Non-commutative rational multipliers of the free Hardy space

Robert T.W. Martin
University of Manitoba

18/11/2021

Fields Institute. Workshop on Analytic Function Spaces \& Applications, NC Function week.

NC rational functions

NC rational functions

Any valid combination, $\mathfrak{r}(\mathfrak{z})$ of NC variables $\mathfrak{z}_{1}, \cdots \mathfrak{z}_{d}, \mathbb{C}$, operations $+, \cdot,^{-1}$ and ().

$$
\text { e.g. } \quad\left(\mathfrak{z}_{1} \mathfrak{z}_{2}^{-1} \mathfrak{z}_{1}^{2}\right)^{-1}+1+\mathfrak{z} 1 \mathfrak{z} 2 .
$$

$$
\begin{gathered}
\text { Dom } \mathfrak{r}:=\bigsqcup_{n=1}^{\infty}\left\{Z \in \mathbb{C}_{n}^{d}:=\mathbb{C}^{n \times n} \otimes \mathbb{C}^{1 \times d} \mid \mathfrak{r}(Z) \text { is defined }\right\} \\
Z=\left(Z_{1}, \cdots, Z_{d}\right), \quad Z_{k} \in \mathbb{C}^{n \times n}
\end{gathered}
$$

NC rational functions

NC rational functions

Any valid combination, $\mathfrak{r}(\mathfrak{z})$ of NC variables $\mathfrak{z} 1, \cdots \mathfrak{z} d, \mathbb{C}$, operations $+, \cdot,{ }^{-1}$ and ().

$$
\text { e.g. } \quad\left(\mathfrak{z}_{1} \mathfrak{z}_{2}^{-1} \mathfrak{z}_{1}^{2}\right)^{-1}+1+\mathfrak{z}_{1} \mathfrak{z} 2 .
$$

$$
\text { Dom } \mathfrak{r}:=\bigsqcup_{n=1}^{\infty}\left\{z \in \mathbb{C}_{n}^{d}:=\mathbb{C}^{n \times n} \otimes \mathbb{C}^{1 \times d} \mid \mathfrak{r}(Z) \text { is defined }\right\}
$$

Deep connections to: NC algebra, free real algebraic geometry and free probability.
[Helton, Kaliuzhnyı-Verbovetskyiĭ, Klep, McCullough, Pascoe, Vinnikov, Volčič,...]

NC rational functions

Realizations

Any NC rational $\mathfrak{r}, 0=(0, \cdots, 0) \in \operatorname{Dom} \mathfrak{r}$, has a realization (A, b, c), $A \in \mathbb{C}_{N}^{d}, b, c \in \mathbb{C}^{N}$: Given $Z \in \mathbb{C}_{n}^{d}, \mathfrak{r}(Z)=b^{*} L_{A}(Z)^{-1} c$:

$$
L_{A}(Z):=I_{n} \otimes I_{N}-\sum_{j=1}^{d} Z_{j} \otimes A_{j} . \quad(\text { Linear pencil })
$$

Minimal realizations

A realization (A, b, c) of size N is minimal if N is as small as possible.

$$
\begin{aligned}
& (A, b, c) \text { is minimal } \Leftrightarrow \bigvee A^{\omega} c=\mathbb{C}^{N}=\bigvee A^{* \omega} b \\
& \omega=i_{1} \cdots i_{n}, \quad i_{k} \in\{1, \cdots, d\}, \quad A^{\omega}:=A_{i_{1}} \cdots A_{i_{d}} .
\end{aligned}
$$

Any NC rational \mathfrak{r} with $0 \in \operatorname{Dom} \mathfrak{r}$ has a (unique) minimal realization.

NC unit row-ball

Define $\mathbb{C}_{\mathbb{N}}^{d}:=\bigsqcup_{n=1}^{\infty} \mathbb{C}_{n}^{d}, \mathbb{C}_{n}^{d}=\mathbb{C}^{n \times n} \otimes \mathbb{C}^{1 \times d}, N C$ universe.

$$
\mathbb{B}_{\mathbb{N}}^{d}:=\bigsqcup_{n=1}^{\infty} \mathbb{B}_{n}^{d}, \quad \mathbb{B}_{n}^{d}:=\left(\mathbb{C}^{n \times n} \otimes \mathbb{C}^{1 \times d}\right)_{1}
$$

$Z=\left(Z_{1}, \cdots, Z_{d}\right) \in \mathbb{B}_{n}^{d}$ if $Z: \mathbb{C}^{n} \otimes \mathbb{C}^{d} \rightarrow \mathbb{C}^{n}$ has $\|Z\|<1$,

$$
Z Z^{*}=Z_{1} Z_{1}^{*}+\cdots+Z_{d} Z_{d}^{*}<I_{n}
$$

Square-summable power series

The free Hardy space

$$
\begin{aligned}
& \mathbb{H}_{d}^{2}:=\left\{f(\mathfrak{z})=\left.\sum_{\omega \in \mathbb{F}^{d}} \hat{\hat{f}}_{\omega} \omega\left|\sum\right| \hat{f}_{\omega}\right|^{2}<\infty\right\}, \\
& \mathfrak{z}_{1}, \mathfrak{z}_{2}, \cdots, \mathfrak{z}_{d} ; d \text { NC variables. }
\end{aligned}
$$

$\mathbb{F}^{d}=$ all words in d letters, $\{1,2, \cdots, d\}$. Empty word $=\emptyset$ (unit).

$$
\text { e.g. if } \omega=1221 \in \mathbb{F}^{2}, \quad \mathfrak{z}^{\omega}:=\mathfrak{z}_{1} \mathfrak{z}_{2} \mathfrak{z}_{2} \mathfrak{z}_{1}, \mathfrak{z}^{\emptyset}=: 1 \text {. }
$$

Hardy space

$$
H^{2}=\left\{f(z)=\left.\sum_{n \in \mathbb{N}_{0}} \hat{f}_{n} z^{n}\left|\sum\right| \hat{f}_{n}\right|^{2}<\infty\right\}
$$

Elements of \mathbb{H}_{d}^{2} are NC functions on $\mathbb{B}_{\mathbb{N}}^{d}$:
(Popescu)
If $Z=\left(Z_{1}, \cdots, Z_{d}\right) \in \mathbb{B}_{\mathbb{N}}^{d}$ and

$$
f(\mathfrak{z})=\sum \hat{f}_{\omega \mathfrak{z}} \mathfrak{z}^{\omega} \in \mathbb{H}_{d}^{2}
$$

then $f(Z)$ converges absolutely (and locally uniformly) in operator-norm.
\Rightarrow Any $f \in \mathbb{H}_{d}^{2}$ is a non-commutative function on strict row contractions.

Non-commutative functions

NC functions on the row-ball
Any $f \in \mathbb{H}_{d}^{2}$ is a non-commutative function on $\mathbb{B}_{\mathbb{N}}^{d}$, i.e. f

- is graded,
- preserves direct sums,
- respects joint similarities which preserve $\mathbb{B}_{\mathbb{N}}^{d}$,
locally bounded hence holomorphic.

Any free polynomial, $p \in \mathbb{C}\left\{\mathfrak{z}_{1}, \cdots, \mathfrak{z}_{d}\right\}$ belongs to \mathbb{H}_{d}^{2}, e.g. $p\left(\mathfrak{z}_{1}, \mathfrak{z}_{2}\right)=\mathfrak{z}_{1}^{2} \mathfrak{z}_{1} \mathfrak{z}_{2}-5 \mathfrak{z}_{1}^{3} \mathfrak{z}_{2}^{2}$.

NC Hardy Space

$H^{\infty}=$ bounded holomorphic functions:

$$
H^{\infty}=\left\{f \in \mathscr{O}(\mathbb{D}) \mid\|f\|_{\infty}=\sup _{z \in \mathbb{D}}\|f(z)\|<\infty\right\}
$$

NC Hardy Space

NC $H^{\infty}=$ bounded NC holomorphic functions:

$$
\mathbb{H}_{d}^{\infty}=\left\{F \in \mathscr{O}\left(\mathbb{B}_{\mathbb{N}}^{d}\right) \mid\|F\|_{\infty}=\sup _{Z \in \mathbb{B}_{\mathbb{N}}^{d}}\|F(Z)\|<\infty\right\}
$$

$F \in \mathbb{H}_{d}^{\infty} \Leftrightarrow F(L):=M_{F}^{L}: \mathbb{H}_{d}^{2} \rightarrow \mathbb{H}_{d}^{2}, \quad$ bounded left multiplier,

$$
\left(M_{F}^{L} f\right)(Z)=F(Z) f(Z) ; \quad Z \in \mathbb{B}_{\mathbb{N}}^{d}
$$

The left free shift
$L_{k}:=M_{Z_{k}}^{L}: \mathbb{H}_{d}^{2} \rightarrow \mathbb{H}_{d}^{2}$, isometries, pairwise orthogonal ranges.

$$
\Rightarrow L:=\left(L_{1}, \cdots, L_{d}\right): \mathbb{H}_{d}^{2} \otimes \mathbb{C}^{d} \rightarrow \mathbb{H}_{d}^{2}, \quad \text { is a row isometry. }
$$

Left vs. right

letter reversal $t: \mathbb{F}^{d} \rightarrow \mathbb{F}^{d}$

$$
\begin{aligned}
\omega & =i_{1} \cdots i_{n} \mapsto \omega^{\mathrm{t}}:=i_{n} \cdots i_{1},
\end{aligned} \quad \text { involution. } \quad . \quad \mathbb{z}_{d}^{2} \rightarrow \mathbb{H}_{d}^{2}, \quad \mathfrak{z}^{\omega} \stackrel{U_{t}}{\mapsto} \mathfrak{z}^{\omega^{\mathrm{t}}} \quad \text { unitary involution. } .
$$

Right multipliers

$$
R_{k}:=M_{Z_{k}}^{R}=U_{t} M_{Z_{k}}^{L} U_{t}=U_{t} L_{k} U_{t}, \text { right free shifts. }
$$

Given $p \in \mathbb{C}\left\{\mathfrak{z}_{1}, \cdots, \mathfrak{z}_{d}\right\}, p(L)=M_{p}^{L}, p(R)=M_{p^{t}}^{R}$.

$$
\text { e.g. } p(\mathfrak{z})=1-\mathfrak{z}_{1} \mathfrak{z}_{2} \mapsto p^{t}(\mathfrak{z})=1-\mathfrak{z}_{2} \mathfrak{z}_{1} \text {. }
$$

If $b \in \mathbb{H}_{d}^{\infty}, b(R):=U_{t} b(L) U_{t}=M_{b^{\mathrm{t}}}^{R}$.

NC rational functions in Fock space

Fock space as an NC-RKHS

\mathbb{H}_{d}^{2} is an NC reproducing kernel Hilbert space on $\mathbb{B}_{\mathbb{N}}^{d}$ [Ball-Marx-Vinnikov].

$$
f \stackrel{\ell_{Z, y, v}}{\mapsto} y^{*} f(Z) v ; \quad Z, y, v \in \mathbb{B}_{n}^{d} \times \mathbb{C}^{n} \times \mathbb{C}^{n},
$$

is bounded on \mathbb{H}_{d}^{2}.

$$
\ell_{Z, y, v}(f)=\langle K\{Z, y, v\}, f\rangle_{\mathbb{H}^{2}}, \quad K\{Z, y, v\} \in \mathbb{H}_{d}^{2}
$$

NC Szegö kernel vectors

$$
\begin{aligned}
K\{Z, y, v\} & =\sum \bar{y}^{*} Z^{\alpha} v \mathfrak{z}^{\alpha}, \quad Z \in \mathbb{B}_{n}^{d}, \\
\langle K\{Z, y, v\}, f\rangle_{\mathbb{H}^{2}} & =\sum_{\alpha, \omega} y^{*} Z^{\alpha} v \hat{f}_{\omega} \underbrace{\left\langle\mathfrak{z}^{\alpha}, \mathfrak{z}^{\omega}\right\rangle}_{=\delta_{\alpha, \omega}} ; \quad f=\sum \hat{f}_{\omega} \mathfrak{z}^{\omega} \in \mathbb{H}_{d}^{2} \\
& =y^{*} \sum \hat{f}_{\omega} Z^{\omega} v=y^{*} f(Z) v .
\end{aligned}
$$

NC kernels are rational

Any NC Szegö kernel, $K\{W, x, u\} \in \mathbb{H}_{d}^{2}, W \in \mathbb{B}_{m}^{d}$ is given by:

$$
\begin{aligned}
& K\{W, x, u\}(Z)=\sum_{\omega} \overline{x^{*} W^{\omega} u} Z^{\omega} ; \quad Z \in \mathbb{B}_{n}^{d} \\
= & \sum^{\prime} \bar{x}^{*} \bar{W}^{\omega} \bar{u} Z^{\omega} ; \quad \bar{x}, \bar{W}, \bar{u}:=\text { entry-wise conjugation } \\
= & \bar{x}^{*} \otimes I_{n} \sum_{k=0}^{\infty}\left(\sum_{j=1}^{d} \bar{W}_{j} \otimes Z_{j}\right)^{k} \bar{u} \otimes I_{n} ; \quad \operatorname{spr}(\cdot)<1 \\
= & \bar{x}^{*} \otimes I_{n}\left(I_{m} \otimes I_{n}-\sum \bar{W}_{j} \otimes Z_{j}\right)^{-1} \bar{u} \otimes I_{n} \\
= & \bar{x}^{*} L_{\bar{W}}(Z)^{-1} \bar{u}, \quad \mathrm{NC} \text { rational! }
\end{aligned}
$$

NC rational functions in \mathbb{H}_{d}^{2} are NC kernels

If $\mathfrak{r} \in \mathbb{H}_{d}^{2} \mathrm{NC}$ rational with minimal realization (A, b, c) of size N ,

$$
\begin{aligned}
\mathfrak{r}(Z) & =\sum_{\omega} \hat{\mathfrak{r}}_{\omega} Z^{\omega} \quad Z \in \mathbb{B}_{n}^{d} \\
& =I_{n} \otimes b^{*}\left(I_{n} \otimes I_{N}-\sum Z_{j} \otimes A_{j}\right)^{-1} I_{n} \otimes c \\
& =\sum \underbrace{b^{*} A^{\omega} c}_{=\hat{\mathfrak{r}}_{\omega}} Z^{\omega}=K\{\bar{A}, \bar{b}, \bar{c}\}(Z)^{\prime},
\end{aligned}
$$

i.e. \mathfrak{r} formally resembles an NC Szegö kernel.

NC rational functions in \mathbb{H}_{d}^{2} are NC kernels

Definition (Joint spectral radius - Popescu)
Given $A=\left(A_{1}, \cdots, A_{d}\right) \in \mathbb{C}_{N}^{d}$,

$$
\operatorname{spr}(A):=\lim \sqrt[2 k]{\left\|\operatorname{Ad}_{A, A^{*}}^{(k)}\left(I_{N}\right)\right\|} ; \quad \operatorname{Ad}_{A, A^{*}}(P)=A\left(P \otimes I_{d}\right) A^{*}
$$

Multi-variable Rota-Strang Theorem (Popescu)
$A=\left(A_{1}, \cdots, A_{d}\right) \in \mathbb{C}_{N}^{d}$ has $\operatorname{spr}(A)<1$ if and only if A is jointly similar to a strict row contraction $W \in \mathbb{B}_{N}^{d}$.

If $N C$ rational $\mathfrak{r} \in \mathbb{H}_{d}^{2}$ with minimal (A, b, c) can show $\operatorname{spr}(A)<1$. Multi-variable Rota Theorem $\Rightarrow \mathfrak{r}=K\{Z, \widetilde{b}, \widetilde{c}\}$ for $Z \in \mathbb{B}_{\mathbb{N}}^{d}$ similar to \bar{A}.

Theorem (Jury-M.-Shamovich)

Let \mathfrak{r} be an NC rational function with $0 \in \operatorname{Dom} \mathfrak{r}$ and minimal realization (A, b, c) of size N. The following are equivalent:
(i) $\mathfrak{r} \in \mathbb{H}_{d}^{2}$.
(ii) $\mathfrak{r} \in \mathbb{H}_{d}^{\infty}$.
(iii) $\mathfrak{r} \in \mathbb{A}_{d}:=\operatorname{Alg}\left\{I, L_{1}, \cdots, L_{d}\right\}^{-\|\cdot\|}$ (NC disk algebra).
(iv) $\operatorname{spr}(A)<1$.
(v) $\mathfrak{r}=K\{Z, y, v\}$ for some $Z \in \mathbb{B}_{N}^{d}$ similar to \bar{A}.
(vi) $\overline{\mathbb{B}_{\mathbb{N}}^{d}} \subset$ Dom \mathfrak{r}.
(vii) There exists an $r>1$ so that $r \mathbb{B}_{\mathbb{N}}^{d} \subseteq$ Dom \mathfrak{r}.

$$
d=1
$$

This recovers (obvious) facts for rational functions in one variable.

Observe:

If $0 \in \operatorname{Dom} \mathfrak{r}, \mathrm{NC}$ rational with minimal $(A, b, c), A \in \mathbb{C}_{n}^{d}$ we can re-scale, $\mathfrak{r}_{r}(Z):=\mathfrak{r}(r Z), r>0$, to obtain $\mathbb{B}_{\mathbb{N}}^{d} \subseteq \operatorname{Dom} \mathfrak{r}_{r}$,

$$
r^{-1}>\|A\|_{\text {row }} \geq \operatorname{spr}(A) \quad \Rightarrow \mathfrak{r}_{r} \in \mathbb{H}_{d}^{\infty}
$$

\Rightarrow We can assume any \mathfrak{r} which is regular at 0 belongs to $\left[\mathbb{H}_{d}^{\infty}\right]_{1}$.

Hardy space techniques can be applied to NC rational function theory.

Finite NC Blaschke products

Any $h \in H^{\infty}$ has a unique inner-outer factorization,

$$
h=\theta \cdot f, \quad \theta, f \in H^{\infty}
$$

where
$-\theta$ is inner, i.e. $M_{\theta}: H^{2} \rightarrow H^{2}$ is isometric.

- f is outer, i.e. M_{f} has dense range.

Rational $\mathfrak{r} \in H^{\infty}$ is inner if and only if \mathfrak{r} is a finite Blaschke product:

$$
\mathfrak{r}(z)=\zeta \prod_{k=1}^{N} \frac{z-z_{k}}{1-\overline{z_{k}} z}, \quad z_{k} \in \mathbb{D}, \zeta \in \partial \mathbb{D}
$$

Blaschke products are completely determined by their zeroes in the disk.

Inner and Outer

Definition

$h \in \mathbb{H}_{d}^{\infty}$ is:
(1) inner if $h(L)=M_{h}^{L}: \mathbb{H}_{d}^{2} \rightarrow \mathbb{H}_{d}^{2}$ is an isometry. inner $=$ isometric
(2) outer if $h(L)=M_{h}^{L}: \mathbb{H}_{d}^{2} \rightarrow \mathbb{H}_{d}^{2}$ has dense range. outer $=$ dense range

Theorem (Popescu, Davidson-Pitts)
Any $h \in \mathbb{H}_{d}^{\infty}\left(\right.$ or $\left.\mathbb{H}_{d}^{2}\right)$ has a unique inner-outer factorization, $h=\Theta \cdot F$.

Inner-Outer factorization

Theorem (Jury-M.-Shamovich)
If $\mathfrak{r} \in \mathbb{H}_{d}^{\infty}$ is NC rational with inner-outer factorization $\mathfrak{r}=\Theta \cdot F$, then both $\Theta, F \in \mathbb{H}_{d}^{\infty}$ are NC rational.

Proof.

Recall: If h is a multiplier of an RKHS $\mathcal{H}(k), M_{h}^{*} k_{z}=k_{z} \overline{h(z)}$.
Similarly, if $h \in \mathbb{H}_{d}^{\infty}, \quad h(L)^{*} K\{Z, y, v\}=K\left\{Z, h(Z)^{*} y, v\right\}$.
If $\mathfrak{r}=\Theta \cdot F \in \mathbb{H}_{d}^{\infty}$ then $\mathfrak{r}=K\{Z, y, v\}$,

$$
K\left\{Z, \Theta(Z)^{*} y, v\right\}=\Theta(L)^{*} \mathfrak{r}=\underbrace{\Theta(L)^{*} \Theta(L)}_{=1} F .
$$

$\Rightarrow F$ is an NC kernel (NC rational) and so is $\Theta=\mathfrak{r} F^{-1}$.

Finite NC Blaschke products

Definition (Jury-M.-Shamovich)

Given $h \in \mathbb{H}_{d}^{2}$, the $N C$ variety of h is

$$
\mathscr{Z}(h):=\bigsqcup_{\mathbb{N} \cup\{\infty\}}\left\{(Z, y) \in \mathbb{B}_{n}^{d} \times \mathbb{C}^{n} \backslash\{0\} \mid y^{*} h(Z)=0\right\}
$$

An inner $b \in \mathbb{H}_{d}^{\infty}$ is NC Blaschke if $\operatorname{Ran} \mathfrak{b}(L)=\mathscr{D}(\mathfrak{b})$,

$$
\mathscr{D}(\mathfrak{b}):=\left\{h \in \mathbb{H}_{d}^{2} \mid(Z, y) \in \mathscr{Z}(b) \Rightarrow(Z, y) \in \mathscr{Z}(h)\right\} .
$$

i.e. NC Blaschke inners are completely determined by their 'NC zeroes'.

Theorem (Jury-M.-Shamovich)
Any NC rational inner $\mathfrak{b} \in \mathbb{H}_{d}^{\infty}$ is NC Blaschke.

Definition

An NC rational inner, \mathfrak{b}, is an NC Blaschke factor, if it is irreducible: If $\mathfrak{b}=\mathfrak{b}_{1} \cdot \mathfrak{b}_{2}, \mathfrak{b}_{k}$ NC rational inner, then $\left\{\mathfrak{b}_{1}, \mathfrak{b}_{2}\right\}=\{\mathfrak{b}, 1\}$.

$$
d=1: \mathfrak{b} \text { is irreducible } \Leftrightarrow \mathfrak{b}(z)=\frac{z-w}{1-\bar{w} z} \text {, a single Blaschke factor. }
$$

Theorem (M.)

Any NC rational inner $\mathfrak{b} \in \mathbb{H}_{d}^{\infty}$ is a finite NC Blaschke product, $\mathfrak{b}=\mathfrak{b}_{1} \cdots \mathfrak{b}_{n}$, with each \mathfrak{b}_{k} an NC rational Blaschke factor.

Proof idea:

If $\mathfrak{b}=\mathfrak{b}_{1} \cdot \mathfrak{b}_{2}$ where \mathfrak{b}_{k} are inner, then the minimal realization size of \mathfrak{b} is greater than that of \mathfrak{b}_{1}.

Q: Can we characterize NC Blaschke factors in terms of their minimal realizations à la Helton-Klep-Volčič?

NC Clark Theory

Clark Theory

A bijection $(d=1)$

μ	\leftrightarrow	H_{μ}	\leftrightarrow	b_{μ}
≥ 0		$\operatorname{Re} H_{\mu}(z) \geq 0$		$\left\|b_{\mu}(z)\right\| \leq 1$

Finite, positive,
regular Borel measure

$$
\operatorname{Re} \boldsymbol{H}_{\mu}(z) \geq 0
$$

$$
\left|b_{\mu}(z)\right| \leq 1
$$

Herglotz function

$$
H_{\mu}(z):=\int_{\partial \mathbb{D}} \frac{1+z \bar{\zeta}}{1-z \bar{\zeta}} \mu(d \zeta) \quad b_{\mu}(z):=\frac{H_{\mu}(z)-1}{H_{\mu}(z)+1}
$$

contractive multiplier

If $\mu \leftrightarrow b$ then $\mu=\mu_{b}$ is the Aleksandrov-Clark measure of b.

NC measures

Riesz-Markov: $\operatorname{Meas}(\partial \mathbb{D})_{+} \leftrightarrow \mathscr{C}(\partial \mathbb{D})_{+}^{\dagger}=\left(\mathcal{A}(\mathbb{D})+\mathcal{A}(\mathbb{D})^{*}\right)_{+}^{\dagger}$,

$$
\begin{gathered}
\mu \leftrightarrow \hat{\mu}, \mathcal{A}(\mathbb{D})=\operatorname{Alg}\{I, S\}^{-\|\cdot\|} \text { Disk Algebra. } \\
S=M_{z}: H^{2} \rightarrow H^{2}, \text { the shift. }
\end{gathered}
$$

$\mathbb{A}_{d}:=\operatorname{Alg}\left\{I, L_{1}, \cdots, L_{d}\right\}^{-\|\cdot\|}$ Free Disk Algebra.

Definition

A (positive) NC measure, $\mu \in\left(\mathscr{A}_{d}^{\dagger}\right)_{+}$, is a positive linear functional on the Free Disk System, $\mathscr{A}_{d}:=\left(\mathbb{A}_{d}+\mathbb{A}_{d}^{*}\right)^{-\|\cdot\|}$.

Given any positive NC measure, $\mu: \mathscr{A}_{d} \rightarrow \mathbb{C}$, consider:

NC Herglotz Function

$$
\begin{aligned}
H_{\mu}(Z)= & \operatorname{id}_{n} \otimes \mu\left(\left(I+Z L^{*}\right)\left(I-Z L^{*}\right)^{-1}\right), \\
Z L^{*}:= & Z_{1} \otimes L_{1}^{*}+\ldots+Z_{d} \otimes L_{d}^{*}, \quad Z \in \mathbb{B}_{\mathbb{N}}^{d} \\
& \operatorname{Re} H_{\mu}(Z) \geq 0 ; \quad Z \in \mathbb{B}_{\mathbb{N}}^{d}, \\
b_{\mu}(Z):= & \left(H_{\mu}(Z)+I_{n}\right)^{-1}\left(H_{\mu}(Z)-I_{n}\right) \in\left[\mathbb{H}_{d}^{\infty}\right]_{1} .
\end{aligned}
$$

A bijection

$$
\begin{array}{ccccc}
\mu & \leftrightarrow & H_{\mu} & \leftrightarrow & b_{\mu} \\
\geq 0 & & \operatorname{Re} H_{\mu} \geq 0 & & \left\|b_{\mu}(Z)\right\| \leq 1
\end{array}
$$

If $\mu \leftrightarrow b$ then $\mu=\mu_{b}$ is the NC Clark measure of b.

NC measure spaces

$$
\mathbb{H}_{d}^{2}(\mu):=\mathbb{C}\left\{\mathfrak{z}_{1}, \cdots, \mathfrak{z}_{d}\right\}^{-\|\cdot\|_{\mu}} ; \quad\langle p, q\rangle_{\mu}:=\mu(\underbrace{p(L)^{*} q(L)}_{\in \mathscr{A}_{d}}) .
$$

Gelfand-Naimark-Segal row isometry

$$
M_{\mathfrak{z} k}^{L} p(\mathfrak{z})+N_{\mu}=\mathfrak{z}_{k} p(\mathfrak{z})+N_{\mu} ; \quad \Pi_{\mu ; k}=M_{\mathfrak{z} k}^{L}
$$

$N_{\mu}:=$ ideal of ' 0 -length vectors'. $\Pi_{\mu}=\left(\Pi_{\mu ; 1}, \cdots, \Pi_{\mu ; k}\right)$ row isometry. Extends to $*$-representation of $C^{*}\{I, L\}=: \mathcal{E}_{d}$, Cuntz-Toeplitz algebra.

If $d=1$
$\mathbb{H}_{1}^{2}(\mu) \simeq H^{2}(\mu)=\bigvee_{n \geq 0} \zeta^{n} \subseteq L^{2}(\mu),\left.\quad \Pi_{\mu} \simeq M_{\zeta}\right|_{H^{2}(\mu)}=$ mult. by ζ.

NC rational Clark measures

Finitely-correlated Cuntz-Toeplitz functionals

 $\mu \in\left(\mathscr{A}_{d}^{\dagger}\right)_{+}$is finitely-correlated if the subspace$$
\mathscr{H}_{\mu}:=\bigvee \Pi_{\mu}^{* \omega} 1+N_{\mu} \subseteq \mathbb{H}_{d}^{2}(\mu)
$$

is finite-dimensional.

Dilation of finite row contractions

If μ is finitely-correlated then Π_{μ} is the minimal row isometric dilation of the finite-dimensional row contraction $T_{\mu}:=\left(\Pi_{\mu}^{*} \mid \mathscr{H}_{\mu}\right)^{*}$.

- Finitely-correlated states on the Cuntz algebra were introduced and studied by Bratteli and Jørgensen.
- Row isometric dilations of finite row contractions were completely classified by Davidson-Kribs-Shpigel.

If $\mu \in\left(\mathscr{A}_{d}^{\dagger}\right)_{+}$is finitely correlated, then,

$$
\begin{aligned}
\operatorname{id}_{n} \otimes \mu\left(\left(I-Z L^{*}\right)^{-1}\right) & =\left(1+N_{\mu}\right)^{*}\left(I-Z T_{\mu}^{*}\right)^{-1}\left(1+N_{\mu}\right) \\
& =\frac{1}{2} H_{\mu}(Z)+\frac{1}{2} \mu(I) I_{n}=: G_{\mu}(Z)
\end{aligned}
$$

Recall: $Z L^{*}=Z_{1} \otimes L_{1}^{*}+\cdots+Z_{d} \otimes L_{d}^{*}$.
Let $x:=1+N_{\mu}$, and $T_{\mu}:=\left(\Pi_{\mu}^{*} \mid \mathscr{H}_{\mu}\right)^{*}, \operatorname{dim} \mathscr{H}_{\mu}<+\infty$.
$\left(T_{\mu}^{*}, x, x\right)$ is a finite-dimensional (and minimal) realization of G_{μ}.

$$
\Rightarrow \quad H_{\mu} \quad \text { and } \quad \mathfrak{b}_{\mu}=\left(H_{\mu}-I\right)\left(H_{\mu}+I\right)^{-1} \quad \text { are NC rational. }
$$

Theorem (M.)
A contractive $\mathfrak{b} \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ is NC rational if and only if $\mu_{\mathfrak{b}} \in\left(\mathscr{A}_{d}^{\dagger}\right)_{+}$is finitely-correlated.

NC rational extreme points of $\left[\mathbb{H}_{d}^{\infty}\right]_{1}$

de Branges-Rovnyak realizations

Any $b \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ has a de Branges-Rovnyak realization:
(right) Free de Branges-Rovnyak space
$\mathscr{H}^{t}(b):=\operatorname{Ran} \sqrt{I-b(R) b(R)^{*}}$, an NC-RKHS contained (contractively) in \mathbb{H}_{d}^{2} with CPNC kernel:
$K^{b}(Z, W)[\cdot]=K(Z, W)[\cdot]-K(Z, W)\left[b^{\mathrm{t}}(Z)(\cdot) b^{\mathrm{t}}(W)^{*}\right], \quad K=$ NC Szegö.
de Branges-Rovnyak realization

$$
\begin{aligned}
b(Z)= & D \cdot I_{n}+C\left(I_{n} \otimes I-\sum Z_{j} \otimes A_{j}\right)^{-1} \sum_{k} Z_{k} \otimes B_{k}, \\
& A:=\left.L^{*}\right|_{\mathscr{H}^{\mathrm{t}}(b)}, \quad B:=L^{*} b^{\mathrm{t}}, \quad C:=\left(K_{0}^{b}\right)^{*} \quad \text { and } \quad D:=b(0) .
\end{aligned}
$$

Column-extreme multipliers of Fock space

$b \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ is column-extreme (CE), if $a \in \mathbb{H}_{d}^{\infty}$ and $c:=\binom{b}{a} \in\left[\mathbb{H}_{d}^{\infty} \otimes \mathbb{C}^{2}\right]_{1}$ implies $a \equiv 0$.

Note: $c:=\binom{b}{a}$ is contractive if and only if:

$$
I-b(R)^{*} b(R) \geq a(R)^{*} a(R)>0
$$

c is inner if and only if

$$
I-b(R)^{*} b(R)=a(R)^{*} a(R)
$$

$T=I-b(R)^{*} b(R)$ is factorizable.

Sarason's outer function

- In one variable, $b \in\left[H^{\infty}\right]_{1}$ is column-extreme \Leftrightarrow it is an extreme point.
- If b is NOT extreme, there is a unique outer, $a \in\left[H^{\infty}\right]_{1}$ so that $c=\binom{b}{a}$ is inner (isometric).

Sarason function

$c:=\binom{b}{a}$ is defined by the colligation, $U_{c}: \mathscr{H}(b) \oplus \mathbb{C}^{2} \rightarrow \mathscr{H}(b) \oplus \mathbb{C}^{2}:$

$$
U_{c}:=\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right) ; \quad\binom{b(z)}{a(z)}:=\mathbf{D}+\mathbf{C}(I-z \mathbf{A})^{-1} z \mathbf{B},
$$

$\mathscr{H}(b)=\operatorname{Ran} \sqrt{1-b(S) b(S)^{*}}$ de Branges-Rovnyak space

$$
\begin{aligned}
S:=M_{z}: H^{2} \rightarrow H^{2} & \text { the shift, } \quad a(0)^{2}:=1-|b(0)|^{2}-\left\|S^{*} b\right\|_{\mathscr{H}(b)}^{2}>0 . \\
\mathbf{A}:= & \left.S^{*}\right|_{\mathscr{H}(b)}, \quad \mathbf{B}:=S^{*} b, \quad \mathbf{C}:=\binom{\left(K_{0}^{b} b^{*}\right.}{-a(0)(b, \cdot))_{\mathscr{H}(b)}^{*}} \quad \mathbf{D}:=\binom{b(0)}{a(0)} .
\end{aligned}
$$

Theorem (Jury-M.)

Given any $b \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$, let $a \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ be its NC Sarason function.
(i) If b is non-CE then a is outer, $a(R)^{*} a(R)$ is the maximal factorizable minorant of $I-b(R)^{*} b(R)$.
(ii) $c:=\binom{b}{a}$ is column-extreme.
(iii) c is inner if and only if b is non-CE and

$$
\begin{equation*}
\sum_{|\omega|=n}\left\|L^{* \omega} b^{\mathrm{t}}\right\|_{\mathscr{H}^{\mathrm{t}}(b)}^{2} \rightarrow 0 \quad \text { weak purity }{ }^{(*)} \tag{1}
\end{equation*}
$$

(iv) b is inner if and only if it is CE and (1) holds.
${ }^{(*)} T: \mathcal{H} \otimes \mathbb{C}^{d} \rightarrow \mathcal{H}$ is pure if $\sum_{|\omega|=n}\left\|T^{* \omega} h\right\|_{\mathcal{H}}^{2} \rightarrow 0$ for any $h \in \mathcal{H}$. $X^{*}=\left(\left.L^{*}\right|_{\mathscr{H}^{\mathrm{t}}(b)}\right)^{*}$ pure $\Leftrightarrow b$ inner (Ball-Bolotnikov-Fang).

Corollary (Jury-M.)

If $\mathfrak{b} \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ is NC rational, then \mathfrak{b} is either non-CE or inner. If \mathfrak{b} is non-CE, then the Sarason \mathfrak{a} is NC rational and $\mathfrak{c}:=\binom{\mathfrak{b}}{\mathfrak{a}}$ is inner.

Corollary (Jury-M.)

If $\mathfrak{b} \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ is NC rational, then \mathfrak{b} is either non-CE or inner. If \mathfrak{b} is non-CE, then the Sarason \mathfrak{a} is NC rational and $\mathfrak{c}:=\binom{\mathfrak{b}}{\mathfrak{a}}$ is inner.

Proof idea:

If $\mathfrak{b} \in \mathbb{H}_{d}^{\infty}$ is NC rational, so is $\mathfrak{b}^{\mathrm{t}}=K\{Z, y, v\}$.

$$
\mathscr{M}:=\bigvee_{\omega \neq \emptyset} L^{* \omega} \mathfrak{b}^{\mathrm{t}}=\bigvee_{\omega \neq \emptyset} K\left\{Z, Z^{* \omega} y, v\right\} \subseteq \mathscr{H}^{\mathrm{t}}(\mathfrak{b})
$$

'Restrict' the de Branges-Rovnyak realization of \mathfrak{b} to \mathscr{M} :

$$
\begin{aligned}
& \mathfrak{A}:=\left.L^{*}\right|_{\mathscr{M}}, \quad \mathfrak{B}=B=L^{*} \mathfrak{b}^{\mathfrak{t}}, \quad \mathfrak{C}=\left(P_{\mathscr{M}} K_{0}^{\mathfrak{b}}\right)^{*} \quad \text { and } \quad \mathfrak{D}=D=\mathfrak{b}(0), \\
& \mathfrak{b}(Z)=\mathfrak{D} \cdot I_{n}+I_{n} \otimes \mathfrak{C}\left(I_{n} \otimes I-\sum Z_{j} \otimes \mathfrak{A}_{j}\right)^{-1} \sum Z_{j} \otimes \mathfrak{B}_{j} .
\end{aligned}
$$

Restricting the realization for Sarason function \mathfrak{a} gives a finite-dimensional Fornasini-Marchesini (FM) realization for $\mathfrak{a} . \Rightarrow \mathfrak{a}$ is also NC rational.

Corollary (Jury-M.)

If $\mathfrak{b} \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ is NC rational, then \mathfrak{b} is either non-CE or inner. If \mathfrak{b} is non-CE, then the Sarason \mathfrak{a} is NC rational and $\mathfrak{c}:=\binom{\mathfrak{b}}{\mathfrak{a}}$ is inner.

Proof idea:

If $\mathfrak{b} \in \mathbb{H}_{d}^{\infty}$ is NC rational, so is $\mathfrak{b}^{\mathrm{t}}=K\{Z, y, v\}$.

$$
\mathscr{M}:=\bigvee_{\omega \neq \emptyset} L^{* \omega} \mathfrak{r}^{\mathrm{t}}=\bigvee_{\omega \neq \emptyset} K\left\{Z, Z^{* \omega} y, v\right\} \subseteq \mathscr{H}^{\mathrm{t}}(\mathfrak{b})
$$

'Restrict' the de Branges-Rovnyak realization of \mathfrak{b} to \mathscr{M} :

$$
\mathfrak{A}:=\left.L^{*}\right|_{\mathscr{M}}, \quad \mathfrak{B}=B=L^{*} \mathfrak{b}^{\mathrm{t}}, \quad \mathfrak{C}=\left(P_{\mathscr{M}} K_{0}^{\mathfrak{b}}\right)^{*} \quad \text { and } \quad \mathfrak{D}=D=\mathfrak{b}(0) .
$$

If (A, b, c) is a minimal descriptor realization $\operatorname{spr}(A)<1 \Rightarrow \operatorname{spr}(\mathfrak{A})<1$.
\Rightarrow the weak purity condition (1) of the previous theorem holds.

Theorem (Fejér-Riesz)

Let $\operatorname{Re} p(S) \geq 0, p \in \mathbb{C}[z]$, 'positive trigonometric polynomial'. Then $\operatorname{Re} p(S)=q(S)^{*} q(S)$ for some $q \in \mathbb{C}[z]$.

Here, $S:=M_{z}: H^{2} \rightarrow H^{2}$, the shift.
Theorem (NC Fejér-Riesz. Popescu, McCullough)
Suppose $p \in \mathbb{C}\left\{\mathfrak{z}_{1}, \cdots, \mathfrak{z}_{d}\right\}$ and $\operatorname{Re} p(R) \geq 0$. Then there is a free polynomial q so that $\operatorname{Re} p(R)=q(R)^{*} q(R)$.

Theorem (NC rational Fejér-Riesz)
Let $T:=\operatorname{Re} \widetilde{\mathfrak{r}}(R) \geq 0$, where $\widetilde{\mathfrak{r}} \in \mathbb{H}_{d}^{\infty}$ is $N C$ rational. Then T factors as $T=\mathfrak{r}(R)^{*} \mathfrak{r}(R)$ for some NC rational outer $\mathfrak{r} \in \mathbb{H}_{d}^{\infty}$.

Proof idea:

Classically, given $|f|>0,|f| \in L^{\infty}$, consider $\mu:=|f| \cdot m, m=$ Lebesgue.

$$
\mu=\mu_{b}, \quad b \in\left[H^{\infty}\right]_{1} \Rightarrow|f(\zeta)|=\frac{\mu_{b}(d \zeta)}{m(d \zeta)}=\frac{1-|b(\zeta)|^{2}}{|1-b(\zeta)|^{2}} \quad \text { a.e. } \quad \text { (Fatou) }
$$

Let $\mu_{T}\left(L^{\omega}\right):=\left\langle 1, T L^{\omega} 1\right\rangle_{\mathbb{H}^{2}}, \mu_{T} \in\left(\mathscr{A}_{d}^{\dagger}\right)_{+}$with 'NC Radon-Nikodym derivative' $T=\operatorname{Re} \widetilde{\mathfrak{r}}(R) \geq 0$.
By the NC Fatou Theorem (Jury-M.), if $\mu_{T}=\mu_{\mathfrak{b}}$,

$$
\operatorname{Re} \widetilde{\mathfrak{r}}(R)=\left(I-\mathfrak{b}(R)^{*}\right)^{-1}\left(I-\mathfrak{b}(R)^{*} \mathfrak{b}(R)\right)(I-\mathfrak{b}(R))^{-1}
$$

for some NC rational $\mathfrak{b} \in\left[\mathbb{H}_{d}^{\infty}\right]_{1} \Rightarrow I-\mathfrak{b}(R)^{*} \mathfrak{b}(R)=\mathfrak{a}(R)^{*} \mathfrak{a}(R)$.
$d=1$
If $\mathfrak{r}(z)=\frac{p(z)}{q(z)} \in H^{\infty}$, then
$q(S)^{*} \operatorname{Re} \mathfrak{r}(S) q(S)=p(S)^{*} q(S)+q(S)^{*} p(S)=\operatorname{Re} \widetilde{q}(S) \geq 0, \quad \widetilde{q} \in \mathbb{C}[z]$.
In one variable the rational Fejér-Riesz theorem is trivial.
\Rightarrow any rational $\mathfrak{b} \in\left[H^{\infty}\right]_{1}$ is either inner or not an extreme point.

Theorem (M.)

Given NC rational $\mathfrak{b} \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$, the following are equivalent:
(1) \mathfrak{b} is inner.
(2) $\Pi_{\mu_{\mathrm{b}}}$ is a Cuntz (onto) row isometry (of dilation-type, Kennedy).
(3) $T_{\mu}=\left(\Pi_{\mu}^{*} \mid \mathscr{H}_{\mu}\right)^{*}, \mu=\mu_{\mathfrak{b}}$, is a finite row co-isometry.
(9) $\mu_{\mathfrak{b}}$ is a singular NC measure (Jury-M.)
$d=1$
$b \in H^{\infty}$ is rational inner $\Rightarrow b$ is a finite Blaschke product:

$$
b(z)=z^{n} \prod_{k=1}^{N} \frac{z-z_{k}}{1-\overline{z_{k}} z} ; \quad z_{k} \in \mathbb{D} .
$$

μ_{b} is a finite, positive sum of point masses on $\partial \mathbb{D}$.
$\Rightarrow \mu_{b}$ is singular and $\left.M_{\zeta}\right|_{H^{2}\left(\mu_{b}\right)}$ is unitary.

Theorem (M.-Shamovich)

An NC rational function \mathfrak{b} with $0 \in \operatorname{Dom} \mathfrak{b}$ belongs to $\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ if and only it has a minimal Fornasini-Marchesini realization $U=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$:

$$
\mathfrak{b}(Z)=D \cdot I_{n}+I_{n} \otimes C\left(I_{n} \otimes I-\sum Z_{j} \otimes A_{j}\right)^{-1} \sum Z_{j} \otimes B_{j} .
$$

Every NC rational \mathfrak{b} with $0 \in \operatorname{Dom} \mathfrak{b}$ has a minimal FM realization. minimal FM realizations $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \leftrightarrow$ minimal descriptor $\left(A^{\prime}, b, c\right)$.

Theorem (M.-Shamovich)

An NC rational function \mathfrak{b} with $0 \in \operatorname{Dom} \mathfrak{b}$ belongs to $\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ if and only it has a minimal Fornasini-Marchesini realization $U=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$:

$$
U:=\left(\begin{array}{cc}
T_{0}^{*} & (1-\overline{\mathfrak{b}(0)}) T^{*} x \\
(1-\mathfrak{b}(0))\left\langle P_{\mathcal{H}_{0} x} x \cdot\right\rangle_{\mathcal{H}_{0}} & \mathfrak{b}(0)
\end{array}\right),
$$

T is a finite row contraction on $\mathcal{H}, x \in \mathcal{H}$ is cyclic for T^{*} and its minimal row isometric dilation, V,

$$
\begin{aligned}
& \quad T_{0}^{*}:=\left.T^{*}(I-(1-\overline{\mathfrak{b}(0)})\langle x, \cdot\rangle x)\right|_{\mathcal{H}_{0}}, \quad \mathcal{H}_{0}:=\bigvee_{\omega \neq \emptyset} T^{* \omega} x \\
& \text { and } \quad \mathfrak{b}(0)=\frac{\|x\|^{2}+i t-1}{\|x\|^{2}+i t+1}, \quad t \in \mathbb{R} \text {. }
\end{aligned}
$$

\mathfrak{b} is inner if and only if T is also a row co-isometry.

An example

$$
T_{1}:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \text { and } \quad T_{2}:=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),
$$

T is an irreducible row co-isometry, every $x \in \mathbb{C}^{2}$ is cyclic for V_{T} and T^{*}.

Consider $x=\mathbf{e}_{1}=\binom{1}{0}$. Then,

$$
\begin{aligned}
T_{0 ; 1}^{*}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) & =0_{2}, \quad T_{0 ; 2}^{*}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) . \\
\mathfrak{b}_{T, x}(Z) & =\left(\begin{array}{ll}
I, & 0
\end{array}\right)\left(\begin{array}{cc}
I & Z_{2} \\
0 & I
\end{array}\right)\binom{0}{Z_{1}} \\
& =Z_{2} Z_{1} .
\end{aligned}
$$

This is clearly inner. Taking $x=\mathbf{e}_{2}$ gives $Z_{1} Z_{2}$.
$x=\sqrt{2}^{-1}\binom{1}{1}$. In this case, $\left(I-Z \otimes T_{0}^{*}\right)^{-1}$

$$
=\left(\begin{array}{cc}
S^{-1} & S^{-1} \frac{Z_{2}}{2}\left(1+\frac{Z_{1}}{2}\right)^{-1} \\
\left(1+\frac{Z_{1}}{2}\right)^{-1} \frac{Z_{1}}{2} S^{-1} & \left(1+\frac{Z_{1}}{2}\right)^{-1}+\frac{1}{4}\left(1+\frac{Z_{1}}{2}\right)^{-1} Z_{1} S^{-1} Z_{2}\left(1+\frac{Z_{1}}{2}\right)^{-1}
\end{array}\right),
$$

where

$$
\begin{gathered}
S:=I-\frac{1}{4} Z_{2}\left(I+\frac{Z_{1}}{2}\right)^{-1} Z_{1} . \\
\Rightarrow \mathfrak{b}_{T, x}(Z)=\frac{1}{2}(I, \quad I)\left(I-Z \otimes T_{0}^{*}\right)^{-1}\binom{Z_{2}}{Z_{1}} .
\end{gathered}
$$

This must be an NC rational inner.

Mutual singularity of Clark measures

Given any $\alpha \in \partial \mathbb{D}$, let $\mu_{\alpha}:=\mu_{b \bar{\alpha}}$ NC Clark measures, $b \in\left[H^{\infty}\right]_{1}$.
Theorem (Aronszajn-Donoghue)
The singular parts of the Clark family $\left\{\mu_{\alpha}\right\}$ are mutually singular.
Let $U_{\alpha}:=M_{\zeta}$ on $L^{2}\left(\mu_{\alpha ; s}\right)=H^{2}\left(\mu_{\alpha ; s}\right)$ unitary. $\mu_{\alpha ; s} \perp \mu_{\beta ; s} \Leftrightarrow U_{\alpha} \perp U_{\beta}$, i.e. have no unitarily equivalent restrictions to reducing subspaces.

Theorem (NC rational Aronszajn-Donoghue, M.-Shamovich) Let $\mathfrak{b} \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ be NC rational. Then for any $\alpha \neq \beta \in \partial \mathbb{D}, \Pi_{\mu_{\alpha ; s}} \perp \Pi_{\mu_{\beta ; s}}$.

Thank you!

Decomposition of row isometries

$\Pi: \mathcal{H} \otimes \mathbb{C}^{d} \rightarrow \mathcal{H}$ row isometry, $\mathscr{S}(\Pi):=\operatorname{Alg}\{I, \Pi\}^{-W O T}$ free semigroup algebra.

Kennedy-Lebesgue-von Neumann-Wold decomposition

$$
\Pi=\Pi_{L} \oplus \Pi_{C-L} \oplus \Pi_{d i l} \oplus \Pi_{v N}
$$

Each of $\Pi_{C-L}, \Pi_{\text {dil }}, \Pi_{v N}$ is Cuntz (surjective).

- Π_{L} is pure, i.e. unitarily equivalent to $L \otimes I$.
- $\mathscr{S}\left(\Pi_{C-L}\right) \simeq \mathscr{S}(L)$ Cuntz type-L.
- $\mathscr{S}\left(\Pi_{v N}\right)$ is self-adjoint von Neumann type.
- $\Pi_{\text {dil }}$ no direct summand of previous types.

$$
\Pi_{d i l} \simeq\left(\begin{array}{cc}
L \otimes I & * \\
& T
\end{array}\right) ; \quad T \text { row co-isometry }
$$

Theorem (M.)
If $\mathfrak{b} \in\left[\mathbb{H}_{d}^{\infty}\right]_{1}$ is NC rational with finitely-correlated NC Clark measure $\mu=\mu_{6}$ then

$$
\Pi_{\mu}=\underbrace{\Pi_{\mu ; L}}_{\simeq L} \oplus \Pi_{\mu ; \text { dil }} .
$$

NC reproducing kernel Hilbert space

Let $\Omega=\bigsqcup_{n=1}^{\infty} \Omega_{n} \subseteq \mathbb{C}_{\mathbb{N}}^{d}$ be an $N C$ set (closed under \oplus), $\Omega_{n}=\Omega \cap \mathbb{C}_{n}^{d}$.

NC-RKHS

A Hilbert space, \mathcal{H}, of NC functions on Ω is an NC reproducing kernel Hilbert space if for any $Z, y, v \in \Omega_{n} \times \mathbb{C}^{n} \times \mathbb{C}^{n}$,

$$
f \stackrel{\ell_{Z, v, v}^{\rightarrow}}{ } y^{*} f(Z) v,
$$

is bounded on \mathcal{H}.

$$
\ell_{Z, y, v}(f)=\langle K\{Z, y, v\}, f\rangle_{\mathbb{H}^{2}}, \quad K\{Z, y, v\} \in \mathcal{H} .
$$

NC Szegö kernel

Given $Z \in \mathbb{B}_{n}^{d}, W \in \mathbb{B}_{m}^{d}$ and $P \in \mathbb{C}^{n \times m}$,

$$
\operatorname{Ad}_{Z, W^{*}}[P]:=Z_{1} P W_{1}^{*}+\cdots Z_{d} P W_{d}^{*}
$$

$\mathbb{H}_{d}^{2}=\mathcal{H}_{n c}(K)$,

$$
\begin{aligned}
K(Z, W)[P] & =\left(\operatorname{id}_{n \times m}-\operatorname{Ad}_{Z, W^{*}}\right)^{-1} \circ P \\
& =\sum_{k=0}^{\infty} \operatorname{Ad}_{Z, W^{*}}^{(k)}[P] \\
& =\sum Z^{\omega} P W^{* \omega}
\end{aligned}
$$

Compare:

$k(z, w):=\frac{1}{1-z \bar{w}}, z, w \in \mathbb{D}=(\mathbb{C})_{1}$. Szegö kernel for $H^{2}=\mathcal{H}(k)$.

NC reproducing kernel

Completely positive NC kernel

For $Z \in \Omega_{n}, W \in \Omega_{m}, K(Z, W)[\cdot]: \mathbb{C}^{n \times m} \rightarrow \mathbb{C}^{n \times m}$ completely bounded, $y^{*} K(Z, W)\left[v u^{*}\right] x:=\langle K\{Z, y, v\}, K\{W, x, u\}\rangle_{\mathcal{H}} ; \quad y, v \in \mathbb{C}^{n}, x, u \in \mathbb{C}^{m}$. $K(Z, Z)[\cdot]: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}$ is completely positive. $\mathcal{H}=: \mathcal{H}_{n c}(K)$.

Theorem (Ball-Marx-Vinnikov)
CPNC kernels $K \leftrightarrow N C-R K H S \mathcal{H}_{n c}(K)$.

Fornasini-Marchesini realizations

Any NC rational $\mathfrak{r}, 0 \in \operatorname{Dom} \mathfrak{r}$, has an $F M$ realization (A, B, C, D), $A \in \mathbb{C}_{N}^{d}, B \in \mathbb{C}^{N} \otimes \mathbb{C}^{d}, C \in \mathbb{C}^{1 \times N}$, and $D=\mathfrak{r}(0) \in \mathbb{C}$: Given $Z \in \mathbb{C}_{n}^{d}$,

$$
\mathfrak{r}(Z)=D+C(\underbrace{I_{n} \otimes I_{N}-\sum Z_{j} \otimes A_{j}}_{=L_{A}(Z)})^{-1} \sum Z_{k} \otimes B_{k} .
$$

Minimal FM realizations

An FM realization is minimal if N is as small as possible. Given minimal (A, b, c) for \mathfrak{r},

$$
A^{\prime}:=\left.A\right|_{\bigvee_{\omega \neq \emptyset} A^{\omega} c}, \quad B^{\prime}:=\left(\begin{array}{c}
A_{1} c \\
\vdots \\
A_{d} c
\end{array}\right), \quad C^{\prime}:=b^{*} \quad \text { and } \quad D:=\mathfrak{r}(0)
$$

is a minimal FM realization.

Weak purity condition \Rightarrow inner $(d=1)$

Given $b \in\left[H^{\infty}\right]_{1}, X:=\left.S^{*}\right|_{\mathscr{H}(b)}, b$ is extreme if and only if

$$
X^{*} X=I-K_{0}^{b}\left(K_{0}^{b}\right)^{*}, \quad K_{0}^{b}=\text { point evaluation at } 0
$$

Equivalently $\left\|S^{*} b\right\|_{\mathscr{H}(b)}^{2}=1-|b(0)|^{2}$.
Weak purity: $\left\|X^{n} S^{*} b\right\|_{\mathscr{H}(b)}^{2} \rightarrow 0$

$$
\begin{aligned}
\left\|X^{2} b\right\|^{2} & =\left\langle S^{*} b, X^{*} X S^{*} b\right\rangle_{b} \\
& =\left\langle S^{*} b, S^{*} b\right\rangle_{b}-\left|\left\langle K_{0}^{b}, S^{*} b\right\rangle\right|^{2}=1-\left|\hat{b}_{1}\right|^{2}-|b(0)|^{2} \\
\ldots\left\|X^{n} S^{*} b\right\|^{2} & =1-\sum_{j=0}^{n}\left|\hat{b}_{j}\right|^{2} \rightarrow 0 \Rightarrow\|b\|_{H^{2}}=1 .
\end{aligned}
$$

Fact: A contractive $b \in H^{\infty}$ has unit H^{2}-norm if and only if it is inner (Davidson-Pitts).

