots, \pi(B_n))$.

- If n = 1, f = Z, m = 1 and Q = 0, then $\mathcal{O}(\mathcal{V}_{f,Q}^m) = C(\mathbb{T})$.
- If $f = Z_1 + \cdots + Z_n$, $n \ge 2$, m = 1 and Q = 0, then $\mathcal{O}(\mathcal{V}_{f,Q}^m)$ coincides with the Cuntz algebra \mathcal{O}_n .

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Noncommutative Berezin kernels, Wold decompositions Representations of *C**-algebras and classification Exact sequences of *C**-algebras

Exact sequences of C*-algebras

Theorem

Let $\mathbf{B} = (B_1, ..., B_n)$ be the universal model of the noncommutative variety $\mathcal{V}_{f,\mathcal{Q}}^m$ and let \mathcal{K} be the ideal of all compact operators in $B(\mathcal{N}_{f,\mathcal{Q}})$. Then the sequence of C^* -algebras

$$0
ightarrow \mathcal{K}
ightarrow \mathcal{C}^{*}(\mathbf{B})
ightarrow \mathcal{O}(\mathcal{V}_{f,\mathcal{Q}}^{m})
ightarrow 0$$

is exact.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Noncommutative Berezin kernels, Wold decompositions Representations of *C**-algebras and classification Exact sequences of *C**-algebras

Exact sequences of C*-algebras

If n = 1, f = Z, m = 1 and Q = 0, we recover Coburn's theorem for C*(S):

$$0 o \mathcal{K} o C^*(\mathcal{S}) o \mathcal{C}(\mathbb{T}) o 0.$$

• If $f = Z_1 + \cdots + Z_n$, $n \ge 2$, m = 1 and Q = 0, we obtain Cuntz exact sequence for the C^* -algebra generated by the left creation operators on the full Fock space :

$$0 \to \mathcal{K} \to C^*(\mathcal{S}_1, \dots, \mathcal{S}_n) \to \mathcal{O}_n \to 0.$$

If f = Z₁ + ··· + Z_n, m = 1, and the ideal Q = {Z_iZ_j - Z_jZ_i}, we recover Arveson's result for the C*-algebra generated by the *d*-shift acting on the Drury-Arveson space :

$$0 \rightarrow \mathcal{K} \rightarrow C^*(M_{Z_1}, \ldots, M_{Z_n}) \rightarrow C(\partial \mathbb{B}_n) \rightarrow 0.$$

Noncommutative Berezin kernels, Wold decompositions Representations of C^* -algebras and classification Exact sequences of C^* -algebras

Exact sequences of *C**-algebras

One can obtain the following more general result

Theorem

If $\pi : C^*(\mathbf{B}) \to B(\mathcal{K})$ is an unital *-representation on a separable Hilbert space \mathcal{K} such that π is not a Cuntz type representation, then the C*-algebras $C^*(\mathbf{B})$ and $C^*(\pi(\mathbf{B}))$ are *-isomorphic and

$$0 o \mathcal{K} o \mathcal{C}^*(\pi(\mathbf{B})) o \mathcal{O}(\mathcal{V}^m_{f,\mathcal{Q}}) o 0$$

is a short exact sequence, where \mathcal{K} is the ideal of compact operators in $C^*(\pi(\mathbf{B}))$.

ヘロト ヘアト ヘビト ヘビト

Noncommutative Berezin kernels, Wold decompositions Representations of *C**-algebras and classification Exact sequences of *C**-algebras

Commutative case

All our results apply in the particular case when f is a positive regular noncommutative polynomial and

 $\mathcal{Q} = \{Z_i Z_j - Z_j Z_i\}.$

In this case, the corresponding C^* -algebra $C^*(\mathbf{B})$ coincides with the C^* -algebra generated by the multipliers L_1, \ldots, L_n by the coordinate functions $\lambda_1, \ldots, \lambda_n$ and the identity, acting on the reproducing kernel Hilbert space $H^2(\mathcal{D}_f^{\circ}(\mathbb{C}))$ with kernel defined by

$$\kappa_f(\mu,\lambda) := \frac{1}{\left(1 - f(\mu_1 \overline{\lambda}_1, \dots, \mu_n \overline{\lambda}_n)\right)^m}, \qquad \mu, \lambda \in \mathcal{D}_p^{\circ}(\mathbb{C}),$$

where

$$\mathcal{D}_{f}^{\circ}(\mathbb{C}) := \{ \lambda = (\lambda_{1}, \dots, \lambda_{n}) \in \mathbb{C}^{n} : f(|\lambda_{1}|^{2}, \dots, |\lambda_{n}|^{2}) < 1 \} \}.$$

Polydomains and varieties Polyvarieties, Wold decompositions, classification

Polydomains and varieties

- Let $B(\mathcal{H})^{n_1} \times_c \cdots \times_c B(\mathcal{H})^{n_k}$ be the set of all tuples $\mathbf{X} := (X_1, \dots, X_k)$ in $B(\mathcal{H})^{n_1} \times \cdots \times B(\mathcal{H})^{n_k}$ with the property that the entries of $X_s := (X_{s,1}, \dots, X_{s,n_s})$ are commuting with the entries of $X_t := (X_{t,1}, \dots, X_{t,n_t})$ for any $s, t \in \{1, \dots, k\}, s \neq t$.
- Let $\mathbf{f} = (f_1, \ldots, f_k)$ be positive regular free holomorphic functions, $\mathbf{m} := (m_1, \ldots, m_k)$, $\mathbf{n} := (n_1, \ldots, n_k)$. The *regular polydomain* $\mathbf{D}_{\mathbf{f}}^{\mathbf{m}}(\mathcal{H})$ is the set of all *k*-tuples $\mathbf{X} = (X_1, \ldots, X_k) \in B(\mathcal{H})^{n_1} \times_c \cdots \times_c B(\mathcal{H})^{n_k}$ such that

$$\Delta^{\mathbf{p}}_{\mathbf{f},\mathbf{X}}(\mathbf{\textit{I}})\geq 0 \hspace{0.2cm} ext{for} \hspace{0.2cm} \mathbf{0}\leq \mathbf{p}\leq \mathbf{m}, \hspace{0.2cm} \mathbf{p}:=(\mathbf{p}_{1},\ldots,\mathbf{p}_{k})\in \mathbb{N}^{k}$$

where

$$\Delta_{\mathbf{f},\mathbf{X}}^{\mathbf{p}} := (\mathit{id} - \Phi_{\mathit{f}_1,\mathit{X}_1})^{\mathit{m}_1} \circ \cdots \circ (\mathit{id} - \Phi_{\mathit{f}_k,\mathit{X}_k})^{\mathit{m}_k}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Polydomains and varieties Polyvarieties, Wold decompositions, classification

Polydomains and varieties

- For each $i \in \{1, ..., k\}$, let $Z_i := (Z_{i,1}, ..., Z_{i,n_i})$ be an n_i -tuple of noncommutative indeterminates and assume that, for any $t, s \in \{1, ..., k\}$, $s \neq t$, the entries of Z_t are commuting with the entries if Z_s .
- We study noncommutative varieties in the polydomain $D_{f}^{m}(\mathcal{H})$, given by

$$\mathcal{V}^{\mathsf{m}}_{\mathsf{f},\mathcal{Q}}(\mathcal{H}) := \{ \mathsf{X} \in \mathsf{D}^{\mathsf{m}}_{\mathsf{f}}(\mathcal{H}): \; g(\mathsf{X}) = \mathsf{0} \; \mathsf{for} \; \mathsf{all} \; g \in \mathcal{Q} \},$$

where Q is a set of polynomials in noncommutative indeterminates $Z_{i,j}$, which generates a nontrivial ideal in $\mathbb{C}[Z_{i,j}]$.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Polydomains and varieties Polyvarieties, Wold decompositions, classification

Polydomains and varieties

- Each variety V^m_{f,Q} admits a *universal model* B = {B_{i,j}} such that g(B) = 0, g ∈ Q, acting on a subspace N_{f,Q} of a tensor product of full Fock spaces, which is co-invariant under B_{i,j}.
- The elements of the variety \$\mathcal{V}_{f,Q}^m\$ admit dilations which are *-representations of the \$C^*\$-algebra \$C^*(B)\$ generated by the universal model \$B = {B_{i,j}} and the identity.
- Wold decompositions for the unital *-representations of the *C**-algebras *C**(**B**) associated with the variety V^m_{f,Q} are obtained.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Polydomains and varieties Polyvarieties, Wold decompositions, classification

Polydomains and varieties

The C*-algebra O(V^m_{f,Q}) is the universal C*-algebra generated by V_{i,s} := π(**B**_{i,s}) and the identity, where π is a completely non-pure *-representation of the C*-algebra C*(**B**), which is equivalent to

$$(\mathit{id} - \Phi_{\mathit{f}_k,\mathit{V}_k}) \circ \cdots \circ (\mathit{id} - \Phi_{\mathit{f}_1,\mathit{V}_1})(\mathit{I}_\mathcal{K}) = 0,$$

where $V_i = (V_{i,1}, ..., V_{i,n_i})$.

• The sequence of C*-algebras

$$0 \to \mathcal{K} \to \mathcal{C}^*(\boldsymbol{B}) \to \mathcal{O}(\mathcal{V}_{\boldsymbol{f},\mathcal{Q}}^{\boldsymbol{m}}) \to 0$$

is exact, where \mathcal{K} denotes the ideal of compact operators in $B(\mathcal{N}_{\mathbf{f},\mathcal{Q}})$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Polydomains and varieties Polyvarieties, Wold decompositions, classification

Polyvarieties

Assume that Q = ∪^k_{i=1}Q_i where Q_i is a set of polynomials in C (Z_{i,1},...Z_{i,ni}). The polyvariety associated is

$$\mathcal{V}_{f_1}^{m_1}(\mathcal{H}) imes \cdots imes \mathcal{V}_{f_k}^{m_k}(\mathcal{H}) := \mathcal{V}_{\mathbf{f},\mathcal{Q}}^{\mathbf{m}}(\mathcal{H}).$$

• The universal model satisfies both relations

$$\mathbf{B}_{i,s}\mathbf{B}_{j,t} = \mathbf{B}_{j,t}\mathbf{B}_{i,s}$$
 and $\mathbf{B}_{i,s}\mathbf{B}_{i,t}^* = \mathbf{B}_{i,t}^*\mathbf{B}_{i,s}$

for every $i, j \in \{1, \ldots, k\}$ with $i \neq j$, and every s, t.

• The *C**-algebra *C**(**B**) generated by the operators **B**_{*i*,*s*} and the identity satisfies the relation

$$C^*(\mathbf{B}) = C^*(B_1) \otimes_{sp} \cdots \otimes_{sp} C^*(B_k),$$

where $C^*(B_i)$ is the C^* -algebra generated by $B_{i,1}, \ldots, B_{i,n_i}$ and the identity.

Polydomains and varieties Polyvarieties, Wold decompositions, classification

Refined Wold decomposition

Theorem

Any unital *-representation π of $C^*(\mathbf{B})$ on a separable Hilbert space \mathcal{K} has a unique decomposition into a direct sum

$$\pi = \bigoplus_{A \subset \{1, \dots, k\}} \pi|_{\mathcal{K}_A} \quad on \quad \mathcal{K} = \bigoplus_{A \subset \{1, \dots, k\}} \mathcal{K}_A,$$

where $\{\pi|_{\mathcal{K}_A}\}_{A \subset \{1,...,k\}}$ are disjoint *-representations of $C^*(\mathbf{B})$, with the following properties :

(i) for each $A \subset \{1, ..., k\}$, the subspace \mathcal{K}_A is reducing for every $\pi(\mathbf{B}_{i,j})$;

(ii) if $i \in A$, then $(\pi(\mathbf{B}_{i,1})|_{\mathcal{K}_A}, \dots, \pi(\mathbf{B}_{i,n_i})|_{\mathcal{K}_A})$ is a pure tuple;

(iii) if $i \in A^c$, then $(\pi(\mathbf{B}_{i,1})|_{\mathcal{K}_A}, \ldots, \pi(\mathbf{B}_{i,n_i})|_{\mathcal{K}_A})$ is a Cuntz tuple.

Moreover, there is a unique wandering subspace $\mathcal{L}_A \subset \mathcal{K}_A$ that is reducing under the operators $\pi(\mathbf{B}_{j,t})$ for every $j \in A^c$ and $t \in \{1, \ldots, n_j\}$ such that $(\pi(\mathbf{B}_{j,1})|_{\mathcal{L}_A}, \ldots, \pi(\mathbf{B}_{j,n_j})|_{\mathcal{L}_A})$ is a *Cuntz* tuple and

$$\mathcal{K}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} \bigoplus \overline{\operatorname{span}} \left\{ \pi(\mathbf{B}_{i_{1},\alpha_{i_{1}}}) \cdots \pi(\mathbf{B}_{i_{p},\alpha_{i_{p}}})(\mathcal{L}_{\mathcal{A}}) : \sum_{j=1}^{p} |\alpha_{i_{j}}| \geq 1 \right\},\$$

where the wandering subspace is precisely described.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Classification

Polydomains and varieties Polyvarieties, Wold decompositions, classification

• For each subset $A \subset \{1, ..., k\}$, we introduce the *universal* C^* -algebra \mathcal{O}_A generated by a *-representation $\gamma : \otimes_{i \in A} C^*(B_i) \to B(\mathcal{K})$ with the the property that

$$\Phi_{f_i,\gamma_i(\mathcal{B}_i)}(I_{\mathcal{N}_{J_i}}) = I_{\mathcal{N}_{J_i}}$$
 for every $i \in \mathcal{A}$,

where
$$\gamma_i(B_i) := (\gamma_i(B_{i,1}), \ldots, \gamma_i(B_{i,n_i})).$$

Remark

In the particular case when $f_i = Z_{i,1} + \cdots + Z_{i,n_i}$ and $Q_i = 0$, the algebra \mathcal{O}_A coincides with the tensor algebra $\otimes_{i \in A} \mathcal{O}_{n_i}$, where \mathcal{O}_{n_i} is the Cuntz algebra with n_i generators.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Classification

Polydomains and varieties Polyvarieties, Wold decompositions, classification

Theorem

There is a one-to-one correspondence between the unitary equivalence classes of the *-representations of the C*-algebra $C^*(\mathbf{B})$ and the enumerations of 2^k unitary equivalence classes of *-representations of the universal algebras \mathcal{O}_A , as A is any subset of $\{1, \ldots, k\}$.

Theorem

If \mathcal{J} is the closed two-sided ideal of $C^*(\mathbf{B})$ generated by the orthogonal projections $I_{\mathcal{K}} - \Phi_{f_1,\mathbf{B}_1}(I), ..., I_{\mathcal{K}} - \Phi_{f_k,\mathbf{B}_k}(I)$, then the following short sequence of C^* -algebras is exact

$$0 o \mathcal{J} o C^*(\mathbf{B}) o \mathcal{O}_{\{1,\dots,k\}} o 0.$$

Polydomains and varieties Polyvarieties, Wold decompositions, classification

Remark

If $Q_i := \{Z_{i,s}Z_{i,t} - Z_{i,t}Z_{i,s}\}$, the universal model $\mathbf{L} = \{\mathbf{L}_{i,j}\}$ associated with $\mathcal{V}_{f_1,Q_1}^{m_1} \times \cdots \times \mathcal{V}_{f_k,Q_k}^{m_k}$, consists of the multipliers by the coordinate functions $\lambda_{i,j}$ acting on a Hilbert space $H^2(\mathbf{D}_{\mathbf{f}}^{\mathbf{m}}(\mathbb{C})^\circ)$ of holomorphic functions on the Reinhardt domain

$$\mathbf{D}^{\mathbf{m}}_{\mathbf{f}}(\mathbb{C})^{\circ} = \mathcal{D}_{f_1}(\mathbb{C}^{n_1})^{\circ} \times \cdots \times \mathcal{D}_{f_k}(\mathbb{C}^{n_k})^{\circ}, \quad \text{where}$$

 $\mathcal{D}_{f_i}(\mathbb{C})^\circ = \{\lambda_i = (\lambda_{i,1}, \ldots, \lambda_{i,n_i}) \in \mathbb{C}^{n_i} : f_i(|\lambda_{i,1}|^2, \ldots, |\lambda_{i,n_i}|^2) < 1)\}.$

More precisely, $H^2(\mathbf{D}^m_f(\mathbb{C})^\circ)$ is the reproducing kernel Hilbert space with kernel defined by

$$\kappa_{\mathbf{f}}(\mu,\lambda) := \frac{1}{\prod_{i=1}^{k} \left(1 - f_{i}(\mu_{i,1}\overline{\lambda}_{i,1},\ldots,\mu_{i,n_{i}}\overline{\lambda}_{i,n_{i}})\right)^{m_{i}}}, \qquad \mu,\lambda \in \mathbf{D}_{\mathbf{f}}^{\mathbf{m}}(\mathbb{C})^{\circ}.$$

 All the results apply to the C*-algebra C*(L_{i,j}) generated by the multipliers L_{i,j} and the identity.

REFERENCES

Polydomains and varieties Polyvarieties, Wold decompositions, classification

- G.Popescu, Wold decompositions for representations of *C**-algebras associated with noncommutative varieties, JOT, to appear.
- G.Popescu, Berezin kernels and Wold decompositions associated with noncommuitative polydomains, Proc. AMS, 2020.
- G.Popescu, Representations of C*-algebras associated with noncommutative polyvarieties, IOET, 2021.

ヘロン 人間 とくほ とくほ とう

3

Polydomains and varieties Polyvarieties, Wold decompositions, classification

THANK YOU

GELU POPESCU Wold decompositions for representations of C*-algebras associa

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで