Intro 00	ℬ ^β , ℬ ^β 000	Boundedness O	Compactness 00000	Nuclear O	Absolutely summing	Lens SG	!
							1
	Absol	utely summin	ig compositio	n operato	rs on Bloch spac	es.	

Pascal Lefèvre

Workshop on Discrete and Continuous Semigroups of Composition Operators Fields Institute's Focus Program on Analytic Function Spaces and their Applications

november 2021

Work in collaboration with Tonie Farès

Intro ●○	<i>^{₿[₿], ®}</i> ^р 000	Boundedness	Compactness	Nuclear O	Absolutely summing	Lens SG	
Frame	work						

Notations:

- $\mathbb{T} = \left\{ z \in \mathbb{C} \middle| |z| = 1 \right\} = \partial \mathbb{D}$
- A normalized area measure on \mathbb{D} .

Theme: No surprise! We shall focus on composition operators...

Given a symbol : $\varphi : \mathbb{D} \longrightarrow \mathbb{D}$ analytic

and a space of analytic functions X on \mathbb{D}

The composition operator C_{φ} is

 $f \in X \longmapsto C_{\varphi}(f) = f \circ \varphi \quad (\in X ?) \quad (\in Y ?)$

Intro ○●	₿ [₿] , ₿ [₽] 000	Boundedness O	Compactness	Nuclear O	Absolutely summing	Lens SG	
Compo	osition ope	erators					

A few natural questions:

- When C_{φ} is bounded ?
- When C_{φ} is compact ?

• More generally understand the link: "Operator C_{φ} " $\xleftarrow{??}$ "symbol φ "

So that the aim of this area is to build a bridge (or a dictionary) between **Operator theory** and **Function theory**.

The new results will concern nuclear and absolutely summing operators on Bloch spaces...

We shall focus on Bloch type spaces

Let $\beta > 0$, • $\mathscr{B}^{\beta} = \left\{ f \in \mathscr{H}(\mathbb{D}) | \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |f'(z)| < \infty \right\}$ and $\|f\|_{\mathscr{B}^{\beta}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |f'(z)|$

•
$$\mathscr{B}_0^\beta = \left\{ f \in \mathscr{H}(\mathbb{D}) \Big| \lim_{|z| \to 1} (1 - |z|^2)^\beta |f'(z)| = 0 \right\}$$

The Little Bloch space \mathscr{B}_0^β is a closed subspace of \mathscr{B}^β .

When $\beta = 1$, we recover classical Bloch spaces \mathscr{B} and \mathscr{B}_0 .

 \mathscr{B}^{β} and \mathscr{B}^{β}_{0} are Banach spaces and $\gamma > \beta \implies \mathscr{B}^{\beta}_{0} \subset \mathscr{B}^{\gamma}_{0}$

Intro	ℬ ^թ , ℬ <mark></mark> ○●○	Boundedness O	Compactness	Nuclear O	Absolutely summing	Lens SG	
Basic	properties.						

•
$$H^{\infty} = \{f \in \mathscr{H}(\mathbb{D}); \|f\|_{\infty} = \sup_{z \in \mathbb{D}} |f(z)| < +\infty\}$$

When $\beta \geq 1$: $H^{\infty} \subset \mathscr{B} \subset \mathscr{B}^{\beta}$.

In fact, it is a consequence of the Schwarz-Pick lemma: since, for $f \in H^{\infty}(\mathbb{D})$ with $||f||_{\infty} \leq 1$,

$$orall z \in \mathbb{D}, \qquad (1-|z|^2)^{eta} |f'(z)| \leq (1-|z|^2) |f'(z)| \leq 1-|f(z)|^2 \leq 1.$$

Actually $H^{\infty} \subsetneq \mathscr{B}^{\beta}$: the function $f(z) = \log(1 - z)$ belongs to \mathscr{B} but not to H^{∞} .

 $\underline{ \text{When } \beta < 1 : \ \mathscr{B}^{\beta} \subset A(\mathbb{D}) \subset H^{\infty}.}$

Intro	ℬ ^β , ℬ <mark>β</mark> ○○●	Boundedness O	Compactness	Nuclear O	Absolutely summing	Lens SG	
Basic	properties.						

Duality

 $(\mathscr{B}^{\beta}_{0})^{*}$ is isomorphic to \mathscr{A}^{1} and $(\mathscr{A}^{1})^{*}$ is isomorphic to \mathscr{B}^{β}

where $\mathscr{A}^1 = \mathscr{H}(\mathbb{D}) \cap L^1(\mathbb{D}, dA)$ is the classical Bergman space.

The boundedness of any composition operators viewed on (classical) Bloch spaces is clear by the Schwarz-Pick inequality. Indeed

$$orall z\in \mathbb{D}, \qquad ig(1-|z|^2ig)ig|(f\circarphi)'(z)ig|=rac{ig(1-|z|^2ig)arphi'(z)arphi}{1-arphi(z)arphi^2}\cdotig(1-arphi(z)arphi^2ig)ig|f'(arphi(z))ig)$$

More generally,

Theorem (Contreras-Hernàndez Díaz '00, Xiao '01,...)

Let $\varphi : \mathbb{D} \longrightarrow \mathbb{D}$ be analytic and let $\mu, \beta \in (0, \infty)$. Then

 $C_{\varphi}: \mathscr{B}^{\mu} \longrightarrow \mathscr{B}^{\beta}$ is bounded if and only if $\sup_{z \in \mathbb{D}} \frac{(1-|z|^2)^{\beta}}{(1-|\varphi(z)|^2)^{\mu}} |\varphi'(z)| < \infty$

$$C_{\varphi}:\mathscr{B}^{\mu}_{0}\longrightarrow \mathscr{B}^{\beta}_{0} \text{ is bounded if and only if } \varphi\in \mathscr{B}^{\beta}_{0} \text{ and } \sup_{z\in\mathbb{D}}\frac{(1-|z|^{2})^{\beta}}{(1-|\varphi(z)|^{2})^{\mu}}|\varphi'(z)|<\infty$$

Intro 00	₿ [₿] , ₿ [₽] 000	Boundedness O	Compactness ●○○○○	Nuclear O	Absolutely summing	Lens SG	
Compa	actness						

The characterization of the compactness of composition operators on (classical) Bloch spaces was settled by *Madigan-Matheson* ('95).

More generally,

Theorem (Contreras-Hernàndez Díaz '00, Xiao '01,...) $C_{\varphi} : \mathscr{B}^{\mu} \longrightarrow \mathscr{B}^{\beta} \text{ is compact} \quad \text{if and only if} \quad \varphi \in \mathscr{B}^{\beta} \text{ and}$ $\lim_{r \to 1^{-}} \sup_{|\varphi(z)| > r} \frac{(1 - |z|^{2})^{\beta}}{(1 - |\varphi(z)|^{2})^{\mu}} |\varphi'(z)| = 0.$ $C_{\varphi} : \mathscr{B}^{\mu}_{0} \longrightarrow \mathscr{B}^{\beta}_{0} \text{ is compact} \quad \text{if and only if} \quad \lim_{|z| \to 1^{-}} \frac{(1 - |z|^{2})^{\beta}}{(1 - |\varphi(z)|^{2})^{\mu}} |\varphi'(z)| = 0.$

Intro 00	^{₿₿} , ₿ ^р 000	Boundedness O	Compactness ○●○○○	Nuclear O	Absolutely summing	Lens SG 00	
Compa	actness - e	xamples					

• For $\beta > 0$ and every symbol φ such that $\varphi \in \mathscr{B}^{\beta}$ and $\|\varphi\|_{\infty} < 1$, the operator C_{φ} is compact on \mathscr{B}^{β} . (and even nuclear)

i Are there examples of **compact** composition operator C_{φ} with $\overline{\varphi}(\mathbb{D}) \cap \mathbb{T} \neq \emptyset$? Especially in the case of the classical Bloch space \mathscr{B} ?

• Let
$$\varphi(z) = \frac{z+1}{2}$$

Then $C_{\varphi}: \mathscr{B}^{\beta} \longrightarrow \mathscr{B}^{\beta}$ is not compact for $\beta > 0$.

(Farès-L.)

- For $0 < \beta < 1$, $C_{\varphi_{\theta}} : \mathscr{B}^{\beta} \longrightarrow \mathscr{B}^{\beta}$ is not bounded (!)
- For $\beta = 1$, $C_{\varphi_{\theta}} : \mathscr{B} \longrightarrow \mathscr{B}$ is bounded but not compact.
- For $\beta > 1$, $C_{\varphi_{\theta}} : \mathscr{B}^{\beta} \longrightarrow \mathscr{B}^{\beta}$ is compact.

Intro	^{₿₿} , ₿ 000	Boundedness O	Compactness	Nuclear O	Absolutely summing	Lens SG	
The c	usp map						

Let $\varphi : \mathbb{D} \longrightarrow \mathbb{D}$ be an analytic univalent map. Assumed that $\overline{\varphi(\mathbb{D})} \cap \mathbb{T} = 1$, the region $\varphi(\mathbb{D})$ is said to have a nontangential cusp at 1 if

$$dist(w, \partial \varphi(\mathbb{D})) = o(|1 - w|)$$
 as $w \longrightarrow 1$ in $\varphi(\mathbb{D})$.

 $\varphi(\mathbb{D})$ lies inside a Stolz angle if there exist r, M > 0 such that

$$|1 - w| \le M(1 - |w|^2), \quad \text{if } |1 - w| < r, \ w \in arphi(\mathbb{D}).$$

Intro 00	^{зр} , з ^р 000	Boundedness O	Compactness ○○○○●	Nuclear O	Absolutely summing	Lens SG	
Symbo	ols touchin	g the boun	dary.				

(Madigan and Matheson '95)

 If φ is univalent and if φ(D) has a nontangential cusp at 1 and touches the unit circle at no other point, then C_φ is a compact operator on ℬ₀.

Therefore

 The cusp map is a symbol χ such that χ(D) touches the unit circle and defines a compact composition operator C_χ on ℬ.

A (maybe more) striking example:

(Smith '98)

There exists an inner function (a Blaschke product) φ such that C_{φ} is a compact composition operator on \mathcal{B} .

Intro ○○	^{ВВ} , В ^р 000	Boundedness	Compactness	Nuclear ●	Absolutely summing	Lens SG	
Nuclea	r						

A natural way to construct a (compact) operator between arbitrary Banach spaces is to consider an ℓ^1 -sum of rank 1 operators.

Definition

A linear operator $T : X \longrightarrow Y$ is said to be nuclear when there exist a sequence $(x_n^*) \subset X^*$ and a sequence $(y_n) \subset Y$ such that $\sum_n ||x_n^*|| ||y_n|| < \infty$ and

$$T=\sum_{n=1}^{\infty}x_n^*\otimes y_n,$$

where $x_n^* \otimes y_n(x) = x_n^*(x)y_n$.

Indeed, such operators are compact.

Intro	$\mathscr{B}^{\beta}, \mathscr{B}^{\beta}_{0}$	Boundedness	Compactness	Nuclear	Absolutely summing	Lens SG	
00	000		00000		0000000	00	
Abso	lutely sum	ming					

Another well known operator ideal is the class of *p*-summing operators.

Definition

An operator $T: X \longrightarrow Y$ is *p*-absolutely summing, $1 \le p < +\infty$ if there exists a constant $C < \infty$ such that for all finite sequences $(x_j)_{j=1}^n \subset X$ we have

$$\Big(\sum_{j=1}^n \|Tx_j\|_Y^p\Big)^{1/p} \le C \sup_{\|x^*\| \le 1} \Big(\sum_{j=1}^n |x^*(x_j)|^p\Big)^{1/p} = C \sup_{a \in B_{\ell^{p'}}} \Big\|\sum_{j=1}^n a_j x_j\Big\|_X.$$

Generic example: K a compact space, ν a Borel probability measure on K.

$$j_p: \left\{ \begin{array}{ccc} C(K) & \longrightarrow & L^p(K,\nu) \\ f & \longmapsto & f \end{array} \right.$$

Indeed, for $(f_j)_{j=1}^N \in C(K)$

$$\Big(\sum_{j=1}^{N} \|j_{
ho}(f_{j})\|_{L^{p}(
u)}^{p}\Big)^{1/
ho} = \Big(\int_{\mathcal{K}} \sum_{j=1}^{N} |f_{j}|^{
ho} d
u\Big)^{1/
ho} \leq \Big(\sup_{w \in \mathcal{K}} \sum_{j=1}^{N} |f_{j}(w)|^{
ho}\Big)^{1/
ho}$$

Up to restrictions/compositions, it remains p-summing...

Intro 00	<i>^{вр}, в</i> р 000	Boundedness	Compactness	Nuclear O	Absolutely summing	Lens SG	
Absolu	tely summ	ing					

 $T: X \longrightarrow Y$ is 1-summing means that

$$\sum \pm x_n \text{ converges } \implies \sum \|T(x_n)\| < \infty$$

Observe that:

nuclear implies 1-summing

1-summing does not imply compact in general **BUT**

When $X = c_0$, then 1-summing implies nuclear (hence compact).

When $X = \ell^{\infty}$, then 1-summing implies nuclear (hence compact).

Intro	$\mathscr{B}^{P}, \mathscr{B}^{P}_{0}$	Boundedness	Compactness	Nuclear	Absolutely summing	Lens SG	
00	000	Ō	00000	0	0000000	00	0
Abso	lutely sum	ming					

It is easy to see that

• When $1 \le p < q < \infty$, T is p-summing \implies T is q-summing.

Pietsch domination theorem

An operator $T: X \longrightarrow Y$ is *p*-absolutely summing if and only if there exist a constant *C* and a Borel probability measure ν on $(B_{X^*}, \sigma(X^*, X))$ such that

$$\|T(x)\| \leq C \Big(\int_{B_{X^*}} |\langle x^*, x \rangle|^p d\nu(x^*)\Big)^{1/p}, \quad \forall x \in X.$$

This can be seen as a factorization result:

 $i_X(x)(x^*) = x^*(x)$

$$X \stackrel{i_X}{\longleftrightarrow} \widetilde{X} \subset C(B_{X^*}) \stackrel{j_p}{\longrightarrow} \widetilde{X}_p \subset L^p(B_{X^*},\nu) \stackrel{\widetilde{\tau}}{\longrightarrow} Y$$

 $\widetilde{T}(i_X(x))=T(x).$

- **(**) The composition operator $C_{\varphi}: \mathscr{B}^{\mu} \longrightarrow \mathscr{B}^{\beta}$ is *p*-summing.
- The composition operator $C_{\varphi}: \mathscr{B}^{\mu}_{0} \longrightarrow \mathscr{B}^{\beta}$ is *p*-summing.

Moreover, when $\varphi\in \mathscr{B}_0^{\beta}$, the preceding assertions are also equivalent to

• The composition operator $C_{\varphi}: \mathscr{B}_0^{\mu} \longrightarrow \mathscr{B}_0^{\beta}$ is *p*-summing.

The case p = 1 gives a characterization of nuclear composition operators on Bloch spaces and extends *Farès-L* '19 ($p = \mu = \beta = 1$).

Sketch of proof: how to get the condition ...

Use Pietsch theorem: for some probability measure ν on $(B_{(\mathscr{B}^{\mu}_{0})^{*}}, \sigma((\mathscr{B}^{\mu}_{0})^{*}, \mathscr{B}^{\mu}_{0}))$,

$$\|C_{\varphi}(f)\|_{\mathscr{B}^{\beta}}^{p} \leq \pi_{p}^{p}(C_{\varphi}) \int_{B_{(\mathscr{B}_{0}^{\mu})^{*}}} |\xi(f)|^{p} d\nu(\xi) \quad \text{ for every } f \in \mathscr{B}_{0}^{\mu}$$

There exists $\alpha \ge 1$ satisfying: for every $\xi \in B_{(\mathscr{B}_0^\mu)^*}$, there exists $h \in \alpha B_{\mathscr{A}^1}$ such that

$$\xi(f) = \langle h, f \rangle$$
 for any $f \in \mathscr{B}^{\mu}_{0}$.

Apply this with $f_w(z) = \frac{(1 - |w|^2)^{2/p'}}{(1 - \overline{w}z)^{1+\mu}} \in \mathscr{B}_0^{\mu} \cap H^{\infty}$: $|\xi(f_w)|^p = (1 - |w|^2)^{2(p-1)} |h(w)|^p \le |h(w)| \cdot ||h||_{\mathscr{A}^1}^{(p-1)}.$

Then integrating over $\mathbb D$

$$\int_{\mathbb{D}} \sup_{z \in \mathbb{D}} \frac{|w|^p (1-|w|^2)^{2(p-1)} (1-|z|^2)^{\beta p} |\varphi'(z)|^p}{|1-\overline{w}\varphi(z)|^{(2+\mu)p}} dA(w) \lesssim \pi_p^p(C_{\varphi}) \sup_{h \in \alpha B_{\mathscr{A}^1}} \|h\|_{\mathscr{A}^1}^p.$$

Intro	38 °, 38 °	Boundedness	Compactness	Nuclear	Absolutely summing	Lens SG	
00	000 ँ		00000		00000000	00	
Some	other exa	mples					

Using our characterization, we can produce some examples with particular behavior:

There exists a symbol φ such that $\varphi(\mathbb{D})$ touches the unit circle and C_{φ} defines a nuclear operator on \mathscr{B} .

Taking a cusp map φ more flattened than the one of Madigan and Matheson, satisfying: $dist(z, \partial \varphi(\mathbb{D})) = O(|1-z|^3)$, for every $z \in \varphi(\mathbb{D})$

Intro 00	^{₿[₿], ₿[₽] 000}	Boundedness O	Compactness	Nuclear O	Absolutely summing ○○○○○●○	Lens SG	
Some							

Another striking example:

Let $\beta \geq 1$.

- There exists a symbol ϕ which is inner (a Blaschke product) such that C_{ϕ} is nuclear on \mathscr{B}^{β} .
- This is impossible when $\beta < 1$.

This a direct consequence from our characterization and a result due to Aleksandrov-Anderson-Nicolau ('99):

there are some Blaschke product ϕ satisfying

$$orall z\in\mathbb{D}, \qquad (1-|z|^2)|\phi'(z)|\leq ig(1-|\phi(z)|^2ig)^3.$$

Intro	^{₿₿} , ₿ [₽] 000	Boundedness O	Compactness	Nuclear O	Absolutely summing ○○○○○○●	Lens SG			
Some	Some other examples								

There exists a compact composition operator on $\mathscr B$ which is not *p*-summing for any $p \ge 1$.

We consider a cusp map Φ such that its domain $\Phi(\mathbb{D})$ is bounded by some convex curves of type $\gamma_1(t) = (1 - t, \frac{t}{\theta(t)})$ and $\gamma_2(t) = (1 - t, -\frac{t}{\theta(t)})$, for t in a neighborhood of 0 and $\theta : (0, 1) \longrightarrow (0, +\infty)$, such that $\theta(t)$ tends to infinity when t tends to 0: For any $p \ge 1$,

$$\int_0^{1/2} \frac{1}{s\theta(s)^{p+1}} ds = \infty,$$

For a concrete example, just choose $\theta(t) = \ln(\ln(\frac{1}{t}))$, for $t < e^{-1}$.

Intro 00	<i>®^β, 3</i> β 000	Boundedness O	Compactness	Nuclear O	Absolutely summing	Lens SG ●○	
Lens	map semi-	group					

Recall

$$z \in \mathbb{D} \xrightarrow{\kappa} \kappa(z) \xrightarrow{Z^{\theta}} (\kappa(z))^{\theta} \xrightarrow{\kappa^{-1}} \varphi_{\theta}(z)$$

Therefore

 $\varphi_{\theta'} \circ \varphi_{\theta} = \varphi_{\theta\theta'}$

So,

we can embed a composition operator $C_{\varphi_{\theta}}$ in a semi-group $L_t = C_{\varphi_{\theta}t}$ (where t > 0).

For $p \geq 1$ and $\beta > 1$

The lens map φ_{θ} induces a *p*-summing composition operator on \mathscr{B}^{β} for *p* large enough:

it is sufficient that
$$p > rac{ heta}{(eta-1)(1- heta)},$$

In particular, if $\theta < 1 - \frac{1}{\beta}$, then $C_{\varphi_{\theta}}$ is nuclear on \mathscr{B}^{β} .

Therefore

The lens map semi-group is eventually *p*-summing. More precisely,

•
$$L_t$$
 is *p*-summing for $t > \frac{\ln\left(1 - \frac{1}{1 + p(\beta - 1)}\right)}{\ln(\theta)}$

•
$$L_t$$
 is nuclear for $t > rac{\ln\left(1 - rac{1}{eta}
ight)}{\ln(heta)}$

Intro 9	8 ¹⁵ , 38 ¹⁵	Boundedness	Compactness	Nuclear	Absolutely summing	Lens SG	
00 C	000	0	00000	0	0000000	00	•

Merci !