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Framework

Notations:

T =
{
z ∈ C

∣∣ |z | = 1
}

= ∂D

A normalized area measure on D.

Theme: No surprise! We shall focus on composition operators...

Given a symbol : ϕ : D −→ D analytic

and a space of analytic functions X on D

The composition operator Cϕ is

f ∈ X 7−→ Cϕ(f ) = f ◦ ϕ (∈ X ?) (∈ Y ?)
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Composition operators

A few natural questions:

When Cϕ is bounded ?

When Cϕ is compact ?

More generally understand the link: “Operator Cϕ”
??←→ “symbol ϕ”

So that the aim of this area is to build a bridge (or a dictionary) between

Operator theory and Function theory.

The new results will concern nuclear and absolutely summing operators on Bloch spaces...
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Bloch-type spaces on the unit disk

We shall focus on Bloch type spaces

Let β > 0,

Bβ =

{
f ∈H (D)

∣∣ sup
z∈D

(1− |z |2)β |f ′(z)| <∞
}

and
‖f ‖Bβ = |f (0)|+ sup

z∈D
(1− |z |2)β |f ′(z)|

Bβ
0 =

{
f ∈H (D)

∣∣ lim
|z|→1

(1− |z |2)β |f ′(z)| = 0

}
The Little Bloch space Bβ

0 is a closed subspace of Bβ .

When β = 1, we recover classical Bloch spaces B and B0.

Bβ and Bβ
0 are Banach spaces and γ > β =⇒ Bβ

0 ⊂ Bγ
0
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Basic properties...

H∞ = {f ∈H (D); ‖f ‖∞ = sup
z∈D
|f (z)| < +∞}

When β ≥ 1: H∞ ⊂ B ⊂ Bβ .

In fact, it is a consequence of the Schwarz-Pick lemma:
since, for f ∈ H∞(D) with ‖f ‖∞ ≤ 1,

∀z ∈ D, (1− |z |2)β |f ′(z)| ≤ (1− |z |2)|f ′(z)| ≤ 1− |f (z)|2 ≤ 1.

Actually H∞  Bβ : the function f (z) = log(1− z) belongs to B but not to
H∞.

When β < 1: Bβ ⊂ A(D) ⊂ H∞.
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Basic properties...

Duality

(Bβ
0 )∗ is isomorphic to A 1 and (A 1)∗ is isomorphic to Bβ

where A 1 = H (D) ∩ L1(D, dA) is the classical Bergman space.

Isomorphism

Bβ is isomorphic to `∞ and Bβ
0 is isomorphic to c0.
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Boundedness on Bloch spaces

The boundedness of any composition operators viewed on (classical) Bloch
spaces is clear by the Schwarz-Pick inequality. Indeed

∀z ∈ D,
(
1−|z |2

)∣∣(f ◦ϕ)′(z)
∣∣ =

(
1− |z |2

)
|ϕ′(z)|

1− |ϕ(z)|2 ·
(
1−|ϕ(z)|2

)∣∣f ′(ϕ(z))
∣∣

More generally,

Theorem (Contreras-Hernàndez D́ıaz ’00, Xiao ’01,...)

Let ϕ : D −→ D be analytic and let µ, β ∈ (0,∞). Then

Cϕ : Bµ −→ Bβ is bounded if and only if sup
z∈D

(1− |z|2)β

(1− |ϕ(z)|2)µ
|ϕ′(z)|<∞

Cϕ : Bµ
0 −→ Bβ

0 is bounded if and only if ϕ ∈ Bβ
0 and sup

z∈D

(1− |z|2)β

(1− |ϕ(z)|2)µ
|ϕ′(z)|<∞
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Compactness

The characterization of the compactness of composition operators on
(classical) Bloch spaces was settled by Madigan-Matheson (’95).

More generally,

Theorem (Contreras-Hernàndez D́ıaz ’00, Xiao ’01,...)

Cϕ : Bµ −→ Bβ is compact if and only if ϕ ∈ Bβ and

lim
r→1−

sup
|ϕ(z)|>r

(1− |z |2)β

(1− |ϕ(z)|2)µ
|ϕ′(z)|= 0.

Cϕ : Bµ
0 −→ Bβ

0 is compact if and only if lim
|z|→1−

(1− |z |2)β

(1− |ϕ(z)|2)µ
|ϕ′(z)|= 0.
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Compactness - examples

1 For β > 0 and every symbol ϕ such that ϕ ∈ Bβ and ‖ϕ‖∞ < 1, the
operator Cϕ is compact on Bβ . (and even nuclear)

¿ Are there examples of compact composition operator Cϕ with ϕ(D) ∩ T 6= ∅ ?

Especially in the case of the classical Bloch space B ?

2 Let ϕ(z) =
z + 1

2

10

Then Cϕ : Bβ −→ Bβ is not compact for β > 0.
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The lens map

3 Let ϕθ(z) =
κ(z)θ − 1

κ(z)θ + 1
be the lens map , where κ(z) =

1 + z

1− z
·

z ∈ D κ−→ κ(z)
Zθ−→ (κ(z))θ

κ−1
−→ ϕθ(z)

(Farès-L.)

For 0 < β < 1, Cϕθ : Bβ −→ Bβ is not bounded (!)

For β = 1, Cϕθ : B −→ B is bounded but not compact.

For β > 1, Cϕθ : Bβ −→ Bβ is compact.
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The cusp map

Let ϕ : D −→ D be an analytic univalent map. Assumed that ϕ(D) ∩ T = 1, the
region ϕ(D) is said to have a nontangential cusp at 1 if

dist(w , ∂ϕ(D)) = o(|1− w |) as w −→ 1 in ϕ(D).

ϕ(D) lies inside a Stolz angle if there exist r ,M > 0 such that

|1− w | ≤ M(1− |w |2), if |1− w | < r , w ∈ ϕ(D).
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Symbols touching the boundary.

(Madigan and Matheson ’95)

If ϕ is univalent and if ϕ(D) has a nontangential cusp at 1 and touches
the unit circle at no other point, then Cϕ is a compact operator on B0.

Therefore

The cusp map is a symbol χ such that χ(D) touches the unit circle and
defines a compact composition operator Cχ on B.

A (maybe more) striking example:

(Smith ’98)

There exists an inner function (a Blaschke product) ϕ such that Cϕ is a
compact composition operator on B.
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Nuclear

A natural way to construct a (compact) operator between arbitrary Banach
spaces is to consider an `1-sum of rank 1 operators.

Definition

A linear operator T : X −→ Y is said to be nuclear when there exist a sequence

(x∗n ) ⊂ X ∗ and a sequence (yn) ⊂ Y such that
∑
n

‖x∗n ‖‖yn‖ <∞ and

T =
∞∑
n=1

x∗n ⊗ yn,

where x∗n ⊗ yn(x) = x∗n (x)yn.

Indeed, such operators are compact.
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Absolutely summing

Another well known operator ideal is the class of p-summing operators.

Definition

An operator T : X −→ Y is p-absolutely summing, 1 ≤ p < +∞ if there exists
a constant C <∞ such that for all finite sequences (xj)

n
j=1 ⊂ X we have

( n∑
j=1

‖Txj‖pY
)1/p

≤ C sup
‖x∗‖≤1

( n∑
j=1

|x∗(xj)|p
)1/p

= C sup
a∈B

`p
′

∥∥∥ n∑
j=1

ajxj
∥∥∥
X
.

Generic example: K a compact space, ν a Borel probability measure on K .

jp :

{
C(K) −→ Lp(K , ν)
f 7−→ f

Indeed, for (fj)
N
j=1 ∈ C(K)( N∑

j=1

‖jp(fj)‖pLp(ν)

)1/p

=
(∫

K

N∑
j=1

|fj |pdν
)1/p

≤
(

sup
w∈K

N∑
j=1

|fj(w)|p
)1/p

Up to restrictions/compositions, it remains p-summing...
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Absolutely summing

T : X −→ Y is 1-summing means that∑
±xn converges =⇒

∑
‖T (xn)‖ <∞

Observe that:

nuclear implies 1-summing

1-summing does not imply compact in general

BUT

When X = c0, then 1-summing implies nuclear (hence compact).

When X = `∞, then 1-summing implies nuclear (hence compact).
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Absolutely summing

It is easy to see that

When 1 ≤ p < q <∞, T is p-summing =⇒ T is q-summing.

Pietsch domination theorem

An operator T : X −→ Y is p-absolutely summing if and only if there exist a
constant C and a Borel probability measure ν on (BX∗ , σ(X ∗,X )) such that

‖T (x)‖ ≤ C
(∫

BX∗
|〈x∗, x〉|pdν(x∗)

)1/p

, ∀x ∈ X .

This can be seen as a factorization result:

iX (x)(x∗) = x∗(x)

X
iX←→ X̃ ⊂ C

(
BX∗

) jp−→ X̃p ⊂ Lp(BX∗ , ν
) T̃−→ Y

T̃
(
iX (x)

)
= T (x).
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Absolutely summing composition operator on Bloch spaces

We have a complete characterization (Farès-L. ’20)

Let ϕ : D→ D be analytic, µ, β > 0 and p ≥ 1.

The following assertions are equivalent.

(i) The composition operator Cϕ : Bµ −→ Bβ is p-summing.

(ii) The composition operator Cϕ : Bµ
0 −→ Bβ is p-summing.

(iii)

∫
D

sup
z∈D

(
(1− |w |2)

|1− wϕ(z)|

)2p(
(1− |z |2)β |ϕ′(z)|
|1− wϕ(z)|µ

)p
dA(w)

(1− |w |2)2
< +∞.

Moreover, when ϕ ∈ Bβ
0 , the preceding assertions are also equivalent to

(iv) The composition operator Cϕ : Bµ
0 −→ Bβ

0 is p-summing.

The case p = 1 gives a characterization of nuclear composition operators on
Bloch spaces and extends Farès-L ’19 (p = µ = β = 1).
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Absolutely summing

Sketch of proof: how to get the condition...

Use Pietsch theorem: for some probability measure ν on
(
B(Bµ0 )∗ , σ((Bµ

0 )∗,Bµ
0 )
)
,

‖Cϕ(f )‖p
Bβ
≤ πp

p(Cϕ)

∫
B

(B
µ
0

)∗

|ξ(f )|p dν(ξ) for every f ∈ Bµ
0

There exists α ≥ 1 satisfying: for every ξ ∈ B(Bµ0 )∗ , there exists h ∈ αBA 1 such
that

ξ(f ) = 〈h, f 〉 for any f ∈ Bµ
0 .

Apply this with fw (z) =
(1− |w |2)2/p′

(1− wz)1+µ
∈ Bµ

0 ∩ H∞:∣∣ξ(fw )
∣∣p = (1− |w |2)2(p−1)|h(w)|p ≤ |h(w)|.‖h‖(p−1)

A 1 .

Then integrating over D∫
D

sup
z∈D

|w |p(1− |w |2)2(p−1)(1− |z |2)βp|ϕ′(z)|p

|1− wϕ(z)|(2+µ)p
dA(w) . πp

p(Cϕ) sup
h∈αB

A 1

‖h‖p
A 1 .
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Some other examples

Using our characterization, we can produce some examples with particular behavior:

There exists a symbol ϕ such that ϕ(D) touches the unit circle and Cϕ defines
a nuclear operator on B.

Taking a cusp map ϕ more flattened than the one of Madigan and Matheson,
satisfying: dist(z , ∂ϕ(D)) = O(|1− z |3), for every z ∈ ϕ(D)
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Some other examples

Another striking example:

Let β ≥ 1.

There exists a symbol φ which is inner (a Blaschke product) such that Cφ
is nuclear on Bβ .

This is impossible when β < 1.

This a direct consequence from our characterization and a result due to
Aleksandrov-Anderson-Nicolau (’99):

there are some Blaschke product φ satisfying

∀z ∈ D, (1− |z |2)|φ′(z)| ≤
(
1− |φ(z)|2

)3
.
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Some other examples

There exists a compact composition operator on B which is not p-summing for
any p ≥ 1.

We consider a cusp map Φ such that its domain Φ(D) is bounded by some
convex curves of type γ1(t) = (1− t, t

θ(t)
) and γ2(t) = (1− t,− t

θ(t)
), for t in a

neighborhood of 0 and θ : (0, 1) −→ (0,+∞), such that θ(t) tends to infinity
when t tends to 0:
For any p ≥ 1, ∫ 1/2

0

1

sθ(s)p+1
ds =∞,

For a concrete example, just choose θ(t) = ln(ln( 1
t
)), for t < e−1.
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Lens map semi-group

Recall

z ∈ D κ−→ κ(z)
Zθ−→ (κ(z))θ

κ−1

−→ ϕθ(z)

Therefore
ϕθ′ ◦ ϕθ = ϕθθ′

So,

we can embed a composition operator Cϕθ in a semi-group Lt = Cϕθt
(where t > 0).
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Lens map semi-group

For p ≥ 1 and β > 1

The lens map ϕθ induces a p-summing composition operator on Bβ for p large
enough:

it is sufficient that p >
θ

(β − 1)(1− θ)
,

In particular, if θ < 1− 1

β
, then Cϕθ is nuclear on Bβ .

Therefore

The lens map semi-group is eventually p-summing. More precisely,

Lt is p-summing for t >
ln
(

1− 1
1+p(β−1)

)
ln(θ)

Lt is nuclear for t >
ln
(

1− 1
β

)
ln(θ)
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Merci !
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