Absolutely summing composition operators on Bloch spaces.

Pascal Lefèvre

Workshop on Discrete and Continuous Semigroups of Composition Operators Fields Institute's Focus Program on Analytic Function Spaces and their Applications november 2021

Work in collaboration with Tonie Farès

4
UNIVERSITÉ D'ARTOIS

Notations:

- $\mathbb{T}=\{z \in \mathbb{C}| | z \mid=1\}=\partial \mathbb{D}$
- A normalized area measure on \mathbb{D}.

Theme: No surprise! We shall focus on composition operators...

Given a symbol: $\varphi: \mathbb{D} \longrightarrow \mathbb{D}$ analytic
and a space of analytic functions X on \mathbb{D}

The composition operator C_{φ} is

$$
f \in X \longmapsto C_{\varphi}(f)=f \circ \varphi \quad(\in X ?) \quad(\in Y ?)
$$

Composition operators

A few natural questions:

- When C_{φ} is bounded ?
- When C_{φ} is compact ?
- More generally understand the link: "Operator C_{φ} " ?? "symbol φ " So that the aim of this area is to build a bridge (or a dictionary) between Operator theory and Function theory.

The new results will concern nuclear and absolutely summing operators on Bloch spaces...

Bloch-type spaces on the unit disk

We shall focus on Bloch type spaces

Let $\beta>0$,

- $\quad \mathscr{B}^{\beta}=\left\{f \in \mathscr{H}(\mathbb{D})\left|\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\right| f^{\prime}(z) \mid<\infty\right\}$
and

$$
\|f\|_{\mathscr{B} \beta}=|f(0)|+\sup _{z \in \mathbb{D}}\left(1-|z|^{2}\right)^{\beta}\left|f^{\prime}(z)\right|
$$

- $\quad \mathscr{B}_{0}^{\beta}=\left\{f \in \mathscr{H}(\mathbb{D})\left|\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{\beta}\right| f^{\prime}(z) \mid=0\right\}$

The Little Bloch space \mathscr{B}_{0}^{β} is a closed subspace of \mathscr{B}^{β}.

When $\beta=1$, we recover classical Bloch spaces \mathscr{B} and \mathscr{B}_{0}.
\mathscr{B}^{β} and \mathscr{B}_{0}^{β} are Banach spaces and $\gamma>\beta \Longrightarrow \mathscr{B}_{0}^{\beta} \subset \mathscr{B}_{0}^{\gamma}$

Basic properties...

- $H^{\infty}=\left\{f \in \mathscr{H}(\mathbb{D}) ;\|f\|_{\infty}=\sup _{z \in \mathbb{D}}|f(z)|<+\infty\right\}$

When $\beta \geq 1: H^{\infty} \subset \mathscr{B} \subset \mathscr{B}^{\beta}$.
In fact, it is a consequence of the Schwarz-Pick lemma:
since, for $f \in H^{\infty}(\mathbb{D})$ with $\|f\|_{\infty} \leq 1$,

$$
\forall z \in \mathbb{D}, \quad\left(1-|z|^{2}\right)^{\beta}\left|f^{\prime}(z)\right| \leq\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leq 1-|f(z)|^{2} \leq 1
$$

Actually $H^{\infty} \varsubsetneqq \mathscr{B}^{\beta}$: the function $f(z)=\log (1-z)$ belongs to \mathscr{B} but not to H^{∞}.

When $\beta<1: \mathscr{B}^{\beta} \subset A(\mathbb{D}) \subset H^{\infty}$.

Basic properties...

Duality

$\left(\mathscr{B}_{0}^{\beta}\right)^{*}$ is isomorphic to \mathscr{A}^{1} and $\left(\mathscr{A}^{1}\right)^{*}$ is isomorphic to \mathscr{B}^{β} where $\mathscr{A}^{1}=\mathscr{H}(\mathbb{D}) \cap L^{1}(\mathbb{D}, d A)$ is the classical Bergman space.

Isomorphism

\mathscr{B}^{β} is isomorphic to $\ell^{\infty} \quad$ and \mathscr{B}_{0}^{β} is isomorphic to c_{0}.

Boundedness on Bloch spaces

The boundedness of any composition operators viewed on (classical) Bloch spaces is clear by the Schwarz-Pick inequality. Indeed
$\forall z \in \mathbb{D}, \quad\left(1-|z|^{2}\right)\left|(f \circ \varphi)^{\prime}(z)\right|=\frac{\left(1-|z|^{2}\right)\left|\varphi^{\prime}(z)\right|}{1-|\varphi(z)|^{2}} \cdot\left(1-|\varphi(z)|^{2}\right)\left|f^{\prime}(\varphi(z))\right|$

More generally,

Theorem (Contreras-Hernàndez Díaz '00, Xiao '01,...)

Let $\varphi: \mathbb{D} \longrightarrow \mathbb{D}$ be analytic and let $\mu, \beta \in(0, \infty)$. Then
$C_{\varphi}: \mathscr{B}^{\mu} \longrightarrow \mathscr{B}^{\beta}$ is bounded if and only if $\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\beta}}{\left(1-|\varphi(z)|^{2}\right)^{\mu}}\left|\varphi^{\prime}(z)\right|<\infty$
$C_{\varphi}: \mathscr{B}_{0}^{\mu} \longrightarrow \mathscr{B}_{0}^{\beta}$ is bounded if and only if $\varphi \in \mathscr{B}_{0}^{\beta}$ and $\sup _{z \in \mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\beta}}{\left(1-|\varphi(z)|^{2}\right)^{\mu}}\left|\varphi^{\prime}(z)\right|<\infty$

Compactness

The characterization of the compactness of composition operators on (classical) Bloch spaces was settled by Madigan-Matheson ('95).

More generally,

Theorem (Contreras-Hernàndez Díaz '00, Xiao '01,...)

$C_{\varphi}: \mathscr{B}^{\mu} \longrightarrow \mathscr{B}^{\beta}$ is compact if and only if $\varphi \in \mathscr{B}^{\beta}$ and

$$
\lim _{r \rightarrow 1^{-}} \sup _{|\varphi(z)|>r} \frac{\left(1-|z|^{2}\right)^{\beta}}{\left(1-|\varphi(z)|^{2}\right)^{\mu}}\left|\varphi^{\prime}(z)\right|=0 .
$$

$C_{\varphi}: \mathscr{B}_{0}^{\mu} \longrightarrow \mathscr{B}_{0}^{\beta}$ is compact if and only if $\lim _{|z| \rightarrow 1^{-}} \frac{\left(1-|z|^{2}\right)^{\beta}}{\left(1-|\varphi(z)|^{2}\right)^{\mu}}\left|\varphi^{\prime}(z)\right|=0$.

Compactness - examples
(1) For $\beta>0$ and every symbol φ such that $\varphi \in \mathscr{B}^{\beta}$ and $\|\varphi\|_{\infty}<1$, the operator C_{φ} is compact on \mathscr{B}^{β}. (and even nuclear)
¿ Are there examples of compact composition operator C_{φ} with $\overline{\varphi(\mathbb{D})} \cap \mathbb{T} \neq \emptyset$?
Especially in the case of the classical Bloch space \mathscr{B} ?
(2) Let $\varphi(z)=\frac{z+1}{2}$

Then $C_{\varphi}: \mathscr{B}^{\beta} \longrightarrow \mathscr{B}^{\beta}$ is not compact for $\beta>0$.

The lens map

(3) Let $\varphi_{\theta}(z)=\frac{\kappa(z)^{\theta}-1}{\kappa(z)^{\theta}+1}$ be the lens map, where $\kappa(z)=\frac{1+z}{1-z}$.

(Farès-L.)

- For $0<\beta<1, C_{\varphi_{\theta}}: \mathscr{B}^{\beta} \longrightarrow \mathscr{B}^{\beta}$ is not bounded (!)
- For $\beta=1, C_{\varphi_{\theta}}: \mathscr{B} \longrightarrow \mathscr{B}$ is bounded but not compact.
- For $\beta>1, C_{\varphi_{\theta}}: \mathscr{B}^{\beta} \longrightarrow \mathscr{B}^{\beta}$ is compact.

The cusp map

Let $\varphi: \mathbb{D} \longrightarrow \mathbb{D}$ be an analytic univalent map. Assumed that $\overline{\varphi(\mathbb{D})} \cap \mathbb{T}=1$, the region $\varphi(\mathbb{D})$ is said to have a nontangential cusp at 1 if

$$
\operatorname{dist}(w, \partial \varphi(\mathbb{D}))=o(|1-w|) \quad \text { as } w \longrightarrow 1 \text { in } \varphi(\mathbb{D})
$$

$\varphi(\mathbb{D})$ lies inside a Stolz angle if there exist $r, M>0$ such that

$$
|1-w| \leq M\left(1-|w|^{2}\right), \quad \text { if }|1-w|<r, w \in \varphi(\mathbb{D})
$$

Symbols touching the boundary.

(Madigan and Matheson '95)

- If φ is univalent and if $\varphi(\mathbb{D})$ has a nontangential cusp at 1 and touches the unit circle at no other point, then C_{φ} is a compact operator on \mathscr{B}_{0}.

Therefore

- The cusp map is a symbol χ such that $\chi(\mathbb{D})$ touches the unit circle and defines a compact composition operator C_{χ} on \mathscr{B}.

A (maybe more) striking example:

(Smith '98)

There exists an inner function (a Blaschke product) φ such that C_{φ} is a compact composition operator on \mathscr{B}.

Nuclear

A natural way to construct a (compact) operator between arbitrary Banach spaces is to consider an ℓ^{1}-sum of rank 1 operators.

Definition

A linear operator $T: X \longrightarrow Y$ is said to be nuclear when there exist a sequence $\left(x_{n}^{*}\right) \subset X^{*}$ and a sequence $\left(y_{n}\right) \subset Y$ such that $\sum_{n}\left\|x_{n}^{*}\right\|\left\|y_{n}\right\|<\infty$ and

$$
T=\sum_{n=1}^{\infty} x_{n}^{*} \otimes y_{n}
$$

where $x_{n}^{*} \otimes y_{n}(x)=x_{n}^{*}(x) y_{n}$.

Indeed, such operators are compact.

Absolutely summing

Another well known operator ideal is the class of p-summing operators.

Definition

An operator $T: X \longrightarrow Y$ is p-absolutely summing, $1 \leq p<+\infty$ if there exists a constant $C<\infty$ such that for all finite sequences $\left(x_{j}\right)_{j=1}^{n} \subset X$ we have

$$
\left(\sum_{j=1}^{n}\left\|T x_{j}\right\|_{Y}^{p}\right)^{1 / p} \leq C \sup _{\left\|x^{*}\right\| \leq 1}\left(\sum_{j=1}^{n}\left|x^{*}\left(x_{j}\right)\right|^{p}\right)^{1 / p}=C \sup _{a \in B_{\ell p^{\prime}}}\left\|\sum_{j=1}^{n} a_{j} x_{j}\right\|_{X}
$$

Generic example: K a compact space, ν a Borel probability measure on K.

$$
j_{p}:\left\{\begin{array}{ccc}
C(K) & \longrightarrow & L^{p}(K, \nu) \\
f & \longmapsto & f
\end{array}\right.
$$

Indeed, for $\left(f_{j}\right)_{j=1}^{N} \in C(K)$

$$
\left(\sum_{j=1}^{N}\left\|j_{p}\left(f_{j}\right)\right\|_{L^{p}(\nu)}^{p}\right)^{1 / p}=\left(\int_{K} \sum_{j=1}^{N}\left|f_{j}\right|^{p} d \nu\right)^{1 / p} \leq\left(\sup _{w \in K} \sum_{j=1}^{N}\left|f_{j}(w)\right|^{p}\right)^{1 / p}
$$

Absolutely summing

$T: X \longrightarrow Y$ is 1 -summing means that

$$
\sum \pm x_{n} \text { converges } \Longrightarrow \sum\left\|T\left(x_{n}\right)\right\|<\infty
$$

Observe that:

$$
\text { nuclear implies } 1 \text {-summing }
$$

1-summing does not imply compact in general

BUT

When $X=c_{0}$, then 1 -summing implies nuclear (hence compact).
When $X=\ell^{\infty}$, then 1 -summing implies nuclear (hence compact).

Absolutely summing

It is easy to see that

- When $1 \leq p<q<\infty, \quad T$ is p-summing $\Longrightarrow T$ is q-summing.

Pietsch domination theorem

An operator $T: X \longrightarrow Y$ is p-absolutely summing if and only if there exist a constant C and a Borel probability measure ν on ($B_{X^{*}}, \sigma\left(X^{*}, X\right)$) such that

$$
\|T(x)\| \leq C\left(\int_{B_{X^{*}}}\left|\left\langle x^{*}, x\right\rangle\right|^{p} d \nu\left(x^{*}\right)\right)^{1 / p}, \quad \forall x \in X
$$

This can be seen as a factorization result:
$i_{x}(x)\left(x^{*}\right)=x^{*}(x)$

$$
X \stackrel{i_{X}}{\longleftrightarrow} \widetilde{X} \subset C\left(B_{X^{*}}\right) \xrightarrow{j_{p}} \widetilde{X}_{p} \subset L^{p}\left(B_{X^{*}}, \nu\right) \xrightarrow{\tilde{T}} Y
$$

$$
\widetilde{T}(i x(x))=T(x)
$$

Absolutely summing composition operator on Bloch spaces

We have a complete characterization (Farès-L. '20)

Let $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ be analytic, $\mu, \beta>0$ and $p \geq 1$.
The following assertions are equivalent.
(1) The composition operator $C_{\varphi}: \mathscr{B}^{\mu} \longrightarrow \mathscr{B}^{\beta}$ is p-summing.
(1) The composition operator $C_{\varphi}: \mathscr{B}_{0}^{\mu} \longrightarrow \mathscr{B}^{\beta}$ is p-summing.
(T) $\int_{\mathbb{D}} \sup _{z \in \mathbb{D}}\left(\frac{\left(1-|w|^{2}\right)}{|1-\bar{w} \varphi(z)|}\right)^{2 p}\left(\frac{\left(1-|z|^{2}\right)^{\beta}\left|\varphi^{\prime}(z)\right|}{|1-\bar{w} \varphi(z)|^{\mu}}\right)^{p} \frac{d A(w)}{\left(1-|w|^{2}\right)^{2}}<+\infty$.

Moreover, when $\varphi \in \mathscr{B}_{0}^{\beta}$, the preceding assertions are also equivalent to
(0) The composition operator $C_{\varphi}: \mathscr{B}_{0}^{\mu} \longrightarrow \mathscr{B}_{0}^{\beta}$ is p-summing.

The case $p=1$ gives a characterization of nuclear composition operators on Bloch spaces and extends Farès-L '19 $(p=\mu=\beta=1)$.

Absolutely summing

Sketch of proof: how to get the condition...
Use Pietsch theorem: for some probability measure ν on $\left(B_{\left(\mathscr{B}_{0}^{\mu}\right)^{*}}, \sigma\left(\left(\mathscr{B}_{0}^{\mu}\right)^{*}, \mathscr{B}_{0}^{\mu}\right)\right)$,

$$
\left\|C_{\varphi}(f)\right\|_{\mathscr{B}^{\beta}}^{p} \leq \pi_{p}^{p}\left(C_{\varphi}\right) \int_{B_{\left(\mathscr{B}_{0}^{\mu}\right)^{*}}}|\xi(f)|^{p} d \nu(\xi) \quad \text { for every } f \in \mathscr{B}_{0}^{\mu}
$$

There exists $\alpha \geq 1$ satisfying: for every $\xi \in B_{\left(\mathscr{B}_{0}^{\mu}\right)^{*}}$, there exists $h \in \alpha B_{\mathscr{A}^{1}}$ such that

$$
\xi(f)=\langle h, f\rangle \quad \text { for any } f \in \mathscr{B}_{0}^{\mu} .
$$

Apply this with $f_{w}(z)=\frac{\left(1-|w|^{2}\right)^{2 / p^{\prime}}}{(1-\bar{w} z)^{1+\mu}} \in \mathscr{B}_{0}^{\mu} \cap H^{\infty}$.

$$
\left|\xi\left(f_{w}\right)\right|^{p}=\left(1-|w|^{2}\right)^{2(p-1)}|h(w)|^{p} \leq|h(w)| \cdot\|h\|_{\mathscr{A}^{1}}^{(p-1)} .
$$

Then integrating over \mathbb{D}

$$
\int_{\mathbb{D}} \sup _{z \in \mathbb{D}} \frac{|w|^{p}\left(1-|w|^{2}\right)^{2(p-1)}\left(1-|z|^{2}\right)^{\beta p}\left|\varphi^{\prime}(z)\right|^{p}}{|1-\bar{w} \varphi(z)|^{(2+\mu) p}} d A(w) \lesssim \pi_{p}^{p}\left(C_{\varphi}\right) \sup _{h \in \alpha B_{\mathscr{A}^{1}}}\|h\|_{\mathscr{A}^{1}}^{p}
$$

Some other examples

Using our characterization, we can produce some examples with particular behavior:

There exists a symbol φ such that $\varphi(\mathbb{D})$ touches the unit circle and C_{φ} defines a nuclear operator on \mathscr{B}.

Taking a cusp map φ more flattened than the one of Madigan and Matheson, satisfying: $\operatorname{dist}(z, \partial \varphi(\mathbb{D}))=O\left(|1-z|^{3}\right), \quad$ for every $z \in \varphi(\mathbb{D})$

Some other examples

Another striking example:
Let $\beta \geq 1$.

- There exists a symbol ϕ which is inner (a Blaschke product) such that C_{ϕ} is nuclear on \mathscr{B}^{β}.
- This is impossible when $\beta<1$.

This a direct consequence from our characterization and a result due to Aleksandrov-Anderson-Nicolau ('99):
there are some Blaschke product ϕ satisfying

$$
\forall z \in \mathbb{D}, \quad\left(1-|z|^{2}\right)\left|\phi^{\prime}(z)\right| \leq\left(1-|\phi(z)|^{2}\right)^{3}
$$

Some other examples

There exists a compact composition operator on \mathscr{B} which is not p-summing for any $p \geq 1$.

We consider a cusp map Φ such that its domain $\Phi(\mathbb{D})$ is bounded by some convex curves of type $\gamma_{1}(t)=\left(1-t, \frac{t}{\theta(t)}\right)$ and $\gamma_{2}(t)=\left(1-t,-\frac{t}{\theta(t)}\right)$, for t in a neighborhood of 0 and $\theta:(0,1) \longrightarrow(0,+\infty)$, such that $\theta(t)$ tends to infinity when t tends to 0 :
For any $p \geq 1$,

$$
\int_{0}^{1 / 2} \frac{1}{s \theta(s)^{p+1}} d s=\infty
$$

For a concrete example, just choose $\theta(t)=\ln \left(\ln \left(\frac{1}{t}\right)\right)$, for $t<e^{-1}$.

Lens map semi-group

Recall

$z \in \mathbb{D} \xrightarrow{\kappa} \kappa(z) \xrightarrow{z^{\theta}}(\kappa(z))^{\theta} \xrightarrow{\kappa^{-1}} \varphi_{\theta}(z)$
Therefore

$$
\varphi_{\theta^{\prime}} \circ \varphi_{\theta}=\varphi_{\theta \theta^{\prime}}
$$

So,
we can embed a composition operator $C_{\varphi_{\theta}}$ in a semi-group $L_{t}=C_{\varphi_{\theta} t}$ (where $t>0$).

Lens map semi-group

For $p \geq 1$ and $\beta>1$
The lens map φ_{θ} induces a p-summing composition operator on \mathscr{B}^{β} for p large enough:

$$
\text { it is sufficient that } \quad p>\frac{\theta}{(\beta-1)(1-\theta)},
$$

In particular, if $\theta<1-\frac{1}{\beta}$, then $C_{\varphi_{\theta}}$ is nuclear on \mathscr{B}^{β}.

Therefore
The lens map semi-group is eventually p-summing. More precisely,

- L_{t} is p-summing for $t>\frac{\ln \left(1-\frac{1}{1+p(\beta-1)}\right)}{\ln (\theta)}$
- L_{t} is nuclear for $t>\frac{\ln \left(1-\frac{1}{\beta}\right)}{\ln (\theta)}$

Merci !

