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Part 1: Interpolation problems for Schur-class operator-valued
functions
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The Schur class

U , Y, X = Hilbert spaces

S(U ,Y) = holomorphic functions S on D with values equal to
contraction operators in L(U ,Y)

TFAE:

I S ∈ S(U ,Y)

I The de Branges-Rovnyak kernel KS(z , ζ) := IY−S(z)S(ζ)∗

1−zζ is a

positive kernel on D : z1, . . . , zN ∈ D, y1, . . . , yN ∈ Y,
N=1,2,. . . ⇒

∑N
i ,j=1〈KS(zi , zj)yj , yi 〉Y ≥ 0

I K has a Kolmogorov decomposition: ∃ H : D →
holo
L(X ,Y)

s.t. K (z , ζ) = H(z)H(ζ)∗

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak Spaces and Applications



The Schur class continued

S ∈ S(U ,Y) also equivalent to:

I Unitary state-space realization: ∃ unitary system matrix
U =

[
A B
C D

]
:
[ X
U
]
→
[ X
Y
]

s.t.
S(z) = D + zC (IH − zA)−1B

Control motivation: Linear i/s/o linear system associated with U:

ΣU:

{
x(n + 1) = Ax(n) + Bu(n), x(0) = x0,

y(n) = Cx(n) + Du(n)
n ∈ Z+ = point in discrete time; above = “time-domain”
equations
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Control motivation continued

Application of Z -transform {w(n)}n≥0 7→ ŵ(z) :=
∑∞

n=0 wnz
n

converts “time-domain” equations

ΣU:

{
x(n + 1) = Ax(n) + Bu(n), x(0) = x0,

y(n) = Cx(n) + Du(n)

to “freqeuncy-domain” equations

Σ̂U :

{
x̂(z) = (I − zA)−1x0 + z(I − zA)−1Bû(z)
ŷ(z) = OC ,A(z)x0 + ΘU(z)û(z)

where

I OC ,A(z) = C (IX − zA)−1 = the observabiliy operator of the
system ΣU, and

I ΘU(z) = D + zC (I − zA)−1B = the transfer function of the
system ΣU

Special cases:

I u = 0 ⇒ ŷ(z) = OC ,A(z)x0 & x0 = 0 ⇒ ŷ(z) = ΘU(z)û(z)
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Control motivation continued II

Recall “frequency-domain” equations:

Σ̂U :

{
x̂(z) = (I − zA)−1x0 + z(I − zA)−1Bû(z)
ŷ(z) = OC ,A(z)x0 + ΘU(z)û(z)

where

I OC ,A(z) = C (IX − zA)−1 = the observabiliy operator of the
system ΣU, and

I ΘU(z) = D + zC (I − zA)−1B = the transfer function of the
system ΣU

Furthermore, if U is unitary and A is stable (Anx0 →
n→∞

0 in

norm for each x0 ∈ X ), then OC ,A : X → H2
Y is isometric, Θ is

inner (i.e., MΘ : H2
U → H2

Y is isometric) and[
OC ,A MΘU

]
:
[
X
H2
U

]
→ H2

Y is unitary

(so in particular H2
Y = RanOC ,A

⊕
MΘU

H2
U )
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Alternative formulas for OC ,A(z) and ΘU(z)

Slick formulas at the system-matrix level for OC ,A and ΘU(z):

I OC ,A(z) =
[
0 IY

]
U(IX⊕U − zPX⊕{0}U)−1

[
IX
0

]
,

I ΘU(z) =
[
0 IY

]
U(IX⊕U − zPX⊕0U)−1

[
0
IU

]
Thus U unitary and A stable ⇒[
OC ,A MΘ

]
= M[ 0 IY ]U(I−zPX⊕0U)−1 :

[
X
H2
U

]
→ H2

Y is unitary
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Interpolation problem for Schur-class functions

Left-tangential Nevanlinna-Pick interpolation problem (LTNP)

Given points z1, . . . , zN ∈ D and vectors a1, . . . , aN ∈ Y and
c1, . . . , cN ∈ U find S ∈ S(U ,Y) s.t. a∗i S(zi ) = c∗i for
i = 1, . . . ,N

Motivation: H∞-control (1980s-1990s)
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LTOA point-evaluation and observability operators

Assume (E ,T ) ∈ L(X ,Y)× L(X ) is a output-stable pair:
OE ,T : X → H2

Y so E (I − zT )−1x =
∑∞

n=0 ET
nx zn ∈ H2

Y ∀
x ∈ X
Define left-tangential operator-argument point-evaluation
S ∈ H∞(U ,Y) 7→ (E ∗S)∧L(T ∗) :=

∑∞
n=0 T

∗nE ∗Sn if
S(z) =

∑∞
n=0 Snz

n

Compute for u ∈ U :
〈
∑∞

n=0 T
∗nE ∗Snu, x〉X =

∑∞
n=0〈Snu,ET nx〉Y = 〈MSu,OE ,T x〉H2

Y
Note: (E ,T ) output-stable & S ∈ H∞(U ,Y) ⇒ series converges

Conclude (E ∗S)∧L(T ∗) = O∗E ,TMS |U
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LTNP vs LTOA interpolation

Example: E ∗ =

[
a∗1
...
a∗N

]
, N∗ =

[
c∗1
...
c∗N

]
, T ∗ =

[
z1

. . .
zN

]

⇒ (E ∗S)∧L(T ∗) =
∑∞

n=0

[
zn1

. . .
znN

][
a∗1
...
a∗N

]
Sn =

[
a∗1S(z1)

...
a∗NS(zN)

]

This equal to N∗ =

[
c∗1
...
c∗N

]
means a∗i S(zi ) = c∗i for i = 1, . . . ,N,

i.e.
Conclusion: LTOA point-evaluation interpolation
(E ∗S)∧L(T ∗) = N∗ or O∗E ,TMS |U = N∗

for this example of (T ,E ,N) equivalent to

LTNP interpolation conditions a∗i S(zi ) = c∗i for i = 1, . . . ,N
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Additional information on LTOA data set D = (T ,E ,N)

Suppose

I (E ,T ) ∈ L(X ,Y)× L(X ) output-stable,

I S ∈ S(U ,Y),

I (E ∗S)∧L(T ∗) = N∗ ∈ L(U ,X )

Then

I (N,T ) also output-stable and O∗E ,TMS = O∗N,T ∈ L(H2
U ,X )

= extension of O∗E ,TMS |U = N∗ ∈ L(U ,X ))

Thus view LTOA interpolation as an equation in L(H2
U ,X ):

O∗E ,TMS = O∗N,T ,
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Positivity condition for solvability of LTOA(T,E,N)

Suppose LTOA(T ,E ,N) interpolaton problem has a solution,
now written as O∗E ,TMS = O∗E ,N for some S ∈ S(U ,Y)

Then: O∗E ,TOE ,T −O∗N,TON,T = O∗E ,TOE ,T −O∗E ,TMSM
∗
SOE ,T

= O∗E ,T
(
IH2
Y
−MSM

∗
S

)
OE ,T � 0 since S ∈ S(U ,Y)

⇒ P := O∗E ,TOE ,T −O∗N,TON,T � 0 is a necessary condition for
existence of solutions to LTOA int-problem

Deeper fact: P � 0 also sufficient for existence of solutions to
LTOAint-problem
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Parametrization of solutions to LTOA int-problem

Special case: Assume T is strongly stable (T nx ∞
n→∞

for x ∈ X )

and P � 0. Set J =
[
IY 0
0 −IU

]
Then there is an explicitly constructible (possibly unbounded) J-

inner function Θ =
[

Θ11 Θ12
Θ21 Θ22

]
(so Θ(z)∗JΘ(z) = J, Θ(z)JΘ(z)∗ = J for a.e. z ∈ T
MΘ

∣∣
dom(MΘ)

= J-unitary on L2,J
Y⊕U ) so that:

S solves LTOA(T ,E ,N) ⇔ ∃ E ∈ S(U ,Y) s.t.

S(z) =
(
Θ11(z) + Θ12(z)E(z)

)(
Θ21(z) + Θ22(z)E(z)

)−1

=:TΘ(z)[E(z)] (Chain-matrix linear-fractional transformation)

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak Spaces and Applications



Construction of Θ

The algorithm starting with the data (T ,E ,N):
Set C =

[
E
N

]
I Construct a system matrix of the form U =

[
T B
C D

]
(already

have T and C =
[
E
N

]
, must still solve for B,D so that

U
[
P−1 0

0 J

]
U∗ =

[
P−1 0

0 J

]
, U∗

[
P 0
0 J

]
U =

[
P 0
0 J

]
This comes down to finding

B : Y ⊕ U → X and D : Y ⊕ U → Y ⊕ U solving the
Cholesky factorization problem:[
B
D

]
J [ B∗ D∗ ] =

[
P−1 0

0 J

]
−
[
T
C

]
P−1 [ T∗ C∗ ]

I Then let Θ(z) = ΘU(z) be the transfer function of the
system ΣU: Θ(z) = D + zC (I − zT )−1B
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Additional ingredients of the proof

Then also

I OE⊕N,T is isometric from (XP) into H2,J
Y⊕U

I MΘ is (possibly unbounded) J-unitary operator on L2,J
Y⊕U

I
(
MΘ · {polynomials inH2,J

Y⊕U}
)−

= RanO⊥J
E⊕N,T

Then one can arrive at the statement S solves LTOA int-problem
⇔ S = TΘ(E) for some E ∈ S(U ,Y) (via either Ball-Helton
Grassmannian approach or Potapov/Dym/Bolotnikov
kernel-function approach) in a straightforward way
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T not strongly stable

Without the strong stability assumption:

RanO[
E
N

]
,T

=
isom
H
(
O[

E
N

]
,T

(z)P−1O[
E
N

]
,T

(ζ)∗
)
⊂

contr
H2,J
Y⊕N

Θ not J -inner

H2,J
Y⊕U = RanO[

E
N

]
,T

+
(
Θ · (polynomials)

)−
is a Brangesian

J-minimal decomposition and not a J-orthogonal decomposition

⇒ not clear how to proceed

⇒ motivation for a more flexible reformulation of the LTOA
int-problem (Potapov operator-theory school Kharkiv, Ukraine)
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LTOA int-problem reformulated: Preliminaries

Douglas lemma: Given A ∈ L(X2,X3), B ∈ L(X1,X3) ∃
X ∈ L(X1,X2) s.t. ‖X‖ ≤ 1 and AX = B

⇔ BB∗ � AA∗ ⇔
[
IX2

B∗

B AA∗

]
� 0

Variant of Douglas lemma: Given A ∈ L(X2,X3), B ∈ L(X1,X3),
X ∈ L(X1,X2), then ‖X‖ ≤ 1 and AX = B ⇔

M :=

[
IX1

B∗ X∗

B AA∗ A
X A∗ IX2

]
� 0 on

[
X1
X3
X2

]
Proof: Note by Schur-complement analysis M � 0 ⇔[
IX1

B∗

B AA∗

]
−
[
X∗
A

]
[ X A∗ ] =

[
IX1
−X∗X B∗−X∗A∗

B−AX 0

]
� 0 ⇔

‖X‖ ≤ 1 and B = AX

ASIDE: Thus original Douglas lemma is a matrix-completion
problem: Given A, B, find X so that M � 0
Many papers on this from the 1980s
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Preliminaries: de Branges-Rovnyak spaces

Given a Schur-class function S ∈ S(U ,Y):

I The associated de Branges-Rovnyak kernel is

KS(z , ζ) = IY−S(z)S(ζ)∗

1−zζ

with associated de Branges-Rovnyak space = H(KS)
(RKHS with reproducing kernel KS)

I In operator-theory form H(KS) =
isometrically

Ran(I −MSM
∗
S)

1
2

with lifted norm, where MS ∈ L(H2
U ,H

2
Y) is the

multiplication operator MS : f (z) 7→ S(z)f (z)
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A positive-kernel reformulation of the LTOA int-problem

Given an admissible LTOA int-problem data set (T ,E ,N) (so
(E ,T ) output-stable), and given S ∈ HolD(L(U ,Y) , set
F S = OE ,T −MSON,T ∈ L(X ,H2

Y) , TFAE:

1. S solves the LTOA int-problem with data set D = (T ,E ,N)

2. P :=
[

P (F S )∗

F S I−MSM
∗
S

]
:
[
X
H2
Y

]
→
[
X
H2
Y

]
satisfies P � 0

3. K(z , ζ) =

[
P (I−ζT∗)−1(E∗−N∗S(ζ)∗)

(E−S(z)N)(I−zT )−1 IY−S(z)S(ζ)∗

1−zζ

]
is a

positive kernel

4. S ∈ S(U ,Y), F Sx ∈ H(KS) with ‖F Sx‖H(KS ) ≤ ‖P
1
2 x‖X ∀

x ∈ X
5. S ∈ S(U ,Y), F Sx ∈ H(KS) with ‖F Sx‖H(KS ) = ‖P

1
2 x‖

∀x ∈ X
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(2) ⇔ (3)

(2) ⇔ (3)
Recall:

(2) P :=
[

P (F S )∗

F S I−MSM
∗
S

]
:
[
X
H2
Y

]
→
[
X
H2
Y

]
satisfies P � 0

(3) K(z , ζ) =

[
P (I−ζT∗)−1(E∗−N∗S(ζ)∗)

(E−S(z)N)(I−zT )−1 IY−S(z)S(ζ)∗

1−zζ

]
is a

positive kernel

Proof: Note that
〈Pf , f 〉X⊕H2

Y
=
∑r

j ,`=1

〈
K(zj , z`) [ x`y` ] ,

[ xj
yj

] 〉
X⊕Y

where f ∈ X ⊕ H2
Y is of the form f =

∑r
j=1

[
xj

kSz(·,zj )yj

]
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(1) ⇒ (5)

(1) ⇒ (5)
Recall

(1) S solves the LTOA int-problem with data set D = (T ,E ,N)

(5) S ∈ S(U ,Y), F Sx ∈ H(KS) and ‖F Sx‖H(KS ) = ‖P
1
2

Note that
F S = OE ,T −MSON,T = OE ,T −MSM

∗
SOE ,T = (I −MSM

∗
S)OE ,T

⇒ ‖F Sx‖2
H(KS ) = 〈(I −MSM

∗
S)OE ,T x ,OE ,T x〉H2

Y

= 〈O∗E ,TOE ,T −O∗N,TON,T )x , x〉X = 〈Px , x〉X = ‖P
1
2 x‖2
X
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(4) ⇔ (2)

(4) ⇔ (2)
Recall:

(2) P :=
[

P (F S )∗

F S I−MSM
∗
S

]
:
[
X
H2
Y

]
→
[
X
H2
Y

]
satisfies P � 0

(4) S ∈ S(U ,Y), F Sx ∈ H(KS) with ‖F Sx‖H(KS ) ≤ ‖P
1
2 x‖X ∀

x ∈ X
Proof: Slightly finer Schur-complement argument

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak Spaces and Applications



(2) ⇔ (1)

(2) ⇔ (1):
Recall:

(1) S solves the LTOA int-problem with data set D = (T ,E ,N)

(2) P :=
[

P (F S )∗

F S I−MSM
∗
S

]
:
[
X
H2
Y

]
→
[
X
H2
Y

]
satisfies P � 0

Proof:
Suppose P � 0 ⇒ I −MSM

∗
S � 0, i.e., S ∈ S(U ,Y)

From the definitions P =
[O∗E ,TOE ,T−O∗N,TON,T O∗ET−O

∗
N,TM

∗
S

OE ,T−MSON,T I−MSM
∗
S

]
� 0

By a Schur-complement argument

⇔ P̂ :=

 I
H2
U

ON,T M∗S

O∗N,T O
∗
E ,TOE ,T O∗E ,T

MS OE ,T I
H2
Y

 � 0

Now Douglas-lemma variant ⇒ ‖MS‖ ≤ 1 (as already known)
and ON,T = M∗SOE ,T , i.e.,
S solves LTOAint-problem and (2) ⇒ (1).

(1) ⇒ (2): The steps are reversible.
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Conclusions

Note: Reliance on Krein-space geometry (difficult to interpret
when strong stability assumption is not present) is eliminated;
Instead all the analysis is manipulation of positive kernels
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Conclusions 2

Formulation of LTOA(T,E,N) int-problem appears to require that
OE ,T and ON,T be bounded (in L(X ,H2

Y) and L(X ,H2
U )

respectively)

However (2),(3),(4) in positive-kernel reformulation theorem make
sense if

I we take P equal to any positive-semidefinite operator on X ,
and

I Assume that O[
E
N

]
,T

: x 7→
[
E
N

]
(I − zT )−1 maps X into

HolY⊕U (D) (holomorphic functions on D with values in
Y ⊕ U)

Furthermore, we still have (2) ⇔ (3) ⇔ (4) if we also assume
P � 0 solves P − T ∗PT = C ∗JC , where C =

[
E
N

]
(If T strongly stable, P = O∗E ,TOE ,T −O∗N,TON,T is the unique
solution)
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The aAIP

This suggests: Assume that (T ,E ,N,P) is admissible data set
for aAIP:

I O[
E
N

]
,T

: X → HolY⊕U (D

I P � 0 satisfies P − T ∗PT = C ∗JC , where C =
[
E
N

]
Then we can take any of (2), (3), (4) as the definition of a more
general problem: we shall take (4) as the Definition.

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak Spaces and Applications



The analytic Abstract Interpolation Problem

Analytic Abstract Interpolation Problem aAIP(T ,E ,N ,P)

Given D = (T ,E ,N,P) with T ∈ L(X ),
[
E
N

]
∈ L(X ,Y ⊕ U),

O[
E
N

]
,T

: X → HolY⊕U (D), find all S ∈ S(U ,Y) so that

(4) F S := OE ,T −MSON,T : X → H(KS) with ‖F Sx‖ ≤ ‖P
1
2 x‖

Theorem on solution of aAIP(T ,E ,N ,P):

Given aAIP admissible data set T ,E ,N,P, TFAE:

(4) S is a solution of the aAIP(E ,N,T ,P)

(2) P =
[

P (F S )∗

F S I−MSM
∗
S

]
� 0

(3) K(z , ζ) =

[
P (I−ζT∗)−1(E∗−N∗S(ζ)∗)

(E−S(z)N)(I−zT )−1 IY−S(z)S(ζ)∗

1−zζ

]
is a

positive kernel
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LFT parametrization of solution set

Furthermore, if P � 0 and if Θ is constructed as above, then any
solution S has the form
S(z) = (Θ11(z)E(z) + Θ12(z))(Θ21(z)E(z) + Θ22(z))−1 for
E ∈ S(U ,Y)

Smooth proof starting with (4) instead of old (1): By formulation
(4) of a solution (now the definition of a solution), S solves ⇔
(∗) F S := [ I −MS ]

[
OE ,T

ON,T

]
maps XP contractively into H(KS) .

But by general RKHS results,
O[

E
N

]
,T

: XP →
isom.

H
(
KP[

E
N

]
,T

)
= H(K J,J

Θ ).

KP[
E
N

]
,T

(z , ζ) := O[
E
N

]
,T

(z)P−1O[
E
N

]
,T

(ζ)∗ while

K J,J
Θ (z , ζ) = J−Θ(a)JΘ(ζ)∗

1−zζ

Now use a (not hard) general result that says
property (∗) characterizes S ∈ RanTΘ ⇒ done
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Boundary Nevanlinna-Pick interpolation

More general application: boundary Nevanlinna-Pick interpolation
with bounds on angular derivatives
P not uniquely determined by the Stein equation; diagonal
entries of P provide bounds on angular derivatives at
interpolation nodes on the boundary
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Parametrization of solution set in case only P � 0

Suppose only P � 0. Set XP = Hilbert space associated with P
(completion of equivalence classes in X/KerP)

Notational sloppiness: X = XP

In particular P is well defined on XP

We assume: P − T ∗PT = E ∗E − N∗N (∗)
Then we define an isometry V : DV → RV where
DV = Ran

[
IX
N

]
⊂
[ X
U
]
, RV = Ran

[
T
E

]
⊂
[ X
Y
]

by

V :
[
I
N

]
x 7→

[
T
E

]
x for all x ∈ X

Note that (∗) ⇒ V : DV → RV is an isometry
(with X equipped with the P metric)

V is the lurking isometry for this problem!
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Alternative characterization of solutions of aAIP

We say that a system matrix U :
[H
U
]
→
[H
Y
]

is a minimal
unitary-system-matrix extension of V if

(1) X is a subspace of H,

(2) U|DV
= V : DV → RV

(3) X ⊂ N ⊂ H, N reducing for U ⇒ N = H

Theorem: characterization of solutions of aAIP
S solves aAIP with admissible data set D = (T ,E ,N,P) ⇔ S
has the form
S(z) = D + zC (I − zA)−1B where U =

[
A B
C D

]
:
[H
U
]
→
[H
Y
]

is
a minimal unitary system-matrix extension of the partially defined
isometry V constructed from D as above.

In this case the associated map F S = [ I −MS ]
[
OE ,T

ON,T

]
given by

F S(z) = C (I − zA)−1
∣∣
X : X → H(KS)
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Parametrization of solution set for aAIP

Furthermore, minimal unitary system-matrix extensions of V
given by free-parameter closely connected unitary system matrix
U1 coupled with a universal unitary system matrix U0 defined as
follows:

(1) Universal unitary system matrix determined by V:
Introduce defect spaces ∆ =

[ X
U
]
	DV, ∆∗ =

[ X
Y
]
	RV

Let ∆̃ = another copy of ∆, ∆̃∗ = another copy of ∆∗
with identificaton maps ι : ∆→ ∆̃, ι∗ : ∆∗ → ∆̃∗

Define U0 by U0x =


Vx if x ∈ DV,
ι(x) if x ∈ ∆,

ι−1
∗ (x) if x ∈ ∆̃∗

Identify
[DV

∆

]
with

[ X
U
]

and identify
[
RV
∆∗

]
with

[ X
Y
]

⇒ U0 decomposes as U0 =

[
U11 U12 U13
U21 U22 U23
U31 U32 0

]
:

[
X
U

∆̃∗

]
→
[
X
Y
∆̃

]
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Parametrization of the solution set (2)

(2) Free parameter unitary system-matrix: U1:

U1 =
[
A1 B1
C1 D1

]
:
[
X1

∆̃

]
→
[
X1

∆̃∗

]
(3) The feedback connection of U0 and U1 to get U =
minimal unitary system-matrix extention of V0:

U :
[

x
x1
u

]
→
[

x̃
x̃1
y

]
⇔ ∃ δ̃ ∈ ∆̃, δ̃∗ ∈ ∆̃∗ s.t.

U0 :
[ x

u
δ̃∗

]
7→
[
x̃
y

δ̃

]
and U1 :

[ x1

δ̃

]
7→
[
x̃1

δ̃∗

]
Since U33 = 0 we can solve explicitly:

U =
[
A B
C D

]
=

[ [
U11+U12D1U31 U13C1

B1U31 A1

] [
U12+U13D1U32

B1U32

]
[U21+U23D1U31 U23C1 ] U22+U23D1U32

]
Now we want the transfer function TΣU

(z)
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Parametrization of the solution set (3)

Write TΣU0
(z) =

[
U22 U23
U32 0

]
+ z

[
U21
U31

]
(I − zU11)−1 [ U12 U13 ]

=:
[

Σ11(z) Σ12(z)
Σ21(z) Σ22(z)

]
Write RΣ[W] = Σ11(z) + Σ12(z)W(z)(I − Σ22(z)W(z))−1Σ21(z)
(Redheffer LFT)

Σ(z) ∈ S(Y ⊕ U ,Y ⊕ U) and Σ22(0) = 0 ⇒ RΣ[W] ∈ S(U ,Y)
well-defined whenever W ∈ S(U ,Y)

Calculus of realizations and feedback connections:
TU(z) = RU0 [TU1(z)] if U = U0 ∗

FB
U1

Set W = TU1 = free parameter sweeping S(∆̃, ∆̃∗)
Conclusion: The set of all solutions of aAIP(T ,E ,N,P) is given
by S(z) = RΣ(z)[W(z)] where the free parameter W(z) sweeps
S(∆̃, ∆̃∗)
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Part 2: Interpolation problems for functions in vector-valued de
Branges-Rovnyak spaces
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The AIPH(KS) problem

AIPH(KS )-admissible data set D = (S ,T ,E ,N, x):

I S ∈ L(U ,Y), x ∈ X
I T ∈ L(X ), E ∈ L(X ,Y), N ∈  L(X ,U) s.t.
OE ,T : X → HolL(X ,Y(D), ON,T : X → HolL(X ,U (D)

I MF S := OE ,T −MSON,T : X → H(KS)
where F S(z) = E (I − zT )−1 − S(z)N(I − zT )−1

I P = M
[∗]
F SMF S satisfies P − T ∗PT = E ∗E − N∗N where [∗]

is adjoint w.r.t. H(KS) norm

In case (E ,T ) is output-stable and O∗E ,TMS = O∗N,T , then

M
[∗]
F SMFS = O∗E ,TOE ,T −O∗N,TON,T = P as before

The AIPH(KS ) interpolation problem: Find all f ∈ H(KS) s.t.

M
[∗]
F S f = x and ‖f ||H(KS ) ≤ 1
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Connection with interpolation

If (E ,T ) is output-stable and we define N by N∗ = O∗E ,TMS |U ,
then we have seen that

O∗N,T = O∗E ,TMS : H2
U → X , or ON,T = M∗SOE ,T

and then MFS = OE ,T −MSON,T = (I −MSM
∗
S)OE ,T from

which it follows that

M
[∗]
F = O∗E ,T |H(KS ) ⇒ M

[∗]
F f = x amounts to imposing LTOA

interpolation conditions on f ∈ H(KS) with a norm constraint:
‖f ‖H(KS ) ≤ 1
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Solution criterion for AIPH(KS)

AIPH(KS ): Find f ∈ H(KS) s.t. M
[∗]
F S f = x and ‖f ‖H(KS ) ≤ 1

Identify f with Mf : C→ H(KS);
Conversely any operator X ∈ L(C,H(KS)) has the form X = Mf

for f ∈ H(KS)

AIPH(KS ) -problem is: solve the operator equation M
[∗]
F SMf = x for

Mf with ‖Mf ‖ ≤ 1

By the Douglas lemma, this is possible ⇔ xx∗ � P := M
[∗]
F SMF S
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Characterization of solutions of AIPH(KS)-problem

Application of the Douglas-lemma variant gives the following
theorem (no use of Stein equation yet):

Theorem: characterization of solutions of AIPH(KS )-problem

Given an admissible AIPH(KS ) data set D = (T ,E ,N,S , x)
together with a prospective solution f ∈ H(KS), we set

P = M
[∗]
F SMFS . Then TFAE:

(1) f soves the AIPH(KS )-problem

(2) K(z , ζ) =

[
1 x∗ f (ζ)∗

x P F S (ζ)∗

f (z) F S (z) KS (z,ζ)

]
is a positive kernel on D

(3) P̂ :=

 1 x∗ M
[∗]
f

x P M
[∗]

FS

MF M
FS

IH(KS )

 � 0
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Connection with aAIPS(U ,Y)-problem

Given a AIPH(KS ) data set (T ,E ,N,S ,P, x) with
N∗ = O∗E ,TMS |U then (T ,E ,N,P) is a aAIP-data set and we
can consider the aAIP-problem for this data set and there is a
Redheffer LFT parametrization for the set of all solutions:

W ∈ S(∆̃, ∆̃∗) 7→ RΣ(z)[W(z)]

Set G (z) = Σ12(z)(I − E(z)Σ22(z))−1,
Γ(z) = U21 + G (z)E(z)U31)(I − zU11)−1

Then one can use all this to parametrize solutions of AIPH(KS ):

I f solves AIPH(KS )-problem ⇔ f has the form

f (z) = Γ(z)x̃ + G (z)h(z)

where x = P
1
2 x̃ and h ∈ H(KS) subject to

‖h‖H(KS ) ≤
√

1− ‖x̃‖2
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Parametrizatoin continued

I In this case
‖f ‖2
H(KS ) = ‖MΓx̃‖2 + ‖MGh‖2 = ‖x̃‖2 + ‖PH(KE)	Ker MG

h‖2

and fmin(z) = Γ(z)x̃

I The problem AIPH(KS ) admits a unique solution ⇔ ‖x̃‖ = 1

or RanMS
F = H(KS)
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Part 3: Applications

Given inner S , B, MS is an isometry in L(H2
U ,H

2
Y), MSH

2
U = the

form for a general Mz invariant subspace of H2
Y (Beurling-Lax)

Set KS = H2
Y 	MSH

2
U (the model space)

Let B ∈ S(W,Y) be another inner funtion
Characterizations of intersections MSH

2
U ∩MBH

2
W and KS ∩ KB

well known.
Of interest here: MS ,B = KS ∩MBH

2
W
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The space MS ,B = KS ∩MBH
2
W

Introduce T ∈ L(KB), E ∈ L(KB ,Y), N ∈ L(KB ,U) by

I T : h(z) 7→ h(z)−h(0)
z (strongly stable),

I E : h 7→ h(0) ((E ,T ) output-stable)

I N : h(z) =
∑∞

j=0 hjz
j 7→

∑
j≥0 S

∗
j hj where S(z) =

∑
j≥0 Sjz

j

so N = O∗E ,TMS |U
⇒ D = {S ,E ,N,T , x = 0} is AIPH(KS ) is admissible

and M
[∗]
F S = O∗E ,T |H(KS )

In this case OE ,Th)(z) =
∑

j≥0(ET jh)z j =
∑

j≥0 hjz
j = h(z)

i.e., OE ,T is the inclusion map ι : KB → H2
Y and ι∗ is the

projection ι∗ = PK(B) : H2
Y → K(B)
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The space MS ,B = KS ∩MBH
2
W continued

Thus for f ∈ H2
Y we have O∗E ,T f = 0 ⇔ f ∈ H2

Y 	KB = MBH
2
W

and P := M
[∗]
FSMF S = O∗e,TOE ,T −O∗N,TON,T amounts to

P = IKB
− PKB

MSM
∗
S |KB

Theorem
Given inner S ∈ S(U ,Y) and B ∈ S(W,Y), let Σ =

[
Σ11 Σ12
Σ21 Σ22

]
come from the associate aAIPS(U ,Y) with admissible data set
(P,T ,E ,N) as above. Then the spaceMS ,B is given explicitly as

MS ,B = G · H(KE) where E = unique function in S(∆̃, ∆̃∗) s.t.
S = RΣ[E ] and G (z) = Σ12(z)(I − E(z)Σ22(z))−1

Furthermore MG : H(KE)→MS ,B is unitary
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Connections with parametrizing kernels of Toeplitz operators, . . .
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Thanks!
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