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Introduction

D=unit disc in C,
T=the unit circle.

For f : D → C analytic, the integral means on

circles of radius r < 1 are

Mp(r, f) =
(

1

2π

∫ π
−π

|f(reiθ)|p dθ
)1/p

,

for 1 ≤ p <∞ and

M∞(r, f) = max
−π≤θ<π

|f(reiθ)|.

Both are increasing functions of r.



The Hardy space Hp consists of those f for

which

∥f∥p = sup
r<1

Mp(r, f) = lim
r→1

Mp(r, f) <∞.

For f ∈ Hp the boundary function

f∗(θ) = lim
r→1

f(reiθ)

exists a.e. on the circle, ∥f∥p = ∥f∗∥Lp(T), and∫ π
−π

|f(reiθ)− f∗(θ)|p dθ → 0,

as r → 1. Thus for the dilations fr(z) = f(rz),

∥f∗r − f∗∥Lp(T) → 0.



For 1 ≤ p ≤ ∞ and 0 < α ≤ 1, the analytic

mean Lipschitz spaces are defined by taking

the periodic extension of f∗ on R and consid-

ering the p-modulus of continuity

ωp(f, t) = sup
θ, |h|≤t

∥f∗(θ+ h)− f∗(θ)∥Lp(T).

Then the spaces are

Λ (p, α) =: {f ∈ Hp : ωp(f, t) = O(tα)}

and (”little oh” analogue),

λ (p, α) =: {f ∈ Hp : ωp(f, t) = o(tα), t→ 0}



In other words

f ∈ Λ(p, α) ⇐⇒ ∥f∗(θ+ t)− f∗(θ)∥Lp(T) ≤ C|t|α,

for a constant C. This is clearly equivalent to

∥f(eitz)− f(z)∥p ≤ C|t|α.

These spaces were studied already in the work

of Hardy and Littlewood (1920’s) in connec-

tion with the convergence and summability of

Fourier series.



Some basic properties:

• For p = ∞, Λ(∞, α) is the classical space Λα
of functions f : D → C analytic with

|f(z)− f(w)| ≤ C|z − w|α, z, w ∈ D.

• The norm

∥f∥p,α = |f(0)|+ sup
−π≤t<π

∥f∗(θ+ t)− f∗(θ)∥p
|t|α

makes Λ(p, α) into a nonseparable Banach space.

• Functions in Λ(p, α) have a certain degree of

”smoothness”.



• Λ(p, α) decreases in size as either p or α in-

creases (with the other index kept fixed).

• For α > 1/p, every f ∈ Λ(p, α) is continuous

on D. The value α = 1/p is the borderline for

continuity on the closed disc. Indeed,

• If 1 < p < q <∞ then

log(
1

1− z
) ∈ Λ(p,1/p) ⊂ Λ(q,1/q) ⊂ BMOA.

• f ∈ Λ(1,1) if and only if f ′ ∈ H1.



The theorem of Hardy-Littlewood

Theorem [H-L]. If 1 ≤ p < ∞, 0 < α ≤ 1,

then the following are equivalent for f ∈ Hp:

(a) f ∈ Λ(p, α),

(b) Mp(r, f ′) = O
(
(1− r)α−1

)
, r → 1.

Note that condition (b) can be restated as

∥(f ′)r∥p = O
(
(1− r)α−1

)
,

and the theorem of H-L may be interpreted as

saying:

Smoothness of the boundary function f∗ can

be detected from inside the disc by examining

the dilations of the derivative f ′.



Extension for Abel means

The next theorem says that we can detect

smoothness of f∗ by using the dilations of f

itself.

Theorem. Let p and α be as before. Then

for f ∈ Hp the following are equivalent

(b) Mp(r, f ′) = O
(
(1− r)α−1

)
, r → 1,

(c) ∥fr − f∥p = O((1− r)α), r → 1.

Remark:

In contrast to the theorem of H-L, this result

is not mentioned in works on the topic. Some

special cases (in one direction) can be found

sporadically in some works, but we could not

locate the full theorem in ”western” articles.



It turned out that the full theorem was proved

in a highly technical paper by E. A. Storozhenko

(Math. Sbornik, 1982), while part of it was

proved in her thesis (1978). She attributes

some special cases to other Soviet mathemati-

cians, almost all articles being in Russian. In

her work the theorem is stated in the form,

∥fr − f∥p ≍ ωp(f,1− r), r → 1.

We will sketch an elementary proof on Hardy

spaces and proceed to examine Lipschitz con-

ditions on Bergman spaces.



Sketch of our proof

(Joint work with P. Galanopoulos and G. Sty-

logiannis).

(b) ⇒ (c). Suppose that (b) holds, i.e.

Mp(r, f
′) = O

(
(1− r)α−1

)
, r → 1.

Start with the identity

(⋆) f(z)− f(rz) =
∫ 1

r
zf ′(sz) ds.

Taking integral means on |z| = u ∈ (0,1) and

using Minkowski’s inequality we have

Mp(u, f − fr) ≤ u
∫ 1

r
Mp(su, f

′) ds.



Then take supremum on u,

∥fr − f∥p ≤
∫ 1

r
Mp(s, f

′) ds,

and use the assumtion to obtain

∥fr − f∥p ≤ C
∫ 1

r
(1− s)α−1 =

C

α
(1− r)α,

the desired conclusion.

Conversely to show that (c) ⇒ (b), we use the

modified identity,

(⋆′) (1−r)f ′(z) =
f(z)− f(rz)

z
+
∫ 1

r
(f ′(z)−f ′(sz)) ds.



For r fixed, take integral means on |z| = u,

(1−r)Mp(u, f
′) ≤Mp(u,

f − fr

z
)+

∫ 1

r
Mp(u,Φ

′
[s]) ds

where we have written

Φ[s](z) = f(z)−
1

s
fs(z), r ≤ s < 1.

For the first term in the sum we have,

Mp(u,
f − fr

z
) ≤ ∥fr − f∥p.

To estimate the second term we use the in-

equality

Mp(u, F
′) ≤

C∥F∥p
1− u

, u < 1,

valid for functions F ∈ Hp.



Apply this to Φ[s] = f−1
sfs and use the triangle

inequality to obtain,

(1− u)Mp(u,Φ
′
[s]) ≤ C∥Φ[s]∥p

≤ ∥f − fs∥+ ∥fs −
1

s
fs∥

= ∥fs − f∥+
1− s

s
∥fs∥

≤ C∥fs − f∥+
C

r
(1− s)∥f∥,

valid for 0 ≤ u < 1 and r ≤ s < 1.



Now take u = r and integrate on [r,1) with

respect to s,∫ 1

r
Mp(r,Φ

′
[s]) ds ≤

C

1− r

∫ 1

r
∥fs−f∥ ds+

C∥f∥
2r

(1−r).

This is the estimate for the second term. Put

the two estimates together,

(1− r)Mp(r, f
′) ≤ ∥fr − f∥p+

C

1− r

∫ 1

r
∥fs − f∥p ds

+
C∥f∥p
2r

(1− r),

and use the assumption ∥fr−f∥p ≤ C′(1−r)α to

conclude Mp(r, f ′) = O((1− r)α−1), QED.



Corollary: If p and α are as before and f ∈ Hp

then the following are equivalent

(a) f ∈ λ(p, α),

(b) Mp(r, f ′) = o
(
(1− r)α−1

)
, r → 1,

(c) ∥fr − f∥p = o((1− r)α), r → 1.

Other scales of approximation:

Let

ω : [0,1) → [0,∞), ω(0) = 0,

a continuous, nondecreasing function (weight).

Λ(p, ω) consists of f ∈ Hp such that

∥f∗(θ+ t)− f∗(θ)∥p = O(ω(t)) , t→ 0.

(ω(t) = tα corresponds to Λ(p, α).)



We need to restrict to good weights.

ω is a Dini weight if∫ t
0

ω(s)

s
ds ≤ Cω(t), 0 < t < 1,

and it is admissible Dini weight if in addition∫ 1

t

ω(s)

s2
ds ≤ C

ω(t)

t
, 0 < t < 1,

For admissible weights the H-L theorem for

Λ(p, ω) takes the form



Theorem (O. Blasco-G.S. de Souza, 1990).

Let 1 ≤ p <∞, ω admissible, and f analytic on

D. Then the following are equivalent

(a) f ∈ Λ(p, ω),

(b) Mp(r, f ′) = O
(
ω(1−r)
1−r

)
, r → 1.

Adapting the arguments of the previous proof

we obtain,

Theorem. Under the same assumptions on p

and ω the following are equivalent

(b) Mp(r, f ′) = O
(
ω(1−r)
1−r

)
, r → 1,

(c) ∥fr − f∥p = O(ω(1− r)), r → 1.



On Bergman spaces:

For 1 ≤ p <∞, the Bergman space Ap consists

of functions f : D → C such that

∥f∥pAp =
∫
D
|f(z)|p dm(z) <∞

where dm(z) = 1
πrdθdr.

We want to study ”Lipschitzness” of Bergman

functions.

Unlike Hardy spaces, functions in Ap do not

necessarily have boundary values on the circle,

(to be used for the definition of modulus of

continuity). But since for f ∈ Hp

∥f∗(θ+ t)− f∗(θ)∥Lp(T) = ∥f(eitz)− f(z)∥Hp,

we may use the analogous quantity

∥f(eitz)− f(z)∥Ap,

as a measure of ”smoothness” in Ap.



For f analytic on D write

Ap(r, f) = ∥fr∥Ap,

and note that

Ap(r, f) =
(∫

D
|f(rz)|p dm(z)

)1/p
=

(
1

m(rD)

∫
rD

|f(z)|p dm(z)

)1/p
is an area integral mean, much the same as

Mp(r, f) = ∥fr∥Hp =
(

1

2π

∫ π
−π

|f(reiθ)|pdθ
)1/p

.

is an arc-length integral mean.



It is easy to see that if f ∈ Ap then

Ap(r, f) = ∥fr∥Ap → ∥f∥Ap, r → 1,

and an application of Lebesgue dominated con-

vergence theorem shows

∥fr − f∥Ap → 0, r → 1.

The following theorem relates the rate of ap-

proximation of f by f(eitz) in the Bergman

norm to the growth of Ap(r, f ′) = ∥(f ′)r∥Ap
and to the rate of approximation of f by fr.

That is, it is an analogue for Bergman spaces

of what we know for Hp.



Theorem. Let 1 ≤ p < ∞, 0 < α ≤ 1 and

f ∈ Ap. Then the following are equivalent

(a) ∥f(eitz)− f(z)∥Ap = O(|t|α),
(b) Ap(r, f ′) = O

(
1− r)α−1

)
, r → 1,

(c) ∥fr − f∥Ap = O((1− r)α), r → 1.

The proof follows the lines of the Hardy space

case, i.e. is based on the identities (⋆) together

with

• A decomposition

f(eitz)− f(z) =
∫ δz
z

+
∫ δeitz
δz

+
∫ eitz
δeitz

f ′

for a δ < 1, whose value is appropriately. This

kind of argument was used already by Hardy

and Littlewood.



• The inequality

∥g(z)/z∥Ap ≤ Cp∥g∥Ap,

which is valid for g ∈ Ap vanishing at 0.

• The inequality

Ap(u, F
′) ≤

Cp∥F∥Ap
1− u

, u < 1, F ∈ Ap.

This inequality is a consequence of

∥F∥pAp ≍ |F (0)|p+
∫
D
|F ′(z)|p(1− |z|2)p dm(z).



On the Dirichlet space.

Recall

f ∈ D ⇔ f ′ ∈ A2,

with ∥f∥2D = |f(0)|2 + ∥f ′∥2
A2.

Functions in D have boundary values because

D ⊂ H2, but we continue to use the quantity

∥f(eitz)− f(z)∥D
as a measure of smoothness since the corre-

sponding quantity in terms of the boundary

function ”is not nicer”.



We write

D(r, f) = ∥fr∥D.

Using the Bergman space result and simple ar-

guments such as triangle inequalities, we ob-

tain as a corollary,

Theorem. Let 0 < α ≤ 1 and f ∈ D. The

following are equivalent

(a) ∥f(eitz)− f(z)∥D = O(|t|α),
(b) D(r, f ′) = O

(
(1− r)α−1

)
, r → 1,

(c) ∥fr − f∥D = O((1− r)α), r → 1.



On the disc algebra A

For 0 < α ≤ 1 the classical Lipschitz space

Λα(D) contains the functions such that

|f(z)− f(w)| ≤ C|z − w|α, z, w ∈ D,

For each α, Λα(D) ⊂ A, the disc algebra.

Hardy and Littlewood had proved that the fol-

lowing are equivalent

(a) f ∈ Λα(D),
(b) M∞(r, f ′) = O((1− r)α−1),

and by taking H∞-means in the identity (⋆), it

is easily seen that (b) is equivalent to

(c) ∥fr − f∥∞ = O((1− r)α).



Collecting all the above:

if X is any of the spaces

X = Hp, Ap,D,A,

then for 0 < α ≤ 1 and f ∈ X the following are

equivalent

(a) ∥f(eitz)− f(z)∥X = O(|t|α),
(b) ∥(f ′)r∥X = O

(
1− r)α−1

)
, r → 1,

(c) ∥fr − f∥X = O((1− r)α), r → 1.



Favard classes

Let X be a Banach space and (Tt) a c0 semi-

group of bounded operators on X. For 0 <

α ≤ 1 the Favard class Fα for (Tt) is

Fα = {f ∈ X : ∥Tt(f)− f∥X = O(tα)}.

and its ”little oh” version

Xα = {f ∈ X : ∥Tt(f)− f∥X = o(tα) (t→ 0)}.

(abstract Hölder class). These are subspaces

of X used in the approximation theory of semi-

groups



Consider X = Hp and suppose (Tt) is a semi-

group of composition operators i.e.

Tt(f)(z) = f(ϕt(z)), t ≥ 0

where (ϕt) is a semigroup of analytic self-maps

of D. In this setting the results we have de-

scribed previously may be interpreted as saying

that for the semigroup of rotations

ϕt(z) = eitz

the resulting Favard class is

Fα = Λ(p, α),



The same is true for the semigroup of dilations

ϕt(z) = e−tz,

taking into account that (1 − e−t)α ∼ tα near

0.

Question What is the Favard class for a com-

position semigroup induced by a general (ϕt)?

Observe that for rotation and dilation semi-

group the infinitesimal generator is

G(z) =
∂ϕt(z)

∂t
|t=0 = iz, or− z

so that the the function F of positive real part

which gives the generator as G(z) = −zF (z) is

a constant function.



Conjecture: Initial calculations show that the

Favard class for Tt(f) = f ◦ ϕt on Hp may be

described by looking at the rate of growth of

Mp(r,Gf
′)

with G the generator of (ϕt), at least in the

case when the Denjoy-Wolff point of (ϕt) is

inside the disc.



Several relevant questions arise, for example:

- If {ϕt} and {ψt} are semigroups with gener-

ators G1 and G2 what under what conditions

on G1, G2 they produce the same Favard class

(say on Hardy spaces)?

- What are the Favard classes of semigroups

with Denjoy-Wolff point on the circle T?

- If we stay with the semigroups of rotations

and dilations, on what other function spaces X

do we have a description of the Favard class

by the condition ∥(f ′)r∥X = O
(
1− r)α−1

)
?

—— . ——

Thank you for your attention


