The Korenblum Maximum Principle for Some Function Spaces

Le Hai Khoi

University of Science & Technology of Hanoi - USTH Vietnam Academy of Science & Technology Email: le-hai.khoi@usth.edu.vn

"Operators on Function Spaces", The Fields Institute, Toronto

13 October 2021

3 Auxiliaries

4 A N

• First, we give explicit expressions for the upper bounds of Korenblum constants for the weighted Fock space.

- First, we give explicit expressions for the upper bounds of Korenblum constants for the weighted Fock space.
- Then, we obtain upper bounds of such constants for the weighted Bergman space.

- First, we give explicit expressions for the upper bounds of Korenblum constants for the weighted Fock space.
- Then, we obtain upper bounds of such constants for the weighted Bergman space.
- Finally, we show a failure of the Korenblum Maximum Principle for weighted Bergman space.

- First, we give explicit expressions for the upper bounds of Korenblum constants for the weighted Fock space.
- Then, we obtain upper bounds of such constants for the weighted Bergman space.
- Finally, we show a failure of the Korenblum Maximum Principle for weighted Bergman space.

This is a joint work with Wee JunJie (NTU, Singapore)

3

1. Basic definitions and notation

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Weighted Hardy space

For $0 , <math>\alpha \ge 0$, the weighted Hardy space $H^p_{\alpha}(\mathbb{D})$ consists of functions $f(z) \in \mathcal{O}(\mathbb{D})$, for which

$$\|f\|_{H^p_\alpha} = \sup_{0 \le r < 1} \left[(1-r)^\alpha \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{\frac{1}{p}} \right] < \infty.$$

Weighted Hardy space

For $0 , <math>\alpha \ge 0$, the weighted Hardy space $H^p_{\alpha}(\mathbb{D})$ consists of functions $f(z) \in \mathcal{O}(\mathbb{D})$, for which

$$\|f\|_{H^p_\alpha} = \sup_{0\leq r<1}\left[(1-r)^{\alpha}\left(\frac{1}{2\pi}\int_0^{2\pi}|f(re^{i\theta})|^p d\theta\right)^{\frac{1}{p}}\right] < \infty.$$

• When $\alpha = 0$, we have the Hardy space $H^{p}(\mathbb{D})$.

< < >> < <</p>

Weighted Hardy space

For $0 , <math>\alpha \ge 0$, the weighted Hardy space $H^p_{\alpha}(\mathbb{D})$ consists of functions $f(z) \in \mathcal{O}(\mathbb{D})$, for which

$$\|f\|_{H^p_\alpha} = \sup_{0 \le r < 1} \left[(1-r)^\alpha \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{\frac{1}{p}} \right] < \infty.$$

- When $\alpha = 0$, we have the Hardy space $H^{p}(\mathbb{D})$.
- When p = ∞, we have the space H[∞](D) of bounded holomorphic functions on D, where ||f||_{H[∞]} = sup_{z∈D} |f(z)|.

Weighted Bergman space

Let $0 , <math>\alpha > -1$ and we consider the exponential weight $e^{-\frac{p_{\alpha}}{2}|z|^2}$. The weighted Bergman space $A^p_{\alpha}(\mathbb{D})$ consists of functions $f(z) \in \mathcal{O}(\mathbb{D})$, for which

$$\|f\|_{\mathcal{A}^p_{\alpha}} = \left[\frac{1}{\pi}\int_{\mathbb{D}}|f(z)|^p e^{-\frac{p\alpha}{2}|z|^2} d\mathcal{A}(z)\right]^{\frac{1}{p}} < \infty$$

where $dA(z) = dx \ dy = r \ dr \ d\theta$, $z = x + iy = re^{i\theta}$, is the Lebesgue measure on \mathbb{C} .

Weighted Bergman space

Let $0 , <math>\alpha > -1$ and we consider the exponential weight $e^{-\frac{p_{\alpha}}{2}|z|^2}$. The weighted Bergman space $A^p_{\alpha}(\mathbb{D})$ consists of functions $f(z) \in \mathcal{O}(\mathbb{D})$, for which

$$\|f\|_{\mathcal{A}^p_{\alpha}} = \left[\frac{1}{\pi}\int_{\mathbb{D}}|f(z)|^p e^{-\frac{p\alpha}{2}|z|^2} d\mathcal{A}(z)\right]^{\frac{1}{p}} < \infty$$

where $dA(z) = dx \, dy = r \, dr \, d\theta$, $z = x + iy = re^{i\theta}$, is the Lebesgue measure on \mathbb{C} .

• If
$$p = \infty$$
, then $A^{\infty}(\mathbb{D}) = H^{\infty}(\mathbb{D})$.

Weighted Bergman space

Let $0 , <math>\alpha > -1$ and we consider the exponential weight $e^{-\frac{p_{\alpha}}{2}|z|^2}$. The weighted Bergman space $A^p_{\alpha}(\mathbb{D})$ consists of functions $f(z) \in \mathcal{O}(\mathbb{D})$, for which

$$\|f\|_{\mathcal{A}^p_{\alpha}} = \left[\frac{1}{\pi}\int_{\mathbb{D}}|f(z)|^p e^{-\frac{p\alpha}{2}|z|^2} d\mathcal{A}(z)\right]^{\frac{1}{p}} < \infty$$

where $dA(z) = dx \, dy = r \, dr \, d\theta$, $z = x + iy = re^{i\theta}$, is the Lebesgue measure on \mathbb{C} .

• If
$$p = \infty$$
, then $A^{\infty}(\mathbb{D}) = H^{\infty}(\mathbb{D})$.

• For $0 and <math>\alpha = 0$, we have the standard Bergman space $A^{p}(\mathbb{D})$.

In particular, if $p \ge 1$, $A^{p}(\mathbb{D})$ is also a Banach space.

< A

In particular, if $p \ge 1$, $A^{p}(\mathbb{D})$ is also a Banach space.

When p = 2, we have the classical Bergman space $A^2(\mathbb{D})$, i.e. the space of functions $f(z) \in \mathcal{O}(\mathbb{D})$, for which

$$\|f\|_{\mathcal{A}^2} = \left[\frac{1}{\pi}\int_{\mathbb{D}}|f(z)|^2 dA(z)
ight]^{\frac{1}{2}} < \infty.$$

Weighted Fock space

For $0 , <math>\alpha > 0$, the weighted Fock space $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$ consists of entire functions $f(z) \in \mathcal{O}(\mathbb{C})$, for which

$$\|f\|_{\mathcal{F}^p_{\alpha}}^{p}=\frac{p\alpha}{2\pi}\int_{\mathbb{C}}|f(z)|^{p}e^{-\frac{p\alpha}{2}|z|^{2}}\,dA(z)<\infty.$$

Weighted Fock space

For $0 , <math>\alpha > 0$, the weighted Fock space $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$ consists of entire functions $f(z) \in \mathcal{O}(\mathbb{C})$, for which

$$\|f\|_{\mathcal{F}^{\rho}_{\alpha}}^{\rho}=\frac{\rho\alpha}{2\pi}\int_{\mathbb{C}}|f(z)|^{\rho}e^{-\frac{\rho\alpha}{2}|z|^{2}}\,dA(z)<\infty.$$

• For the case $p = \infty$ and $\alpha > 0$, we have

$$\|f\|_{\mathcal{F}^{\infty}_{\alpha}} = \sup_{z\in\mathbb{C}} |f(z)|e^{-\frac{lpha}{2}|z|^2} < \infty.$$

• When $0 and <math>\alpha = 1$, we have the Fock space $\mathcal{F}^{p}(\mathbb{C})$.

Weighted Fock space

For $0 , <math>\alpha > 0$, the weighted Fock space $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$ consists of entire functions $f(z) \in \mathcal{O}(\mathbb{C})$, for which

$$\|f\|_{\mathcal{F}^{\rho}_{\alpha}}^{\rho}=\frac{\rho\alpha}{2\pi}\int_{\mathbb{C}}|f(z)|^{\rho}e^{-\frac{\rho\alpha}{2}|z|^{2}}\,dA(z)<\infty.$$

• For the case $p = \infty$ and $\alpha > 0$, we have

$$\|f\|_{\mathcal{F}^{\infty}_{\alpha}} = \sup_{z\in\mathbb{C}} |f(z)|e^{-rac{lpha}{2}|z|^2} < \infty.$$

When 0 p</sup>(C).
 It is well known that F^p(C) with 1 ≤ p ≤ ∞ is a Banach space, while

for $0 , <math>\mathcal{F}^{p}(\mathbb{C})$ is a complete metric space with distance $d(f,g) = ||f-g||_{p}^{p}$.

2. Korenblum's conjecture and development

In 1991, Boris Korenblum stated the following conjecture for $A^2(\mathbb{D})$.

Conjecture 2.1

There exists a numerical constant c, 0 < c < 1, such that if f and g are holomorphic in \mathbb{D} and $|f(z)| \leq |g(z)|$ (c < |z| < 1), then $||f||_{A^2} \leq ||g||_{A^2}$.

In 1991, Boris Korenblum stated the following conjecture for $A^2(\mathbb{D})$.

Conjecture 2.1

There exists a numerical constant c, 0 < c < 1, such that if f and g are holomorphic in \mathbb{D} and $|f(z)| \leq |g(z)|$ (c < |z| < 1), then $||f||_{A^2} \leq ||g||_{A^2}$.

We call *c* a Korenblum constant and denote by κ as the largest value of *c*. So far, the exact value of κ is still not known.

In 1991, Boris Korenblum stated the following conjecture for $A^2(\mathbb{D})$.

Conjecture 2.1

There exists a numerical constant c, 0 < c < 1, such that if f and g are holomorphic in \mathbb{D} and $|f(z)| \leq |g(z)|$ (c < |z| < 1), then $||f||_{A^2} \leq ||g||_{A^2}$.

We call *c* a Korenblum constant and denote by κ as the largest value of *c*. So far, the exact value of κ is still not known.

• Korenblum proved with a counterexample provided by Martin that $\kappa_{A^2} < \frac{1}{\sqrt{2}}$.

There are results expanding the topic by finding c in other function spaces as well.

There are results expanding the topic by finding *c* in other function spaces as well.

 In 1998, Hayman and Danikas worked on Korenblum Maximum Principle for the space H^p(D).

There are results expanding the topic by finding *c* in other function spaces as well.

- In 1998, Hayman and Danikas worked on Korenblum Maximum Principle for the space H^p(D).
- In 1999, the conjecture was first proven of its existence by Hayman with c = 0.04 for the space $A^2(\mathbb{D})$.

There are results expanding the topic by finding *c* in other function spaces as well.

- In 1998, Hayman and Danikas worked on Korenblum Maximum Principle for the space H^p(D).
- In 1999, the conjecture was first proven of its existence by Hayman with c = 0.04 for the space $A^2(\mathbb{D})$.
- In the same year, Hinkkanen proved the existence of *c* for A^p(D),
 1 ≤ p < ∞, with c = 0.15724.

There are results expanding the topic by finding c in other function spaces as well.

- In 1998, Hayman and Danikas worked on Korenblum Maximum Principle for the space H^p(D).
- In 1999, the conjecture was first proven of its existence by Hayman with c = 0.04 for the space $A^2(\mathbb{D})$.
- In the same year, Hinkkanen proved the existence of *c* for $A^{p}(\mathbb{D})$, $1 \leq p < \infty$, with c = 0.15724.

Thereafter, several works have been carried out in finding lower bounds and upper bounds of Korenblum constants.

Le Hai Khoi (USTH)

Korenblum Maximum Principle

 In 2003 – 2004, Wang published several results on the upper bounds of *c*. In the subsequent years, further improvements were made by both Schuster and Wang.

- In 2003 2004, Wang published several results on the upper bounds of *c*. In the subsequent years, further improvements were made by both Schuster and Wang.
- In 2012, Zhu showed that it is possible to choose some *c* for the Korenblum Maximum Principle to hold in *F*^p_α(ℂ) where α > 0 and p ≥ 1.

 In 2018, Božin and Karapetrović showed a failure in Korenblum Maximum Principle for Bergman space A^p(D), 0

- In 2018, Božin and Karapetrović showed a failure in Korenblum Maximum Principle for Bergman space A^p(D), 0
- In 2019, Lou and Hu also disproved the Korenblum Maximum
 Principle for general Fock Space *F*^ρ_α(ℂ) where 0 < *p* < 1, α > 0.

- In 2018, Božin and Karapetrović showed a failure in Korenblum Maximum Principle for Bergman space A^p(D), 0
- In 2019, Lou and Hu also disproved the Korenblum Maximum
 Principle for general Fock Space *F*^p_α(C) where 0 0.

In order to avoid ambiguity, we denote the largest Korenblum constant, unless specified otherwise, by $\kappa_{A^p_{\alpha}}$ for $A^p_{\alpha}(\mathbb{D})$, $\kappa_{\mathcal{F}^p_{\alpha}}$ for $\mathcal{F}^p_{\alpha}(\mathbb{C})$, etc.

3
For a better illustration, we summarize the main developments of $H^{p}_{\alpha}(\mathbb{D})$, $A^{p}_{\alpha}(\mathbb{D})$ and $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$ in Tables 1, 2 and 3, respectively.

	α	р	Results
	$\alpha = 0$	0	1998: For $E\subset \mathbb{D}$, E is dominating
$\mathit{H}^{p}_{lpha}(\mathbb{D})$	$\alpha = 0$		if and only if E is non-tangentially dense.
$\alpha \geq 0$	$\alpha > 0$	0	No Development

Table 1: Main Development on $H^p_{\alpha}(\mathbb{D})$

	α	р	Results	
$egin{array}{l} \mathcal{A}^{p}_{lpha}(\mathbb{D})\ lpha>-1 \end{array}$	$\alpha = 0$	<i>p</i> = 2	1999: $c \ge \frac{1}{25}$	1991: $c < \frac{1}{\sqrt{2}}$
			2006: $c \ge 0.21$	2003: <i>c</i> < 0.69472
			2006: $c \ge 0.25018$	2004: <i>c</i> < 0.685086
			2011: $c \ge 0.28185$	2004: <i>c</i> < 0.67794
		0	2018: <i>c</i> does not exist	
		$1 \le p < \infty$	1999: $c \ge 0.15724$	No Development on Upper Bound
			2006: $c \ge 0.1921$	
			2011: $c \ge 0.23917$	
		$p = \infty$	$\mathcal{A}^\infty(\mathbb{D})=\mathcal{H}^\infty(\mathbb{D})$ (see $\mathcal{H}^\infty(\mathbb{D}))$	
	$\alpha \neq 0$	0	No Development	

Table 2: Main Development on $A^p_{\alpha}(\mathbb{D})$

	α	р	Results	
	$\alpha = 1$	<i>p</i> = 2	2006: $c \ge 0.54$	No Development
$\mathcal{F}^{p}_{\alpha}(\mathbb{C})$ lpha > 0			2006: $c \ge 0.7248$	on Upper Bound
		0	2018: <i>c</i> does not exist	
		$1 \le p \le \infty$	c exists	
			but no development on upper bound	
	$\alpha \neq 1$	0	2018: <i>c</i> does not exist	
		$1 \le p \le \infty$	c exists	
			but no developme	ent on upper bound

Table 3: Main Development on $\mathcal{F}^p_{\alpha}(\mathbb{C})$

____ ▶

3. Auxiliaries

æ

イロト イヨト イヨト イヨト

We recall two results by Korenblum and Božin and Karapetrović respectively, which are closely related to our main results for $A^{p}_{\alpha}(\mathbb{D})$ in this talk.

A .

We recall two results by Korenblum and Božin and Karapetrović respectively, which are closely related to our main results for $A^{p}_{\alpha}(\mathbb{D})$ in this talk.

Theorem 3.1 (Korenblum, 1991)

Let $c > \frac{1}{\sqrt{2}}$. There exist functions f and g in $A^2(\mathbb{D})$ such that $|f(z)| \le |g(z)|$ for all c < |z| < 1, but $||f||_{A^2} > ||g||_{A^2}$. Therefore, $\kappa_{A^2} \le \frac{1}{\sqrt{2}}$.

We recall two results by Korenblum and Božin and Karapetrović respectively, which are closely related to our main results for $A^{p}_{\alpha}(\mathbb{D})$ in this talk.

Theorem 3.1 (Korenblum, 1991)

Let $c > \frac{1}{\sqrt{2}}$. There exist functions f and g in $A^2(\mathbb{D})$ such that $|f(z)| \le |g(z)|$ for all c < |z| < 1, but $||f||_{A^2} > ||g||_{A^2}$. Therefore, $\kappa_{A^2} \le \frac{1}{\sqrt{2}}$.

Theorem 3.2 (Božin and Karapetrović, 2018)

Let 0 and <math>0 < c < 1. There exist functions f and g in $A^{p}(\mathbb{D})$ such that |f(z)| < |g(z)| for all c < |z| < 1 and $||f||_{A^{p}} > ||g||_{A^{p}}$.

3

The following lemma is used to prove our main result.

The following lemma is used to prove our main result.

Lemma 3.3

Let $0 , <math>\alpha > 0$ and 0 < c < 1. Then there exist positive integer n and $0 < \delta < 1$, such that

$$2\delta^{np+2} \left(\int_0^1 u e^{-\frac{p\alpha}{2}\delta^2 u^2} \, du + \int_1^{\frac{1}{\delta}} u^{np+1} e^{-\frac{p\alpha}{2}\delta^2 u^2} \, du \right)$$
$$> \left(1 + \left(\frac{\delta}{c}\right)^n \right)^p \left(\frac{2}{p\alpha}\right)^{\frac{np}{2}+1} \int_0^{\frac{p\alpha}{2}} u^{\frac{np}{2}} e^{-u} \, du.$$

a 🕨

4. Main results

2

イロト イヨト イヨト イヨト

2

1) For Fock spaces $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$:

H 5

э

- 1) For Fock spaces $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$:
 - The explicit expression for upper bounds of κ_{F^p_α} in F^p_α(ℂ), p ≥ 1, α > 0.

- 1) For Fock spaces $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$:
 - The explicit expression for upper bounds of κ_{F^p_α} in F^p_α(ℂ), p ≥ 1, α > 0.
- 2) For Bergman spaces $A^{p}_{\alpha}(\mathbb{D})$:

- 1) For Fock spaces $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$:
 - The explicit expression for upper bounds of $\kappa_{\mathcal{F}^p_{\alpha}}$ in $\mathcal{F}^p_{\alpha}(\mathbb{C})$, $p \geq 1$, $\alpha > 0$.
- 2) For Bergman spaces $A^{p}_{\alpha}(\mathbb{D})$:
 - The explicit expression for the upper bounds of κ_{A^p_α} in A^p_α(D), p ≥ 1, α ≥ 0.

- 1) For Fock spaces $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$:
 - The explicit expression for upper bounds of $\kappa_{\mathcal{F}^p_{\alpha}}$ in $\mathcal{F}^p_{\alpha}(\mathbb{C})$, $p \ge 1$, $\alpha > 0$.
- 2) For Bergman spaces $A^{p}_{\alpha}(\mathbb{D})$:
 - The explicit expression for the upper bounds of κ_{A^p_α} in A^p_α(D), p ≥ 1, α ≥ 0.
 - A failure of the Korenblum Maximum Principle for $A^p_{\alpha}(\mathbb{D})$, $0 , <math>\alpha > 0$.

• Fock Spaces $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$

æ

• Fock Spaces $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$

We first consider the general Fock space $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$, where $p \geq 1$, $\alpha > 0$ and find an *upper bound* for $\kappa_{\mathcal{F}^{p}_{\alpha}}$.

< 47 ▶

• Fock Spaces $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$

We first consider the general Fock space $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$, where $p \geq 1$, $\alpha > 0$ and find an *upper bound* for $\kappa_{\mathcal{F}^{p}_{\alpha}}$.

Theorem 4.1 (Upper Bound of $\kappa_{\mathcal{F}_{\alpha}^{p}}$)

Let $p \ge 1$, $\alpha > 0$ and

$$c>\sqrt[p]{\left(rac{2}{plpha}
ight)^{rac{p}{2}}\Gamma\left(rac{p}{2}+1
ight)}.$$

There exist functions f and g in $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$, such that |f(z)| < |g(z)| for any |z| > c, but $||f||_{\mathcal{F}^{p}_{\alpha}}^{p} > ||g||_{\mathcal{F}^{p}_{\alpha}}^{p}$. Therefore,

$$\kappa_{\mathcal{F}^p_{\alpha}} \leq \sqrt[p]{\left(\frac{2}{p_{\alpha}}\right)^{\frac{p}{2}}} \Gamma\left(\frac{p}{2}+1\right).$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Corollary 4.2

Let c > 1. There exist functions f and g in $\mathcal{F}^2(\mathbb{C})$ such that |f(z)| < |g(z)| for all |z| > c, but $||f||_{\mathcal{F}^2}^2 > ||g||_{\mathcal{F}^2}^2$. Therefore, $\kappa_{\mathcal{F}^2} \le 1$.

Corollary 4.2

Let c > 1. There exist functions f and g in $\mathcal{F}^2(\mathbb{C})$ such that |f(z)| < |g(z)| for all |z| > c, but $||f||^2_{\mathcal{F}^2} > ||g||^2_{\mathcal{F}^2}$. Therefore, $\kappa_{\mathcal{F}^2} \le 1$.

It is also interesting to note that when p = 1 and $\alpha = \frac{1}{2}$, we have

$$\kappa_{\mathcal{F}^1_{0.5}} \leq \sqrt{4} \cdot \Gamma\left(rac{3}{2}
ight) = \sqrt{\pi}.$$

Corollary 4.2

Let c > 1. There exist functions f and g in $\mathcal{F}^2(\mathbb{C})$ such that |f(z)| < |g(z)| for all |z| > c, but $||f||^2_{\mathcal{F}^2} > ||g||^2_{\mathcal{F}^2}$. Therefore, $\kappa_{\mathcal{F}^2} \le 1$.

It is also interesting to note that when p = 1 and $\alpha = \frac{1}{2}$, we have

$$\kappa_{\mathcal{F}^1_{0.5}} \leq \sqrt{4} \cdot \Gamma\left(rac{3}{2}
ight) = \sqrt{\pi}.$$

Remark 4.3

Theorem and Corollary above filled the gaps in Table 3.

Le Hai Khoi (USTH)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

The results about the failures of Korenblum Maximum Principle in $A^{p}(\mathbb{D})$, $0 (Božin and Karapetrović, 2018) and in <math>\mathcal{F}^{p}_{\alpha}(\mathbb{C})$, $0 , <math>\alpha > 0$ (Hu and Lou, 2019) inspire us to be interested in a question whether there is any failure of the Korenblum Maximum Principle for the weighted Bergman space $A^{p}_{\alpha}(\mathbb{D})$, $0 , <math>\alpha \neq 0$.

The results about the failures of Korenblum Maximum Principle in $A^{p}(\mathbb{D})$, $0 (Božin and Karapetrović, 2018) and in <math>\mathcal{F}^{p}_{\alpha}(\mathbb{C})$, $0 , <math>\alpha > 0$ (Hu and Lou, 2019) inspire us to be interested in a question whether there is any failure of the Korenblum Maximum Principle for the weighted Bergman space $A^{p}_{\alpha}(\mathbb{D})$, $0 , <math>\alpha \neq 0$.

It turns out that the failure exists and the result below not only proves this fact, but also generalizes Theorem 3.2 for any $\alpha > 0$.

The results about the failures of Korenblum Maximum Principle in $A^{p}(\mathbb{D})$, $0 (Božin and Karapetrović, 2018) and in <math>\mathcal{F}^{p}_{\alpha}(\mathbb{C})$, $0 , <math>\alpha > 0$ (Hu and Lou, 2019) inspire us to be interested in a question whether there is any failure of the Korenblum Maximum Principle for the weighted Bergman space $A^{p}_{\alpha}(\mathbb{D})$, $0 , <math>\alpha \neq 0$.

It turns out that the failure exists and the result below not only proves this fact, but also generalizes Theorem 3.2 for any $\alpha > 0$.

Theorem 4.4

Let $0 and <math>\alpha > 0$. Suppose 0 < c < 1. Then there exist functions f and g in $A^p_{\alpha}(\mathbb{D})$ such that |f(z)| < |g(z)| for any z with c < |z| < 1 and $||f||_{A^p_{\alpha}} > ||g||_{A^p_{\alpha}}$.

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Theorem 4.5 (Upper Bound of $\kappa_{A^{p}_{\alpha}}$)

Let $p \geq 1$, $\alpha \geq 0$. Consider the Bergman space $A^{p}_{\alpha}(\mathbb{D})$.

Theorem 4.5 (Upper Bound of $\kappa_{A^{p}_{\alpha}}$)

Let $p \geq 1$, $\alpha \geq 0$. Consider the Bergman space $A^{p}_{\alpha}(\mathbb{D})$.

1) For
$$\alpha = 0$$
, suppose $\left(\frac{2}{p+2}\right)^{\frac{1}{p}} < c < 1$.

Theorem 4.5 (Upper Bound of $\kappa_{A^{\rho}_{\alpha}}$)

Let $p \ge 1$, $\alpha \ge 0$. Consider the Bergman space $A^{p}_{\alpha}(\mathbb{D})$.

1) For
$$\alpha = 0$$
, suppose $\left(\frac{2}{p+2}\right)^{\frac{1}{p}} < c < 1$.

2) For
$$\alpha > 0$$
, suppose $\sqrt[p]{\frac{\left(\frac{2}{p\alpha}\right)^{\frac{p}{2}}\int_{0}^{\frac{p\alpha}{2}}u^{\frac{p}{2}}e^{-u}du}{(1-e^{-\frac{p\alpha}{2}})} < c < 1.$

< ロ > < 同 > < 回 > < 回 >

Theorem 4.5 (Upper Bound of $\kappa_{A^{\rho}_{\alpha}}$)

Let $p \geq 1$, $\alpha \geq 0$. Consider the Bergman space $A^{p}_{\alpha}(\mathbb{D})$.

1) For
$$\alpha = 0$$
, suppose $\left(\frac{2}{p+2}\right)^{\frac{1}{p}} < c < 1$.

2) For
$$\alpha > 0$$
, suppose $\sqrt[p]{\left(\frac{2}{p\alpha}\right)^{\frac{p}{2}}\int_{0}^{\frac{p\alpha}{2}}u^{\frac{p}{2}}e^{-u}du}{(1-e^{-\frac{p\alpha}{2}})} < c < 1.$

There exist functions f and g in $A^p_{\alpha}(\mathbb{D})$ such that |f(z)| < |g(z)| for all c < |z| < 1, but $||f||_{A^p_{\alpha}} > ||g||_{A^p_{\alpha}}$.

イロト イ押ト イヨト イヨト

Remark 4.6

Clearly, in order to have the Korenblum Maximum Principle for $A^{\rho}_{\alpha}(\mathbb{D})$, $\rho \geq 1$, $\alpha \geq 0$, we must have

$$\kappa_{\mathcal{A}_{\alpha}^{p}} \leq \begin{cases} \left(\frac{2}{p+2}\right)^{\frac{1}{p}}, & \alpha = 0, \\ \sqrt{\frac{\left(\frac{2}{p\alpha}\right)^{\frac{p}{2}} \int_{0}^{\frac{p\alpha}{2}} u^{\frac{p}{2}} e^{-u} du}{\left(1 - e^{-\frac{p\alpha}{2}}\right)}}, & \alpha > 0. \end{cases}$$

A (10) > A (10) > A (10)

Remark 4.6

Clearly, in order to have the Korenblum Maximum Principle for $A^{p}_{\alpha}(\mathbb{D})$, $p \geq 1$, $\alpha \geq 0$, we must have

$$\kappa_{\mathcal{A}_{\alpha}^{p}} \leq \begin{cases} \left(\frac{2}{p+2}\right)^{\frac{1}{p}}, & \alpha = \mathbf{0}, \\ \sqrt{\frac{\left(\frac{2}{p\alpha}\right)^{\frac{p}{2}} \int_{0}^{\frac{p\alpha}{2}} u^{\frac{p}{2}} e^{-u} du}{\left(1 - e^{-\frac{p\alpha}{2}}\right)}}, & \alpha > \mathbf{0}. \end{cases}$$

This result coincides with the upper bound of κ_{A^2} obtained by Korenblum.

< 🗇 🕨 < 🖻 🕨

Remark 4.6

Clearly, in order to have the Korenblum Maximum Principle for $A^{p}_{\alpha}(\mathbb{D})$, $p \geq 1$, $\alpha \geq 0$, we must have

$$\kappa_{\mathcal{A}_{\alpha}^{p}} \leq \begin{cases} \left(\frac{2}{p+2}\right)^{\frac{1}{p}}, & \alpha = \mathbf{0}, \\ \sqrt{\frac{\left(\frac{2}{p\alpha}\right)^{\frac{p}{2}} \int_{0}^{\frac{p\alpha}{2}} u^{\frac{p}{2}} e^{-u} du}{\left(1 - e^{-\frac{p\alpha}{2}}\right)}}, & \alpha > \mathbf{0}. \end{cases}$$

This result coincides with the upper bound of κ_{A^2} obtained by Korenblum.

Remark 4.7

Theorems 4.4 and 4.5 have filled in some gaps in Table 2 with partial generalization.

Le Hai Khoi (USTH)

Korenblum Maximum Principle
5. Concluding remarks and open questions

∃ >

In summary, we obtained explicit expressions for the upper bounds of $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$ (Theorem 4.1) and $A^{p}_{\alpha}(\mathbb{D})$, where $p \geq 1$ and $\alpha \geq 0$ (Theorem 4.5). We also proved that the Korenblum Maximum Principle fails for $A^{p}_{\alpha}(\mathbb{D})$, $0 , <math>\alpha > 0$ (Theorem 4.4), thereby obtaining greater closure to the Korenblum Maximum Principle for the Bergman spaces.

In summary, we obtained explicit expressions for the upper bounds of $\mathcal{F}^p_{\alpha}(\mathbb{C})$ (Theorem 4.1) and $A^p_{\alpha}(\mathbb{D})$, where $p \geq 1$ and $\alpha \geq 0$ (Theorem 4.5). We also proved that the Korenblum Maximum Principle fails for $A^p_{\alpha}(\mathbb{D})$, $0 , <math>\alpha > 0$ (Theorem 4.4), thereby obtaining greater closure to the Korenblum Maximum Principle for the Bergman spaces.

Theorems 4.1 and 4.5 led us to the following open questions.

Question 5.1

Let c = 1. Do there exist functions f(z) and g(z) in $\mathcal{F}^2(\mathbb{C})$ for which |f(z)| < |g(z)| with all |z| > c and $||f||_{\mathcal{F}^2} > ||g||_{\mathcal{F}^2}$?

Question 5.2

Let $p \ge 1$, $\alpha > 0$ and

$$c = \sqrt[p]{\left(\frac{2}{p\alpha}\right)^{\frac{p}{2}}} \Gamma\left(\frac{p}{2}+1\right).$$

Do there exist functions f(z) and g(z) in $\mathcal{F}^{p}_{\alpha}(\mathbb{C})$ for which |f(z)| < |g(z)| with all |z| > c and $||f||_{\mathcal{F}^{p}_{\alpha}} > ||g||_{\mathcal{F}^{p}_{\alpha}}$?

3

く 同 ト く ヨ ト く ヨ ト

Question 5.3

Let $p \ge 1$, $\alpha \ge 0$ and

$$\boldsymbol{c} = \begin{cases} \left(\frac{2}{p+2}\right)^{\frac{1}{p}}, & \alpha = 0\\ & \sqrt{\frac{\left(\frac{2}{p\alpha}\right)^{\frac{p}{2}} \int_{0}^{\frac{p\alpha}{2}} u^{\frac{p}{2}} e^{-u} du}{\left(1 - e^{-\frac{p\alpha}{2}}\right)}}, & \alpha > 0. \end{cases}$$

Do there exist functions f(z) and g(z) in $A^p_{\alpha}(\mathbb{D})$ for which |f(z)| < |g(z)|with all c < |z| < 1 and $||f||_{A^p_{\alpha}} > ||g||_{A^p_{\alpha}}$?

3

Remark 5.4

Note that solving Question 5.3 indirectly generalizes the counterexample by Martin in [Korenblum, 1991] for A^p_α(D), p ≥ 1, α ≥ 0.

A .

Remark 5.4

- Note that solving Question 5.3 indirectly generalizes the counterexample by Martin in [Korenblum, 1991] for A^p_α(D), p ≥ 1, α ≥ 0.
- Note also that the case of A^ρ_α(D) where −1 < α < 0 and 0 < p < ∞ still remains unsolved.

Thank you !

æ