Henkin and analytic functionals on C*-algebras

Raphaël Clouâtre

University of Manitoba

Workshop on Noncommutative Function theory Fields institute November 2021

イロト イヨト イヨト イヨト

- 3

This talk is based on joint work with Edward Timko.

Functional calculus

 $\mathcal H$ separable Hilbert space, $T\in B(\mathcal H)$ contraction von Neumann's inequality: the map

$$f \mapsto f(T), \quad f \in \mathcal{A}(\mathbb{D})$$

is completely contractive

Lemma

The following conditions are equivalent.

• The functional calculus extends to a weak-* continuous homomorphism $H^{\infty}(\mathbb{D}) \to B(\mathcal{H})$. (Here, we consider $A(\mathbb{D}) \subset C(\mathbb{T}) \subset L^{\infty}(\mathbb{T}, \lambda)$ and $H^{\infty}(\mathbb{D}) \subset L^{\infty}(\mathbb{T}, \lambda)$.)

2 If (f_n) is a bounded sequence in $A(\mathbb{D})$ converging pointwise to 0 on \mathbb{D} , then

$$\lim_{n \to \infty} \langle f_n(T)\xi, \eta \rangle = 0, \quad \xi, \eta \in \mathcal{H}.$$

・ロン ・四と ・ヨン・・ロン

Sz.-Nagy–Foi
as: this is automatically true if T is completely non-unitary.

Writing $T = T_{cnu} \oplus U$ reduces to a problem about measures on the unit circle.

Henkin and analytic measures for $A(\mathbb{D})$

 μ regular Borel measure on $\mathbb T$

Definition

- μ is analytic if $\int_{\mathbb{T}} f d\mu = 0$ for every $f \in A(\mathbb{D})$.
- μ is Henkin for $A(\mathbb{D})$ if whenever (f_n) is a bounded sequence in $A(\mathbb{D})$ converging pointwise to 0 on \mathbb{D} , we have $\lim_{n\to\infty} \int_{\mathbb{T}} f_n d\mu = 0$.

Theorem (Henkin 1968, Valskii 1971)

The following assertions hold.

- A measure is Henkin if and only if it is absolutely continuous with respect to some analytic measure. (Henkin 1968, Valskii 1971)
- A measure is Henkin if and only if it is absolutely continuous with respect to arc length. (the F.&M. Riesz miracle)

Corollary

A contraction on a separable Hilbert space admits a weak-* continuous $H^{\infty}(\mathbb{D})$ -functional calculus if and only if the spectral measure of its unitary part is absolutely continuous with respect to arc length.

Multivariate versions

 $d \geq 2, \mathbb{B}_d \subset \mathbb{C}^d$ open unit ball, $\mathbb{S}_d \subset \mathbb{C}^d$ unit sphere σ_d surface measure on \mathbb{S}_d $A(\mathbb{B}_d)$ ball algebra $A(\mathbb{B}_d) \subset C(\mathbb{S}_d) \subset L^{\infty}(\mathbb{S}_d, \sigma_d)$ and $H^{\infty}(\mathbb{B}_d) \subset L^{\infty}(\mathbb{S}_d, \sigma_d)$

Definition

Let μ be a regular Borel measure on \mathbb{S}_d .

- μ is analytic if $\int_{\mathbb{S}_d} f d\mu = 0$ for every $f \in A(\mathbb{B}_d)$.
- μ is Henkin for $A(\mathbb{B}_d)$ if whenever (f_n) is a bounded sequence in $A(\mathbb{B}_d)$ converging pointwise to 0 on \mathbb{B}_d , we have $\lim_{n\to\infty} \int_{\mathbb{S}_+} f_n d\mu = 0$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Henkin measures for $A(\mathbb{B}_d)$

Theorem (Valskii 1971)

The measure μ is Henkin if and only if there is $g \in L^1(\mathbb{S}_d, \sigma_d)$ and an analytic measure ν on \mathbb{S}_d such that $\mu = \nu + g\sigma_d$.

Theorem (Henkin 1968)

The set of Henkin measures for $A(\mathbb{B}_d)$ is a band: if μ is Henkin and $\nu \ll \mu$, then ν is Henkin.

Corollary

A measure is Henkin for $A(\mathbb{B}_d)$ if and only if it is absolutely continuous with respect to a convex combination of total variations of analytic measures.

Proof.

(\Leftarrow): Use Henkin's theorem. (\Rightarrow): Using Valskii's theorem, it suffices to deal with σ_d . The measure $z_k \sigma_d$ is analytic for every $1 \le k \le d$, and σ_d is mutually absolutely continuous with $\sum_{k=1}^{d} \frac{1}{d} |z_k| \sigma_d$.

イロト イヨト イヨト イヨト

6 / 15

No miracle here?

Representing measures

 \mathscr{R}_0 – set of states μ on $C(\mathbb{S}_d)$ such that

$$\int_{\mathbb{S}_d} f d\mu = f(0), \quad f \in \mathcal{A}(\mathbb{B}_d).$$

Note: it follows from the F. & M. Riesz theorem that $\mathscr{R}_0 = \{\lambda\}$ when d = 1.

 $\mathrm{AC}(\mathcal{R}_0)$ – set of $\mu\in\mathrm{C}(\mathbb{S}_d)^*$ that are absolutely continuous with respect to some measure in \mathcal{R}_0

Theorem (Forelli 1963, Cole–Range 1972)

The set of Henkin measures for $A(\mathbb{B}_d)$ is $AC(\mathscr{R}_0)$.

・ロト ・日ト ・ヨト ・ヨト

Back to the functional calculus: multivariate operator theory

 \mathcal{H} separable Hilbert space, $T_1, \ldots, T_d \in B(\mathcal{H})$ commuting such that $\sum_{j=1}^d T_j T_j^* \leq I$

 \mathcal{M}_d – multiplier algebra of the Drury–Arveson space on \mathbb{B}_d ($\approx H^{\infty}(\mathbb{B}_d)$) $\mathcal{A}_d \subset \mathcal{M}_d$ norm closure of the polynomials ($\approx A(\mathbb{B}_d)$) We always have

$$\max_{z \in \overline{\mathbb{B}_d}} |f(z)| \le ||f||, \quad f \in \mathcal{A}_d.$$

Caution!

The inequality is strict in general. \mathcal{A}_d is **NOT** a uniform algebra.

What is the replacement for $C(\mathbb{S}_d)$? $\mathfrak{T}_d = C^*(\mathcal{A}_d) \subset B(H_d^2)$ $\mathfrak{K} \subset \mathfrak{T}_d$ and $\mathfrak{T}_d/\mathfrak{K} \cong C(\mathbb{S}_d)$ (\Rightarrow the dual space \mathfrak{T}_d^* does not consist entirely of measures)

Theorem (Arveson 1998)

The map $f \mapsto f(T_1, \ldots, T_d)$ is completely contractive on \mathcal{A}_d .

《曰》 《圖》 《圖》 《圖》

- 12

Another problem about measures

Lemma

Let $T = (T_1, \ldots, T_d)$ be a commuting row contraction. The following conditions are equivalent.

- The functional calculus extends to a weak-* continuous homomorphism on \mathcal{M}_d . (Here, we consider $\mathcal{A}_d \subset \mathcal{M}_d \subset B(H_d^2)$.)
- **2** If (f_n) is a bounded sequence in \mathcal{A}_d converging pointwise to 0 on \mathbb{B}_d , then

$$\lim_{n \to \infty} \langle f_n(T)\xi, \eta \rangle = 0, \quad \xi, \eta \in \mathcal{H}.$$

- Automatically true if $T = (T_1, \ldots, T_d)$ is completely non-unitary. (C.–Davidson 2016)
- There is a spherical unitary $U = (U_1, \ldots, U_d)$ such that $T = T_{cnu} \oplus U$ (Eschmeier)

Thus, this becomes a problem about measures on the sphere.

・ロト ・回ト ・ヨト ・ヨト

Henkin functionals for \mathcal{A}_d

Definition

A regular Borel measure μ on \mathbb{S}_d is Henkin for \mathcal{A}_d if whenever (f_n) is a bounded sequence in \mathcal{A}_d converging pointwise to 0 on \mathbb{B}_d , we have $\lim_{n\to\infty}\int_{\mathbb{S}_d} f_n d\mu = 0$.

Definition

A functional $\varphi \in \mathfrak{T}_d^*$ is Henkin for \mathcal{A}_d if whenever (f_n) is a bounded sequence in \mathcal{A}_d converging pointwise to 0 on \mathbb{B}_d , we have $\lim_{n\to\infty} \varphi(f_n) = 0$.

Fact: Henkin measures for $A(\mathbb{B}_d)$ are necessarily Henkin measures for \mathcal{A}_d . Is the converse true? Yes? (C.–Davidson 2016) No! (Hartz 2018) In particular, this means that $AC(\mathscr{R}_0)$ is strictly contained in the set of Henkin measures for \mathcal{A}_d .

Question

Can we give a description of the set of Henkin functionals for \mathcal{A}_d ?

Strategy: adapt the classical approach for the ball algebra, using non-commutative measure theoretic ideas.

イロン イヨン イヨン イヨン

-

10 / 15

The general setting

 $\mathfrak W$ von Neumann algebra, $\mathfrak T\subset \mathfrak W$ unital C*-subalgebra, $\mathcal A\subset \mathfrak T$ unital subalgebra

Definition

A functional $\varphi \in \mathcal{A}^*$ is said to be Henkin (relative to \mathfrak{W}) if whenever (a_i) is a bounded net in \mathcal{A} converging to 0 in the weak-* topology of \mathfrak{W} , we also have that $(\varphi(a_i))$ converges to 0. We denote the set of those functionals by $\operatorname{Hen}_{\mathfrak{W}}(\mathcal{A})$.

We are interested in the set

$$\mathscr{B} = \{ \varphi \in \mathfrak{T}^* : \varphi |_{\mathcal{A}} \in \operatorname{Hen}_{\mathfrak{W}}(\mathcal{A}) \}.$$

Define

$$\Delta = \overline{\mathrm{co}}\{|\psi| : \psi \in \mathcal{A}^{\perp}, \|\psi\| = 1\}.$$

Recall:

Theorem (Henkin, Valskii)

A measure $\mu \in C(\mathbb{S}_d)^*$ satisfies $\mu|_{A(\mathbb{B}_d)} \in \operatorname{Hen}_{L^{\infty}(\mathbb{S}_d,\sigma_d)}(A(\mathbb{B}_d))$ if and only if there is $\nu \in \Delta$ such that $\mu \ll \nu$.

Goal

Given $\varphi \in \mathfrak{T}^*$, show that $\varphi \in \mathscr{B}$ if and only if there is $\psi \in \Delta$ such that $\varphi \ll \psi$.

Analytic triples

Let $\varphi, \psi \in \mathfrak{T}^*$. We write $\varphi \ll \psi$ if $|\varphi|(\xi^*\xi) = 0$ for every $\xi \in \mathfrak{T}^{**}$ satisfying $|\psi|(\xi^*\xi) = 0$.

Definition

The triple $\mathcal{A} \subset \mathfrak{T} \subset \mathfrak{W}$ is said to be analytic if a bounded net (a_i) in \mathcal{A} converges to 0 in the weak-* topology of \mathfrak{W} whenever

$$\lim_{i} \varphi(a_i) = 0, \quad \varphi \in \mathrm{AC}(\Delta)$$

where $\Delta = \overline{\operatorname{co}}\{|\psi| : \psi \in \mathcal{A}^{\perp}, \|\psi\| = 1\}.$

Example

The following triples are analytic.

- $A(\mathbb{B}_d) \subset C(\mathbb{S}_d) \subset L^{\infty}(\mathbb{S}_d, \sigma_d)$
- $\mathcal{A}_d \subset \mathfrak{T}_d \subset B(H_d^2)$
- $\mathfrak{A}_d \subset \mathrm{C}^*(\mathfrak{A}_d) \subset B(\mathfrak{F}_d^2)$

The main result

 $\mathfrak W$ be a von Neumann algebra, $\mathfrak T\subset \mathfrak W$ unital C*-subalgebra, $\mathcal A\subset \mathfrak T$ unital norm-closed subalgebra

 $\Delta = \overline{\mathrm{co}}\{|\psi| : \psi \in \mathcal{A}^{\perp}, \|\psi\| = 1\}$ $\mathscr{B} = \{\varphi \in \mathfrak{T}^* : \varphi|_{\mathcal{A}} \in \mathrm{Hen}_{\mathfrak{W}}(\mathcal{A})\}.$

Theorem (C.–Timko 2021)

Then, the following statements hold.

- The triple $\mathcal{A} \subset \mathfrak{T} \subset \mathfrak{W}$ is analytic if and only if $\mathscr{B} \subset AC(\Delta)$.
- **(a)** Assume that the triple $\mathcal{A} \subset \mathfrak{T} \subset \mathfrak{W}$ is analytic. Then, $\mathscr{B} = AC(\Delta)$ if and only if \mathscr{B} is a left band.

A subset $\mathscr{B} \subset \mathfrak{T}^*$ is called a left band if given $\varphi \in \mathfrak{T}^*$ and $\beta \in \mathscr{B}$ with $\varphi \ll \beta$, we must necessarily have that $\varphi \in \mathscr{B}$.

Example

- For the triple $A(\mathbb{B}_d) \subset C(\mathbb{S}_d) \subset L^{\infty}(\mathbb{S}_d, \sigma_d)$, the set \mathscr{B} is a left band.
- For the triple $\mathcal{A}_d \subset \mathfrak{T}_d \subset B(H_d^2)$, the set \mathscr{B} is a left band.
- For the triple 𝔄_d ⊂ C^{*}(𝔄_d) ⊂ B(𝔅²_d), the set 𝔅 is not a left band. (C.-Martin-Timko 2021)

・ロト ・四ト ・ヨト ・ヨト

A familiar question on the Drury–Arveson space

Corollary

For $\mathcal{A}_d \subset \mathfrak{T}_d = \mathrm{C}^*(\mathcal{A}_d) \subset B(H_d^2)$, we have $\mathscr{B} = \mathrm{AC}(\Delta)$.

 \mathscr{R}_0 – set of states ψ on \mathfrak{T}_d such that $\psi(f) = f(0), \quad f \in \mathcal{A}_d.$

Question

Do we have $\mathscr{B} = AC(\mathscr{R}_0)$?

Yes for d = 1. $d \ge 2$?

Theorem (Hartz 2018)

There exists a regular Borel probability measure μ on \mathbb{S}_d which is Henkin for \mathcal{A}_d yet singular with respect to all representing measures for the origin.

 $\tau_{\mu} \in \mathscr{B} \setminus \mathrm{AC}(\mathscr{R}_0)?$

イロト イヨト イヨト イヨト

Thank you!

・ロ・ ・ 日・ ・ 田・ ・ 田・

æ,