Interpolation Problems for Vector-Valued de Branges-Rovnyak Spaces and Applications

Joseph A. Ball

Department of Mathematics, Virginia Tech, Blacksburg joint work with
V. Bolotnikov, S. ter Horst

Fields Institute Focus Program on Analytic Spaces and their Applications
Workshop on de Branges-Rovnyak Spaces
October 7, 2021

Outline

Part 1: Interpolation problems for Schur-class operator-valued functions
Part 2: Interpolation problems for functions in vector-valued de Branges-Rovnyak spaces

Part 3: Applications

Part 1: Interpolation problems for Schur-class operator-valued functions

The Schur class

$\mathcal{U}, \mathcal{Y}, \mathcal{X}=$ Hilbert spaces
$\mathcal{S}(\mathcal{U}, \mathcal{Y})=$ holomorphic functions S on \mathbb{D} with values equal to contraction operators in $\mathcal{L}(\mathcal{U}, \mathcal{Y})$

TFAE:

- $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$
- The de Branges-Rovnyak kernel $K_{S}(z, \zeta):=\frac{1 y-S(z) S(\zeta)^{*}}{1-z \bar{\zeta}}$ is a positive kernel on $\mathbb{D}: z_{1}, \ldots, z_{N} \in \mathbb{D}, y_{1}, \ldots, y_{N} \in \mathcal{Y}$, $\mathrm{N}=1,2, \ldots \Rightarrow \sum_{i, j=1}^{N}\left\langle K_{S}\left(z_{i}, z_{j}\right) y_{j}, y_{i}\right\rangle_{\mathcal{Y}} \geq 0$
- K has a Kolmogorov decomposition: $\exists H: \mathbb{D} \underset{\text { holo }}{\rightarrow} \mathcal{L}(\mathcal{X}, \mathcal{Y})$ s.t. $K(z, \zeta)=H(z) H(\zeta)^{*}$

The Schur class continued

$S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$ also equivalent to:

- Unitary state-space realization: \exists unitary system matrix

$$
\begin{aligned}
& \mathbf{U}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]:\left[\begin{array}{ll}
\mathcal{X} \\
\mathcal{U}
\end{array}\right] \rightarrow\left[\begin{array}{l}
\mathcal{X} \\
\mathcal{Y}
\end{array}\right] \text { s.t. } \\
& S(z)=D+z C\left(l_{\mathcal{H}}-z A\right)^{-1} B
\end{aligned}
$$

Control motivation: Linear $\mathrm{i} / \mathrm{s} / \mathrm{o}$ linear system associated with \mathbf{U} :
$\Sigma_{\mathbf{U}}:\left\{\begin{aligned} x(n+1) & =A x(n)+B u(n), \quad x(0)=x_{0}, \\ y(n) & =C x(n)+D u(n)\end{aligned}\right.$
$n \in \mathbb{Z}_{+}=$point in discrete time; above $=$"time-domain" equations

Control motivation continued

Application of Z-transform $\{w(n)\}_{n \geq 0} \mapsto \widehat{w}(z):=\sum_{n=0}^{\infty} w_{n} z^{n}$ converts "time-domain" equations
$\Sigma_{\mathbf{u}}:\left\{\begin{aligned} x(n+1) & =A x(n)+B u(n), \quad x(0)=x_{0}, \\ y(n) & =C x(n)+D u(n)\end{aligned}\right.$
to "freqeuncy-domain" equations
$\widehat{\Sigma}_{\mathbf{U}}:\left\{\begin{array}{l}\widehat{x}(z)=(I-z A)^{-1} x_{0}+z(I-z A)^{-1} B \widehat{u}(z) \\ \widehat{y}(z)=\mathcal{O}_{C, A}(z) x_{0}+\Theta_{\mathbf{U}}(z) \widehat{u}(z)\end{array}\right.$
where

- $\mathcal{O}_{C, A}(z)=C\left(I_{\mathcal{X}}-z A\right)^{-1}=$ the observabiliy operator of the system $\Sigma_{\mathbf{U}}$, and
- $\Theta_{\mathbf{U}}(z)=D+z C(I-z A)^{-1} B=$ the transfer function of the system $\Sigma_{\mathbf{U}}$
Special cases:
- $\mathbf{u}=0 \Rightarrow \widehat{y}(z)=\mathcal{O}_{C, A}(z) x_{0} \& x_{0}=0 \Rightarrow \widehat{y}(z)=\Theta_{\mathbf{u}}(z) \widehat{u}(z)$

Control motivation continued II

Recall "frequency-domain" equations:
$\widehat{\Sigma}_{\mathbf{U}}:\left\{\begin{array}{l}\widehat{x}(z)=(I-z A)^{-1} x_{0}+z(I-z A)^{-1} B \widehat{u}(z) \\ \widehat{y}(z)=\mathcal{O}_{C, A}(z) x_{0}+\Theta_{\mathbf{U}}(z) \widehat{u}(z)\end{array}\right.$
where

- $\mathcal{O}_{C, A}(z)=C\left(I_{\mathcal{X}}-z A\right)^{-1}=$ the observabiliy operator of the system $\sum \mathbf{U}$, and
- $\Theta_{\mathrm{U}}(z)=D+z C(I-z A)^{-1} B=$ the transfer function of the system Σ_{U}
Furthermore, if \mathbf{U} is unitary and A is stable $\left(A^{n} x_{0} \underset{n \rightarrow \infty}{\rightarrow} 0\right.$ in norm for each $x_{0} \in \mathcal{X}$), then $\mathcal{O}_{C, A}: \mathcal{X} \rightarrow H_{\mathcal{Y}}^{2}$ is isometric, Θ is inner (i.e., $M_{\Theta}: H_{\mathcal{U}}^{2} \rightarrow H_{\mathcal{Y}}^{2}$ is isometric) and
$\left[\begin{array}{ll}\mathcal{O}_{C, A} & M_{\Theta_{u}}\end{array}\right]:\left[\begin{array}{c}\mathcal{X} \\ H_{\mathcal{U}}^{2}\end{array}\right] \rightarrow H_{\mathcal{Y}}^{2}$ is unitary
(so in particular $H_{\mathcal{Y}}^{2}=\overline{\operatorname{Ran}} \mathcal{O}_{C, A} \bigoplus M_{\Theta_{\mathbf{U}}} H_{\mathcal{U}}^{2}$)

Alternative formulas for $\mathcal{O}_{C, A}(z)$ and $\Theta_{\mathrm{U}}(z)$

Slick formulas at the system-matrix level for $\mathcal{O}_{C, A}$ and $\Theta_{\mathbf{U}}(z)$:

- $\mathcal{O}_{C, A}(z)=\left[\begin{array}{ll}0 & \iota_{\mathcal{Y}}\end{array}\right] \mathbf{U}\left(I_{\mathcal{X} \oplus \mathcal{U}}-z P_{\mathcal{X} \oplus\{0\}} \mathbf{U}\right)^{-1}\left[\begin{array}{c}I_{\mathcal{X}} \\ 0\end{array}\right]$,
- $\Theta_{\mathbf{U}}(z)=\left[\begin{array}{ll}0 & I_{\mathcal{Y}}\end{array}\right] \mathbf{U}\left(I_{\mathcal{X} \oplus \mathcal{U}}-z P_{\mathcal{X} \oplus 0} \mathbf{U}\right)^{-1}\left[\begin{array}{c}0 \\ \mathfrak{u}_{\mathcal{U}}\end{array}\right]$

Thus \mathbf{U} unitary and A stable \Rightarrow
$\left.\left[\begin{array}{ll}\mathcal{O}_{C, A} & M_{\Theta}\end{array}\right]=M_{[0}^{0} I_{\mathcal{y}}\right] U\left(I-z P_{\mathcal{X} \oplus 0} \mathbf{U}\right)^{-1}:\left[\begin{array}{c}\mathcal{X} \\ H_{\mathcal{U}}^{2}\end{array}\right] \rightarrow H_{\mathcal{Y}}^{2}$ is unitary

Interpolation problem for Schur-class functions

Left-tangential Nevanlinna-Pick interpolation problem (LTNP)
Given points $z_{1}, \ldots, z_{N} \in \mathbb{D}$ and vectors $a_{1}, \ldots, a_{N} \in \mathcal{Y}$ and $c_{1}, \ldots, c_{N} \in \mathcal{U}$ find $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$ s.t. $a_{i}^{*} S\left(z_{i}\right)=c_{i}^{*}$ for $i=1, \ldots, N$
Motivation: $\quad H^{\infty}$-control (1980s-1990s)

LTOA point-evaluation and observability operators

Assume $(E, T) \in \mathcal{L}(\mathcal{X}, \mathcal{Y}) \times \mathcal{L}(\mathcal{X})$ is a output-stable pair: $\mathcal{O}_{E, T}: \mathcal{X} \rightarrow H_{\mathcal{Y}}^{2}$ so $E(I-z T)^{-1} x=\sum_{n=0}^{\infty} E T^{n} x z^{n} \in H_{\mathcal{Y}}^{2} \quad \forall$ $x \in \mathcal{X}$
Define left-tangential operator-argument point-evaluation $S \in H^{\infty}(\mathcal{U}, \mathcal{Y}) \mapsto\left(E^{*} S\right)^{\wedge L}\left(T^{*}\right):=\sum_{n=0}^{\infty} T^{* n} E^{*} S_{n}$ if $S(z)=\sum_{n=0}^{\infty} S_{n} z^{n}$
Compute for $u \in \mathcal{U}$:
$\left\langle\sum_{n=0}^{\infty} T^{* n} E^{*} S_{n} u, x\right\rangle_{\mathcal{X}}=\sum_{n=0}^{\infty}\left\langle S_{n} u, E T^{n} x\right\rangle_{\mathcal{Y}}=\left\langle M_{S} u, \mathcal{O}_{E, T} x\right\rangle_{H_{\mathcal{Y}}^{2}}$
Note: (E, T) output-stable $\& S \in H^{\infty}(\mathcal{U}, \mathcal{Y}) \Rightarrow$ series converges
Conclude $\left(E^{*} S\right)^{\wedge L}\left(T^{*}\right)=\mathcal{O}_{E, T}^{*} M_{S} \mid \mathcal{U}$

LTNP vs LTOA interpolation

Example: $E^{*}=\left[\begin{array}{c}a_{1}^{*} \\ \vdots \\ a_{N}^{*}\end{array}\right], N^{*}=\left[\begin{array}{c}c_{1}^{*} \\ \vdots \\ c_{N}^{*}\end{array}\right], T^{*}=\left[\begin{array}{lll}\bar{z}_{1} & & \\ & \ddots & \\ & & \bar{z}_{N}\end{array}\right]$
$\Rightarrow\left(E^{*} S\right)^{\wedge L}\left(T^{*}\right)=\sum_{n=0}^{\infty}\left[\begin{array}{ccc}z_{1}^{n} & & \\ & \ddots & \\ & & z_{N}^{n}\end{array}\right]\left[\begin{array}{c}a_{1}^{*} \\ \vdots \\ a_{N}^{*}\end{array}\right] S_{n}=\left[\begin{array}{c}a_{1}^{*} S\left(z_{1}\right) \\ \vdots \\ a_{N}^{*} S\left(z_{N}\right)\end{array}\right]$
This equal to $N^{*}=\left[\begin{array}{c}c_{1}^{*} \\ \vdots \\ c_{N}^{*}\end{array}\right]$ means $a_{i}^{*} S\left(z_{i}\right)=c_{i}^{*}$ for $i=1, \ldots, N$,
i.e.

Conclusion: LTOA point-evaluation interpolation

$$
\left(E^{*} S\right)^{\wedge L}\left(T^{*}\right)=N^{*} \text { or }\left.\mathcal{O}_{E, T}^{*} M_{S}\right|_{\mathcal{U}}=N^{*}
$$

for this example of (T, E, N) equivalent to
LTNP interpolation conditions $a_{i}^{*} S\left(z_{i}\right)=c_{i}^{*}$ for $i=1, \ldots, N$

Additional information on LTOA data set $\mathcal{D}=(T, E, N)$

Suppose

- $(E, T) \in \mathcal{L}(\mathcal{X}, \mathcal{Y}) \times \mathcal{L}(\mathcal{X})$ output-stable,
- $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$,
- $\left(E^{*} S\right)^{\wedge L}\left(T^{*}\right)=N^{*} \in \mathcal{L}(\mathcal{U}, \mathcal{X})$

Then

- (N, T) also output-stable and $\mathcal{O}_{E, T}^{*} M_{S}=\mathcal{O}_{N, T}^{*} \in \mathcal{L}\left(H_{\mathcal{U}}^{2}, \mathcal{X}\right)$ $=$ extension of $\left.\left.\mathcal{O}_{E, T}^{*} M_{S}\right|_{\mathcal{U}}=N^{*} \in \mathcal{L}(\mathcal{U}, \mathcal{X})\right)$
Thus view LTOA interpolation as an equation in $\mathcal{L}\left(H_{\mathcal{U}}^{2}, \mathcal{X}\right)$: $\mathcal{O}_{E, T}^{*} M_{S}=\mathcal{O}_{N, T}^{*}$,

Positivity condition for solvability of LTOA(T,E,N)

Suppose $\operatorname{LTOA}(T, E, N)$ interpolaton problem has a solution, now written as $\mathcal{O}_{E, T}^{*} M_{S}=\mathcal{O}_{E, N}^{*}$ for some $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$
Then: $\mathcal{O}_{E, T}^{*} \mathcal{O}_{E, T}-\mathcal{O}_{N, T}^{*} \mathcal{O}_{N, T}=\mathcal{O}_{E, T}^{*} \mathcal{O}_{E, T}-\mathcal{O}_{E, T}^{*} M_{S} M_{S}^{*} \mathcal{O}_{E, T}$
$=\mathcal{O}_{E, T}^{*}\left(I_{H_{\mathcal{Y}}^{2}}-M_{S} M_{S}^{*}\right) \mathcal{O}_{E, T} \succeq 0$ since $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$
$\Rightarrow P:=\mathcal{O}_{E, T}^{*} \mathcal{O}_{E, T}-\mathcal{O}_{N, T}^{*} \mathcal{O}_{N, T} \succeq 0$ is a necessary condition for existence of solutions to LTOA int-problem
Deeper fact: $P \succeq 0$ also sufficient for existence of solutions to LTOAint-problem

Parametrization of solutions to LTOA int-problem

Special case: Assume T is strongly stable $\left(T^{n} \times \underset{n \rightarrow \infty}{\infty}\right.$ for $\left.x \in \mathcal{X}\right)$
and $P \succ 0$. Set $J=\left[\begin{array}{cc}1 y & 0 \\ 0 & -h_{u}\end{array}\right]$
Then there is an explicitly constructible (possibly unbounded) J inner function $\Theta=\left[\begin{array}{cc}\Theta_{11} & \Theta_{12} \\ \Theta_{21} & \Theta_{22}\end{array}\right]$
(so $\Theta(z)^{*} J \Theta(z)=J, \Theta(z) J \Theta(z)^{*}=J$ for a.e. $z \in \mathbb{T}$
$\left.M_{\Theta}\right|_{\operatorname{dom}\left(M_{\Theta}\right)}=J$-unitary on $\left.L_{\mathcal{Y} \oplus \mathcal{U}}^{2, J}\right)$ so that:
S solves $\operatorname{LTOA}(T, E, N) \Leftrightarrow \exists \mathcal{E} \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$ s.t.
$S(z)=\left(\Theta_{11}(z)+\Theta_{12}(z) \mathcal{E}(z)\right)\left(\Theta_{21}(z)+\Theta_{22}(z) \mathcal{E}(z)\right)^{-1}$
$=: T_{\Theta(z)}[\mathcal{E}(z)]$ (Chain-matrix linear-fractional transformation)

Construction of Θ

The algorithm starting with the data (T, E, N):
Set $C=\left[\begin{array}{c}E \\ N\end{array}\right]$

- Construct a system matrix of the form $\mathbf{U}=\left[\begin{array}{ll}T & B \\ C & D\end{array}\right]$ (already have T and $C=\left[\begin{array}{c}E \\ N\end{array}\right]$, must still solve for B, D so that $\mathbf{U}\left[\begin{array}{cc}P^{-1} & 0 \\ 0 & J\end{array}\right] \mathbf{U}^{*}=\left[\begin{array}{cc}P^{-1} & 0 \\ 0 & J\end{array}\right], \mathbf{U}^{*}\left[\begin{array}{ll}P & 0 \\ 0 & J\end{array}\right] \mathbf{U}=\left[\begin{array}{cc}P & 0 \\ 0 & J\end{array}\right]$
This comes down to finding
$B: \mathcal{Y} \oplus \mathcal{U} \rightarrow \mathcal{X}$ and $D: \mathcal{Y} \oplus \mathcal{U} \rightarrow \mathcal{Y} \oplus \mathcal{U}$ solving the Cholesky factorization problem:
$\left[\begin{array}{l}B \\ D\end{array}\right] J\left[\begin{array}{ll}B^{*} & D^{*}\end{array}\right]=\left[\begin{array}{cc}P^{-1} & 0 \\ 0 & J\end{array}\right]-\left[\begin{array}{c}T \\ C\end{array}\right] P^{-1}\left[\begin{array}{ll}T^{*} & C^{*}\end{array}\right]$
- Then let $\Theta(z)=\Theta_{\mathbf{u}}(z)$ be the transfer function of the system $\Sigma_{\mathbf{U}}: ~ \Theta(z)=D+z C(I-z T)^{-1} B$

Additional ingredients of the proof

Then also

- $\mathcal{O}_{E \oplus N, T}$ is isometric from $\left(\mathcal{X}^{P}\right)$ into $H_{\mathcal{Y} \oplus \mathcal{U}}^{2, J}$
- M_{Θ} is (possibly unbounded) J-unitary operator on $L_{\mathcal{Y} \oplus \mathcal{U}}^{2, J}$
- $\left(M_{\Theta} \cdot\left\{\text { polynomials in } H_{\mathcal{Y} \oplus \mathcal{U}}^{2, J}\right\}\right)^{-}=\operatorname{Ran} \mathcal{O}_{E \oplus N, T}^{\perp J}$

Then one can arrive at the statement S solves LTOA int-problem $\Leftrightarrow S=T_{\Theta}(\mathcal{E})$ for some $\mathcal{E} \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$ (via either Ball-Helton Grassmannian approach or Potapov/Dym/Bolotnikov kernel-function approach) in a straightforward way

T not strongly stable

Without the strong stability assumption:
$\left.\operatorname{Ran} \mathcal{O}\left[\begin{array}{c}E \\ N\end{array}\right], T \underset{\text { isom }}{=} \mathcal{H}\left(\mathcal{O}_{[\underset{N}{E}]}\right], T(z) P^{-1} \mathcal{O}_{[\underset{N}{E}], T}(\zeta)^{*}\right) \underset{\text { contr }}{\subset} H_{\mathcal{Y} \oplus N}^{2, J}$
Θ not J-inner
$H_{\mathcal{Y} \oplus \mathcal{U}}^{2, J}=\operatorname{Ran} \mathcal{O}_{\left[\begin{array}{l}E \\ N\end{array}\right], T}+(\Theta \cdot(\text { polynomials }))^{-}$is a Brangesian
J-minimal decomposition and not a J-orthogonal decomposition
\Rightarrow not clear how to proceed
\Rightarrow motivation for a more flexible reformulation of the LTOA int-problem (Potapov operator-theory school Kharkiv, Ukraine)

LTOA int-problem reformulated: Preliminaries

Douglas lemma: Given $A \in \mathcal{L}\left(\mathcal{X}_{2}, \mathcal{X}_{3}\right), B \in \mathcal{L}\left(\mathcal{X}_{1}, \mathcal{X}_{3}\right) \exists$
$X \in \mathcal{L}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$ s.t. $\|X\| \leq 1$ and $A X=B$
$\Leftrightarrow B B^{*} \preceq A A^{*} \Leftrightarrow\left[\begin{array}{cc}I_{\mathcal{X}_{2}} & B^{*} \\ B & A A^{*}\end{array}\right] \succeq 0$
Variant of Douglas lemma: Given $A \in \mathcal{L}\left(\mathcal{X}_{2}, \mathcal{X}_{3}\right), B \in \mathcal{L}\left(\mathcal{X}_{1}, \mathcal{X}_{3}\right)$, $X \in \mathcal{L}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)$, then $\|X\| \leq 1$ and $A X=B \Leftrightarrow$
$M:=\left[\begin{array}{ccc}\mathcal{X}_{1} & B^{*} & X^{*} \\ B & A A^{*} & A \\ X & A^{*} & I_{\mathcal{X}_{2}}\end{array}\right] \succeq 0 \quad$ on $\left[\begin{array}{l}\mathcal{X}_{1} \\ \mathcal{X}_{3} \\ \mathcal{X}_{2}\end{array}\right]$
Proof: Note by Schur-complement analysis $M \succeq 0 \Leftrightarrow$
$\left[\begin{array}{cc}I_{\mathcal{X}_{1}} & B^{*} \\ B & A A^{*}\end{array}\right]-\left[\begin{array}{c}X^{*} \\ A\end{array}\right]\left[\begin{array}{ll}x & A^{*}\end{array}\right]=\left[\begin{array}{cc}I_{\mathcal{X}_{1}}-X^{*} X & B^{*}-X^{*} A^{*} \\ B-A X & 0\end{array}\right] \succeq 0 \Leftrightarrow$
$\|X\| \leq 1$ and $B=A X$
ASIDE: Thus original Douglas lemma is a matrix-completion problem: Given A, B, find X so that $M \succeq 0$
Many papers on this from the 1980s

Preliminaries: de Branges-Rovnyak spaces

Given a Schur-class function $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$:

- The associated de Branges-Rovnyak kernel is
$K_{S}(z, \zeta)=\frac{1 y-S(z) S(\zeta)^{*}}{1-z \bar{\zeta}}$
with associated de Branges-Rovnyak space $=\mathcal{H}\left(K_{S}\right)$ (RKHS with reproducing kernel K_{S})
- In operator-theory form $\mathcal{H}\left(K_{S}\right) \underset{\text { isometrically }}{=} \operatorname{Ran}\left(I-M_{S} M_{S}^{*}\right)^{\frac{1}{2}}$ with lifted norm, where $M_{S} \in \mathcal{L}\left(H_{\mathcal{U}}^{2}, H_{y}^{2}\right)$ is the multiplication operator $M_{S}: f(z) \mapsto S(z) f(z)$

A positive-kernel reformulation of the LTOA int-problem

Given an admissible LTOA int-problem data set (T, E, N) (so (E, T) output-stable), and given $S \in \operatorname{Hol}_{\mathbb{D}}(\mathcal{L}(\mathcal{U}, \mathcal{Y})$, set $F^{S}=\mathcal{O}_{E, T}-M_{S} \mathcal{O}_{N, T} \in \mathcal{L}\left(X, H_{y}^{2}\right)$, TFAE:

1. S solves the LTOA int-problem with data set $\mathcal{D}=(T, E, N)$
2. $\mathbf{P}:=\left[\begin{array}{cc}P & \left(F^{S}\right)^{*} \\ F^{S} & I-M_{S} M_{S}^{*}\end{array}\right]:\left[\begin{array}{c}\mathcal{X} \\ H_{y}^{2}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{X} \\ H_{y}^{2}\end{array}\right]$ satisfies $\mathbf{P} \succeq 0$
3. $\mathbf{K}(z, \zeta)=\left[\begin{array}{cc}P & \left(I-\bar{\zeta} T^{*}\right)^{-1}\left(E^{*}-N^{*} S(\zeta)^{*}\right) \\ (E-S(z) N)(I-z T)^{-1} & \frac{\mid y-S(z) S(\zeta)^{*}}{1-z \bar{\zeta}}\end{array}\right]$ is a positive kernel
4. $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y}), \quad F^{S} x \in \mathcal{H}\left(K_{S}\right)$ with $\left\|F^{S} x\right\|_{\mathcal{H}\left(K_{S}\right)} \leq\left\|P^{\frac{1}{2}} x\right\| \mathcal{X} \forall$ $x \in \mathcal{X}$
5. $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y}), F^{S} x \in \mathcal{H}\left(K_{S}\right)$ with $\left\|F^{S} x\right\|_{\mathcal{H}\left(K_{S}\right)}=\left\|P^{\frac{1}{2}} x\right\|$ $\forall x \in \mathcal{X}$
(2) $\Leftrightarrow(3)$

Recall:
(2) $\mathbf{P}:=\left[\begin{array}{cc}P & \left(F^{S}\right)^{*} \\ F^{S} I-M_{S} M_{S}^{*}\end{array}\right]:\left[\begin{array}{c}\mathcal{X} \\ H_{y}^{2}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{X} \\ H_{y}^{2}\end{array}\right]$ satisfies $\mathbf{P} \succeq 0$
(3) $\mathbf{K}(z, \zeta)=\left[\begin{array}{cc}P & \left(I-\bar{\zeta} T^{*}\right)^{-1}\left(E^{*}-N^{*} S(\zeta)^{*}\right) \\ (E-S(z) N)(I-z T)^{-1} & \frac{\mid y-S(z) S(\zeta)^{*}}{1-\bar{\zeta} \bar{\zeta}}\end{array}\right]$ is a positive kernel
Proof: Note that
$\langle\mathbf{P} f, f\rangle_{\mathcal{X} \oplus H_{\mathcal{y}}^{2}}=\sum_{j, \ell=1}^{r}\left\langle\mathbf{K}\left(z_{j}, z_{\ell}\right)\left[\begin{array}{l}x_{\ell} \\ y_{\ell}\end{array}\right],\left[\begin{array}{l}x_{j} \\ y_{j}\end{array}\right]\right\rangle_{\mathcal{X} \oplus \mathcal{Y}}$
where $f \in \mathcal{X} \oplus H_{\mathcal{Y}}^{2}$ is of the form $f=\sum_{j=1}^{r}\left[\begin{array}{c}x_{j} \\ k_{\mathrm{Sz}}\left(\cdot, z_{j}\right) y_{j}\end{array}\right]$

$(1) \Rightarrow(5)$

(1) $\Rightarrow(5)$

Recall
(1) S solves the LTOA int-problem with data set $\mathcal{D}=(T, E, N)$
(5) $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y}), F^{S} x \in \mathcal{H}\left(K_{S}\right)$ and $\left\|F^{S} x\right\|_{\mathcal{H}\left(K_{s}\right)}=\| P^{\frac{1}{2}}$

Note that
$F^{S}=\mathcal{O}_{E, T}-M_{S} \mathcal{O}_{N, T}=\mathcal{O}_{E, T}-M_{S} M_{S}^{*} \mathcal{O}_{E, T}=\left(I-M_{S} M_{S}^{*}\right) \mathcal{O}_{E, T}$
$\Rightarrow\left\|F^{S} \times\right\|_{\mathcal{H}\left(K_{S}\right)}^{2}=\left\langle\left(I-M_{S} M_{S}^{*}\right) \mathcal{O}_{E, T X}, \mathcal{O}_{E, T X}\right\rangle_{H_{Y}^{2}}$
$\left.=\left\langle\mathcal{O}_{E, T}^{*} \mathcal{O}_{E, T}-\mathcal{O}_{N, T}^{*} \mathcal{O}_{N, T}\right) \times, x\right\rangle_{\mathcal{X}}=\langle P \times, x\rangle_{\mathcal{X}}=\left\|P^{\frac{1}{2}} \times\right\|_{\mathcal{X}}^{2}$

$(4) \Leftrightarrow(2)$

(4) $\Leftrightarrow(2)$

Recall:
(2) $\mathbf{P}:=\left[\begin{array}{cc}P & \left(F^{S}\right)^{*} \\ F^{S} & I-M_{S} M_{S}^{*}\end{array}\right]:\left[\begin{array}{c}\mathcal{X} \\ H_{y}^{2}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{X} \\ H_{y}^{2}\end{array}\right]$ satisfies $\mathbf{P} \succeq 0$
(4) $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y}), \quad F^{S} x \in \mathcal{H}\left(K_{S}\right)$ with $\left\|F^{S} x\right\|_{\mathcal{H}\left(K_{S}\right)} \leq\left\|P^{\frac{1}{2}} x\right\|_{\mathcal{X}} \forall$ $x \in \mathcal{X}$
Proof: Slightly finer Schur-complement argument

$(2) \Leftrightarrow(1)$

(2) \Leftrightarrow (1):

Recall:
(1) S solves the LTOA int-problem with data set $\mathcal{D}=(T, E, N)$
(2) $\mathbf{P}:=\left[\begin{array}{cc}P & \left(F^{S}\right)^{*} \\ F^{S} I-M_{S} M_{S}^{*}\end{array}\right]:\left[\begin{array}{c}\mathcal{X} \\ H_{y}^{2}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{X} \\ H_{y}^{2}\end{array}\right]$ satisfies $\mathbf{P} \succeq 0$

Proof:
Suppose $\mathbf{P} \succeq 0 \Rightarrow I-M_{S} M_{S}^{*} \succeq 0$, i.e., $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$
From the definitions $\mathbf{P}=\left[\begin{array}{cc}\mathcal{O}_{E, T}^{*} \mathcal{O}_{E, T}-\mathcal{O}_{N, T}^{*} \mathcal{O}_{N, T} & \mathcal{O}_{E T}^{*}-\mathcal{O}_{N, T}^{*} M_{S}^{*} \\ \mathcal{O}_{E, T}-M_{S} \mathcal{O}_{N, T} & I-M_{S} M_{S}^{*}\end{array}\right] \succeq 0$
By a Schur-complement argument
$\Leftrightarrow \widehat{\mathbf{P}}:=\left[\begin{array}{ccc}I_{H_{2}^{2}} & \mathcal{O}_{N, T} & M_{S}^{*} \\ \mathcal{O}_{N, T}^{*} & \mathcal{O}_{E, T}^{*} \mathcal{O}_{E, T} & \mathcal{O}_{E, T}^{*} \\ M_{S} & \mathcal{O}_{E, T} & I_{H_{y}^{2}}\end{array}\right] \succeq 0$
Now Douglas-lemma variant $\Rightarrow\left\|M_{S}\right\| \leq 1$ (as already known) and $\mathcal{O}_{N, T}=M_{S}^{*} \mathcal{O}_{E, T}$, i.e.,
S solves LTOAint-problem and (2) $\Rightarrow(1)$.
$(1) \Rightarrow(2):$ The steps are reversible.

Conclusions

Note: Reliance on Krein-space geometry (difficult to interpret when strong stability assumption is not present) is eliminated; Instead all the analysis is manipulation of positive kernels

Conclusions 2

Formulation of $\operatorname{LTOA}(T, E, N)$ int-problem appears to require that $\mathcal{O}_{E, T}$ and $\mathcal{O}_{N, T}$ be bounded (in $\mathcal{L}\left(\mathcal{X}, H_{\mathcal{Y}}^{2}\right)$ and $\mathcal{L}\left(\mathcal{X}, H_{\mathcal{U}}^{2}\right)$ respectively)
However (2),(3),(4) in positive-kernel reformulation theorem make sense if

- we take P equal to any positive-semidefinite operator on \mathcal{X}, and
- Assume that $\mathcal{O}_{\left[\begin{array}{l}E \\ N\end{array}\right], T}: x \mapsto\left[\begin{array}{l}E \\ N\end{array}\right](I-z T)^{-1}$ maps \mathcal{X} into $\operatorname{Hol}_{\mathcal{Y} \oplus \mathcal{U}}(\mathbb{D})$ (holomorphic functions on \mathbb{D} with values in $\mathcal{Y} \oplus \mathcal{U})$
Furthermore, we still have $(2) \Leftrightarrow(3) \Leftrightarrow(4)$ if we also assume $P \succeq 0$ solves $P-T^{*} P T=C^{*} J C$, where $C=\left[\begin{array}{c}E \\ N\end{array}\right]$
(If T strongly stable, $P=\mathcal{O}_{E, T}^{*} \mathcal{O}_{E, T}-\mathcal{O}_{N, T}^{*} \mathcal{O}_{N, T}$ is the unique solution)

The aIP

This suggests: Assume that (T, E, N, P) is admissible data set for aAIP:

- $\mathcal{O}_{\left[\begin{array}{l}E \\ N\end{array}\right], T}: \mathcal{X} \rightarrow \operatorname{Hol}_{\mathcal{Y} \oplus \mathcal{U}}(\mathbb{D}$
- $P \succeq 0$ satisfies $P-T^{*} P T=C^{*} J C$, where $C=\left[\begin{array}{c}E \\ N\end{array}\right]$

Then we can take any of (2), (3), (4) as the definition of a more general problem: we shall take (4) as the Definition.

The analytic Abstract Interpolation Problem

Analytic Abstract Interpolation Problem aAIP (T, E, N, P)
Given $\mathcal{D}=(T, E, N, P)$ with $T \in \mathcal{L}(\mathcal{X}),\left[\begin{array}{l}E \\ N\end{array}\right] \in \mathcal{L}(\mathcal{X}, \mathcal{Y} \oplus \mathcal{U})$,
$\mathcal{O}_{\left[{ }_{N}^{E}\right], T}: \mathcal{X} \rightarrow \operatorname{Hol}_{\mathcal{Y} \oplus \mathcal{U}}(\mathbb{D})$, find all $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$ so that
(4) $F^{S}:=\mathcal{O}_{E, T}-M_{S} \mathcal{O}_{N, T}: \mathcal{X} \rightarrow \mathcal{H}\left(K_{S}\right)$ with $\left\|F^{S} X\right\| \leq\left\|P^{\frac{1}{2}} \times\right\|$

Theorem on solution of aAIP (T, E, N, P) :
Given aAIP admissible data set T, E, N, P, TFAE:
(4) S is a solution of the $\operatorname{aIP}(E, N, T, P)$
(2) $\mathbf{P}=\left[\begin{array}{cc}P & \left(F^{S}\right)^{*} \\ F^{S} I-M_{S} M_{S}^{*}\end{array}\right] \succeq 0$
(3) $\mathbf{K}(z, \zeta)=\left[\begin{array}{cc}P & \left(I-\bar{\zeta} T^{*}\right)^{-1}\left(E^{*}-N^{*} S(\zeta)^{*}\right) \\ (E-S(z) N)(I-z T)^{-1} & \frac{1 y-S(2) S(\zeta)}{1-2 \bar{\zeta}}\end{array}\right]$ is a positive kernel

LFT parametrization of solution set

Furthermore, if $P \succ 0$ and if Θ is constructed as above, then any solution S has the form
$S(z)=\left(\Theta_{11}(z) \mathcal{E}(z)+\Theta_{12}(z)\right)\left(\Theta_{21}(z) \mathcal{E}(z)+\Theta_{22}(z)\right)^{-1}$ for $\mathcal{E} \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$
Smooth proof starting with (4) instead of old (1): By formulation (4) of a solution (now the definition of a solution), S solves \Leftrightarrow $(*) F^{S}:=\left[1-M_{S}\right]\left[\begin{array}{l}\mathcal{O}_{E, T} \\ \mathcal{O}_{N, T}\end{array}\right]$ maps \mathcal{X}^{P} contractively into $\mathcal{H}\left(K_{S}\right)$. But by general RKHS results,
$\mathcal{O}_{[\underset{N}{E}], T}: \mathcal{X}^{P} \underset{\text { isom. }}{\rightarrow} \mathcal{H}\left(K_{[\underset{N}{P}], T}^{E}\right)=\mathcal{H}\left(K_{\Theta}^{J, J}\right)$.
$K_{\left[\begin{array}{l}E \\ N\end{array}\right], T}^{P}(z, \zeta):=\mathcal{O}_{\left[\begin{array}{l}E \\ N\end{array}\right], T}(z) P^{-1} \mathcal{O}_{\left[\begin{array}{l}E \\ N\end{array}\right], T}(\zeta)^{*}$ while
$K_{\Theta}^{J, J}(z, \zeta)=\frac{J-\Theta(a) J \Theta(\zeta)^{*}}{1-z \bar{\zeta}}$
Now use a (not hard) general result that says property ($*$) characterizes $S \in \operatorname{Ran} T_{\Theta} \Rightarrow$ done

Boundary Nevanlinna-Pick interpolation

More general application: boundary Nevanlinna-Pick interpolation with bounds on angular derivatives
P not uniquely determined by the Stein equation; diagonal entries of P provide bounds on angular derivatives at interpolation nodes on the boundary

Parametrization of solution set in case only $P \succeq 0$

Suppose only $P \succeq 0$. Set $\mathcal{X}^{P}=$ Hilbert space associated with P (completion of equivalence classes in $\mathcal{X} / \mathrm{KerP}$)
Notational sloppiness: $\mathcal{X}=\mathcal{X}^{P}$
In particular P is well defined on \mathcal{X}^{P}
We assume: $\quad P-T^{*} P T=E^{*} E-N^{*} N(*)$
Then we define an isometry $\mathbf{V}: \mathcal{D}_{\mathbf{V}} \rightarrow \mathcal{R}_{\mathbf{V}}$ where
$\mathcal{D}_{\mathbf{V}}=\overline{\operatorname{Ran}}\left[\begin{array}{c}\mathcal{X} \\ N\end{array}\right] \subset\left[\begin{array}{l}\mathcal{X} \\ \mathcal{U}\end{array}\right], \mathcal{R}_{\mathbf{V}}=\overline{\operatorname{Ran}}\left[\begin{array}{c}T \\ E\end{array}\right] \subset\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right]$ by
$\mathbf{V}:\left[\begin{array}{l}I \\ N\end{array}\right] x \mapsto\left[\begin{array}{c}T \\ E\end{array}\right] x$ for all $x \in \mathcal{X}$
Note that $(*) \Rightarrow \mathbf{V}: \mathcal{D}_{\mathbf{V}} \rightarrow \mathcal{R}_{\mathbf{V}}$ is an isometry
(with \mathcal{X} equipped with the P metric)
\mathbf{V} is the lurking isometry for this problem!

Alternative characterization of solutions of aAIP

We say that a system matrix $\mathbf{U}:\left[\begin{array}{l}\mathcal{H} \\ \mathcal{U}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{H} \\ \mathcal{Y}\end{array}\right]$ is a minimal unitary-system-matrix extension of \mathbf{V} if
(1) \mathcal{X} is a subspace of \mathcal{H},
(2) $\left.\mathbf{U}\right|_{\mathcal{D}_{\mathbf{V}}}=\mathbf{V}: \mathcal{D}_{\mathbf{V}} \rightarrow \mathcal{R}_{\mathbf{V}}$
(3) $\mathcal{X} \subset \mathcal{N} \subset \mathcal{H}, \mathcal{N}$ reducing for $\mathbf{U} \Rightarrow \mathcal{N}=\mathcal{H}$

Theorem: characterization of solutions of aAIP
S solves aAIP with admissible data set $\mathcal{D}=(T, E, N, P) \Leftrightarrow S$ has the form
$S(z)=D+z C(I-z A)^{-1} B$ where $\mathbf{U}=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathcal{H} \\ \mathcal{U}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{H} \\ \mathcal{Y}\end{array}\right]$ is a minimal unitary system-matrix extension of the partially defined isometry \mathbf{V} constructed from \mathcal{D} as above.
In this case the associated map $F^{S}=\left[I-M_{S}\right]\left[\begin{array}{l}\mathcal{O}_{E, T} \\ \mathcal{O}_{N, T}\end{array}\right]$ given by $F^{S}(z)=\left.C(I-z A)^{-1}\right|_{\mathcal{X}}: \mathcal{X} \rightarrow \mathcal{H}\left(K_{S}\right)$

Parametrization of solution set for aAIP

Furthermore, minimal unitary system-matrix extensions of \mathbf{V} given by free-parameter closely connected unitary system matrix \mathbf{U}_{1} coupled with a universal unitary system matrix \mathbf{U}_{0} defined as follows:
(1) Universal unitary system matrix determined by \mathbf{V} :

Introduce defect spaces $\Delta=[\underset{\sim}{\mathcal{X}} \underset{\underset{\mathcal{U}}{ }}{]}] \ominus \mathcal{D}_{\mathbf{V}}, \Delta_{*}=\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right] \ominus \mathcal{R}_{\mathbf{V}}$ Let $\widetilde{\Delta}=$ another copy of $\Delta, \widetilde{\Delta}_{*}=$ another copy of Δ_{*} with identificaton maps $\iota: \Delta \rightarrow \widetilde{\Delta}, \iota_{*}: \Delta_{*} \rightarrow \widetilde{\Delta}_{*}$
Define \mathbf{U}_{0} by $\mathbf{U}_{0} x=\left\{\begin{aligned} \mathbf{V} x & \text { if } x \in \mathcal{D}_{\mathbf{V}}, \\ \iota(x) & \text { if } x \in \Delta, \\ \iota_{*}^{-1}(x) & \text { if } x \in \widetilde{\Delta}_{*}\end{aligned}\right.$
Identify $\left[\begin{array}{c}\mathcal{D}_{v} \\ \Delta\end{array}\right]$ with $\left[\begin{array}{l}\mathcal{X} \\ \mathcal{U}\end{array}\right]$ and identify $\left[\begin{array}{c}\mathcal{R}_{v} \\ \Delta_{*}\end{array}\right]$ with $\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right]$
$\Rightarrow \mathbf{U}_{0}$ decomposes as $\mathbf{U}_{0}=\left[\begin{array}{lll}U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & 0\end{array}\right]:\left[\begin{array}{c}\mathcal{X} \\ \mathcal{U} \\ \tilde{\Delta}_{*}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{X} \\ \mathcal{Y} \\ \tilde{\Delta}\end{array}\right]$

Parametrization of the solution set (2)

(2) Free parameter unitary system-matrix: \mathbf{U}_{1} :
$\mathbf{U}_{1}=\left[\begin{array}{cc}A_{1} & B_{1} \\ C_{1} & D_{1}\end{array}\right]:\left[\begin{array}{l}\mathcal{X}_{1} \\ \widetilde{\Delta}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{X}_{1} \\ \widetilde{\Delta}_{*}\end{array}\right]$
(3) The feedback connection of \mathbf{U}_{0} and \mathbf{U}_{1} to get $\mathbf{U}=$ minimal unitary system-matrix extention of \mathbf{V}_{0} :
$\mathbf{U}:\left[\begin{array}{c}x \\ x_{1} \\ u\end{array}\right] \rightarrow\left[\begin{array}{c}\widetilde{x}_{1} \\ \widetilde{x}_{1} \\ y\end{array}\right] \Leftrightarrow \exists \widetilde{\delta} \in \widetilde{\Delta}, \widetilde{\delta}_{*} \in \widetilde{\Delta}_{*}$ s.t.
$\mathbf{U}_{0}:\left[\begin{array}{c}x \\ \tilde{\delta}_{*}\end{array}\right] \mapsto\left[\begin{array}{c}\widetilde{x} \\ y \\ \tilde{\delta}\end{array}\right]$ and $\mathbf{U}_{1}:\left[\begin{array}{c}x_{1} \\ \tilde{\delta}\end{array}\right] \mapsto\left[\begin{array}{c}x_{1} \\ \tilde{\delta}_{*}\end{array}\right]$
Since $U_{33}=0$ we can solve explicitly:
$\mathbf{U}=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]=\left[\begin{array}{cc}{\left[\begin{array}{cc}U_{11}+U_{12} D_{1} U_{31} & U_{13} C_{1} \\ B_{1} U_{31} & A_{1} \\ U_{21}+U_{23} D_{1} U_{31} & U_{23} C_{1}\end{array}\right]} & \left.\begin{array}{c}U_{12}+U 13 D_{1} U_{32} \\ B_{1} U_{32} \\ U_{22}+U_{23} D_{1} U_{32}\end{array}\right]\end{array}\right]$
Now we want the transfer function $T_{\Sigma_{U}}(z)$

Parametrization of the solution set (3)

Write $T_{\Sigma_{U_{0}}}(z)=\left[\begin{array}{cc}U_{22} & U_{23} \\ U_{32} & 0\end{array}\right]+z\left[\begin{array}{l}U_{21} \\ U_{31}\end{array}\right]\left(I-z U_{11}\right)^{-1}\left[\begin{array}{ll}U_{12} & U_{13}\end{array}\right]$
$=:\left[\begin{array}{ll}\Sigma_{11}(z) & \Sigma_{12}(z) \\ \Sigma_{21}(z) & \Sigma_{22}(z)\end{array}\right]$
Write $\mathcal{R}_{\Sigma}[\mathcal{W}]=\Sigma_{11}(z)+\Sigma_{12}(z) \mathcal{W}(z)\left(I-\Sigma_{22}(z) \mathcal{W}(z)\right)^{-1} \Sigma_{21}(z)$
(Redheffer LFT)
$\Sigma(z) \in \mathcal{S}(\mathcal{Y} \oplus \mathcal{U}, \mathcal{Y} \oplus \mathcal{U})$ and $\Sigma_{22}(0)=0 \Rightarrow \mathcal{R}_{\Sigma}[\mathcal{W}] \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$
well-defined whenever $\mathcal{W} \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$
Calculus of realizations and feedback connections:
$T_{\mathbf{U}}(z)=\mathcal{R}_{\mathbf{U}_{0}}\left[T_{\mathbf{U}_{1}}(z)\right]$ if $\mathbf{U}=\mathbf{U}_{0} \underset{\mathrm{FB}}{*} \mathbf{U}_{1}$
Set $\mathcal{W}=T_{\mathbf{U}_{1}}=$ free parameter sweeping $\mathcal{S}\left(\widetilde{\Delta}, \widetilde{\Delta}_{*}\right)$
Conclusion: The set of all solutions of $\operatorname{aAIP}(T, E, N, P)$ is given by $\underset{\sim}{S}(z)=\mathcal{R}_{\Sigma}(z)[\mathcal{W}(z)]$ where the free parameter $\mathcal{W}(z)$ sweeps $\mathcal{S}\left(\widetilde{\Delta}, \Delta_{*}\right)$

Part 2: Interpolation problems for functions in vector-valued de Branges-Rovnyak spaces

The $\mathrm{AIP}_{\mathcal{H}\left(K_{s}\right)}$ problem

- $S \in \mathcal{L}(\mathcal{U}, \mathcal{Y}), \mathrm{x} \in \mathcal{X}$
- $T \in \mathcal{L}(\mathcal{X}), E \in \mathcal{L}(\mathcal{X}, \mathcal{Y}), N \in Ł(\mathcal{X}, \mathcal{U})$ s.t. $\mathcal{O}_{E, T}: \mathcal{X} \rightarrow \operatorname{Hol}_{\mathcal{L}(\mathcal{X}, \mathcal{Y}}(\mathbb{D}), \mathcal{O}_{N, T}: \mathcal{X} \rightarrow \operatorname{Hol}_{\mathcal{L}(\mathcal{X}, \mathcal{U}}(\mathbb{D})$
- $M_{F} s:=\mathcal{O}_{E, T}-M_{S} \mathcal{O}_{N, T}: \mathcal{X} \rightarrow \mathcal{H}\left(K_{S}\right)$ where $F^{S}(z)=E(I-z T)^{-1}-S(z) N(I-z T)^{-1}$
- $P=M_{F S}^{[*]} M_{F^{s}}$ satisfies $P-T^{*} P T=E^{*} E-N^{*} N$ where [*] is adjoint w.r.t. $\mathcal{H}\left(K_{S}\right)$ norm
In case (E, T) is output-stable and $\mathcal{O}_{E, T}^{*} M_{S}=\mathcal{O}_{N, T}^{*}$, then $M_{F S}^{[*]} M_{F}=\mathcal{O}_{E, T}^{*} \mathcal{O}_{E, T}-\mathcal{O}_{N, T}^{*} \mathcal{O}_{N, T}=P$ as before The $\operatorname{AIP}_{\mathcal{H}\left(K_{S}\right)}$ interpolation problem: Find all $f \in \mathcal{H}\left(K_{S}\right)$ s.t. $M_{F S}^{[*]} f=\mathbf{x}$ and $\|f\|_{\mathcal{H}\left(K_{S}\right)} \leq 1$

Connection with interpolation

If (E, T) is output-stable and we define N by $N^{*}=\mathcal{O}_{E, T}^{*} M_{S} \mid \mathcal{U}$, then we have seen that
$\mathcal{O}_{N, T}^{*}=\mathcal{O}_{E, T}^{*} M_{S}: \mathcal{H}_{\mathcal{U}}^{2} \rightarrow \mathcal{X}$, or $\mathcal{O}_{N, T}=M_{S}^{*} \mathcal{O}_{E, T}$
and then $M_{F}=\mathcal{O}_{E, T}-M_{S} \mathcal{O}_{N, T}=\left(I-M_{S} M_{S}^{*}\right) \mathcal{O}_{E, T}$ from which it follows that
$M_{F}^{[*]}=\left.\mathcal{O}_{E, T}^{*}\right|_{\mathcal{H}\left(K_{S}\right)} \Rightarrow M_{F}^{[*]} f=\mathbf{x}$ amounts to imposing LTOA interpolation conditions on $f \in \mathcal{H}\left(K_{S}\right)$ with a norm constraint: $\|f\|_{\mathcal{H}\left(K_{s}\right)} \leq 1$

Solution criterion for AIP $_{\mathcal{H}\left(K_{s}\right)}$

$\operatorname{AlP}_{\mathcal{H}\left(K_{S}\right)}: \quad$ Find $f \in \mathcal{H}\left(K_{S}\right)$ s.t. $M_{F S}^{[*]} f=\mathbf{x}$ and $\|f\|_{\mathcal{H}\left(K_{S}\right)} \leq 1$ Identify f with $M_{f}: \mathbb{C} \rightarrow \mathcal{H}\left(K_{S}\right)$;
Conversely any operator $X \in \mathcal{L}\left(\mathbb{C}, \mathcal{H}\left(K_{S}\right)\right)$ has the form $X=M_{f}$ for $f \in \mathcal{H}\left(K_{S}\right)$
AIP $_{\mathcal{H}\left(K_{S}\right)}$-problem is: solve the operator equation $M_{F S}^{[*]} M_{f}=\mathbf{x}$ for M_{f} with $\left\|M_{f}\right\| \leq 1$
By the Douglas lemma, this is possible $\Leftrightarrow \mathbf{x x}^{*} \preceq \mathbf{P}:=M_{F S}^{[*]} M_{F} s$

Characterization of solutions of AIP $_{\mathcal{H}\left(K_{s}\right)}$-problem

Application of the Douglas-lemma variant gives the following theorem (no use of Stein equation yet):

Theorem: characterization of solutions of AIP $_{\mathcal{H}\left(K_{S}\right)}$-problem
Given an admissible $\operatorname{AIP}_{\mathcal{H}\left(K_{S}\right)}$ data set $\mathcal{D}=(T, E, N, S, \mathbf{x})$ together with a prospective solution $f \in \mathcal{H}\left(K_{S}\right)$, we set $\mathbf{P}=M_{F S}^{[*]} M_{F^{s}}$. Then TFAE:
(1) f soves the $\operatorname{AIP}_{\mathcal{H}\left(K_{S}\right)}$-problem
(2) $\mathbf{K}(z, \zeta)=\left[\begin{array}{ccc}1 & \mathbf{x}^{*} & f(\zeta)^{*} \\ \mathbf{x} & P & F^{S}(\zeta)^{*} \\ f(z) & F^{S}(z) & K_{S}(z, \zeta)\end{array}\right]$ is a positive kernel on \mathbb{D}
(3) $\widehat{\mathbf{P}}:=\left[\begin{array}{ccc}1 & \mathrm{x}^{*} & M_{f}^{[*]} \\ \mathrm{x} & P & M_{F S}^{* *]} \\ M_{F} & M_{F} S & I_{\mathcal{H}\left(K_{S}\right)}\end{array}\right] \succeq 0$

${\text { Connection with } \operatorname{aAIP}_{\mathcal{S}(u, y)} \text {-problem }}^{\text {and }}$

Given a $\operatorname{AIP}_{\mathcal{H}\left(K_{S}\right)}$ data set $(T, E, N, S, P, \mathbf{x})$ with $N^{*}=\mathcal{O}_{E, T}^{*} M_{S} \mid \mathcal{U}$ then (T, E, N, P) is a aAIP-data set and we can consider the aAIP-problem for this data set and there is a Redheffer LFT parametrization for the set of all solutions:
$\mathcal{W} \in \mathcal{S}\left(\widetilde{\Delta}, \widetilde{\Delta}_{*}\right) \mapsto \mathcal{R}_{\Sigma}(z)[\mathcal{W}(z)]$
Set $G(z)=\Sigma_{12}(z)\left(I-\mathcal{E}(z) \Sigma_{22}(z)\right)^{-1}$,
$\left.\Gamma(z)=U_{21}+G(z) \mathcal{E}(z) U_{31}\right)\left(I-z U_{11}\right)^{-1}$
Then one can use all this to parametrize solutions of $\operatorname{AIP}_{\mathcal{H}\left(K_{S}\right)}$:

- f solves $\operatorname{AIP}_{\mathcal{H}\left(K_{s}\right) \text {-problem } \Leftrightarrow f \text { has the form }}$

$$
\begin{aligned}
& f(z)=\Gamma(z) \widetilde{\mathbf{x}}+G(z) h(z) \\
& \text { where } \mathbf{x}=P^{\frac{1}{2}} \widetilde{\mathbf{x}} \text { and } h \in \\
& \|h\|_{\mathcal{H}\left(K_{S}\right)} \leq \sqrt{1-\|\widetilde{\mathbf{x}}\|^{2}}
\end{aligned}
$$

$$
\text { where } \mathbf{x}=P^{\frac{1}{2}} \widetilde{\mathbf{x}} \text { and } h \in \mathcal{H}\left(K_{S}\right) \text { subject to }
$$

Parametrizatoin continued

- In this case
$\|f\|_{\mathcal{H}\left(K_{S}\right)}^{2}=\left\|M_{\Gamma} \widetilde{\widetilde{x}}\right\|^{2}+\left\|M_{G} h\right\|^{2}=\|\widetilde{\mathbf{x}}\|^{2}+\left\|P_{\mathcal{H}\left(K_{\mathcal{E}}\right) \ominus \operatorname{Ker} M_{G}} h\right\|^{2}$ and $f_{\min }(z)=\Gamma(z) \widetilde{\mathbf{x}}$
- The problem $\operatorname{AIP}_{\mathcal{H}\left(K_{S}\right)}$ admits a unique solution $\Leftrightarrow\|\widetilde{\mathbf{x}}\|=1$ or $\overline{\operatorname{Ran}} M_{F}^{S}=\mathcal{H}\left(K_{S}\right)$

Part 3: Applications

Given inner S, B, M_{S} is an isometry in $\mathcal{L}\left(H_{\mathcal{U}}^{2}, H_{\mathcal{Y}}^{2}\right), M_{S} H_{\mathcal{U}}^{2}=$ the form for a general M_{z} invariant subspace of $H_{\mathcal{Y}}^{2}$ (Beurling-Lax) Set $\mathcal{K}_{S}=H_{\mathcal{Y}}^{2} \ominus M_{S} H_{\mathcal{U}}^{2} \quad$ (the model space)
Let $B \in \mathcal{S}(\mathcal{W}, \mathcal{Y})$ be another inner funtion
Characterizations of intersections $M_{S} H_{\mathcal{U}}^{2} \cap M_{B} H_{\mathcal{W}}^{2}$ and $\mathcal{K}_{S} \cap \mathcal{K}_{B}$ well known.
Of interest here: $M_{S, B}=\mathcal{K}_{S} \cap M_{B} H_{\mathcal{W}}^{2}$

The space $\mathcal{M}_{S, B}=\mathcal{K}_{S} \cap M_{B} H_{W}^{2}$

Introduce $T \in \mathcal{L}\left(\mathcal{K}_{B}\right), E \in \mathcal{L}\left(\mathcal{K}_{B}, \mathcal{Y}\right), N \in \mathcal{L}\left(\mathcal{K}_{B}, \mathcal{U}\right)$ by

- $T: h(z) \mapsto \frac{h(z)-h(0)}{z} \quad$ (strongly stable),
- $E: h \mapsto h(0)((E, T)$ output-stable)
- $N: h(z)=\sum_{j=0}^{\infty} h_{j} z^{j} \mapsto \sum_{j \geq 0} S_{j}^{*} h_{j}$ where $S(z)=\sum_{j \geq 0} S_{j} z^{j}$ so $N=\left.\mathcal{O}_{E, T}^{*} M_{S}\right|_{U}$
$\Rightarrow \mathcal{D}=\{S, E, N, T, \mathbf{x}=0\}$ is $\operatorname{AIP}_{\mathcal{H}\left(K_{S}\right)}$ is admissible
and $M_{F S}^{[*]}=\left.\mathcal{O}_{E, T}^{*}\right|_{\mathcal{H}\left(K_{S}\right)}$
In this case $\left.\mathcal{O}_{E, T} h\right)(z)=\sum_{j \geq 0}\left(E T^{j} h\right) z^{j}=\sum_{j \geq 0} h_{j} z^{j}=h(z)$ i.e., $\mathcal{O}_{E, T}$ is the inclusion map $\iota: \mathcal{K}_{B} \rightarrow H_{Y}^{2}$ and ι^{*} is the projection $\iota^{*}=P_{\mathcal{K}(B)}: H_{\mathcal{Y}}^{2} \rightarrow \mathcal{K}(B)$

The space $\mathcal{M}_{S, B}=\mathcal{K}_{S} \cap M_{B} H_{\mathcal{W}}^{2}$ continued

Thus for $f \in H_{\mathcal{Y}}^{2}$ we have $\mathcal{O}_{E, T}^{*} f=0 \Leftrightarrow f \in H_{\mathcal{Y}}^{2} \ominus \mathcal{K}_{B}=M_{B} H_{\mathcal{W}}^{2}$ and $P:=M_{F S}^{[*]} M_{F^{s}}=\mathcal{O}_{e, T}^{*} \mathcal{O}_{E, T}-\mathcal{O}_{N, T}^{*} \mathcal{O}_{N, T}$ amounts to $P=I_{\mathcal{K}_{B}}-\left.P_{\mathcal{K}_{B}} M_{S} M_{S}^{*}\right|_{\mathcal{K}_{B}}$
Theorem
Given inner $S \in \mathcal{S}(\mathcal{U}, \mathcal{Y})$ and $B \in \mathcal{S}(\mathcal{W}, \mathcal{Y})$, let $\Sigma=\left[\begin{array}{cc}\Sigma_{11} \\ \Sigma_{21} & \Sigma_{22} \\ \Sigma_{22}\end{array}\right]$ come from the associate aAIP ${ }_{\mathcal{S}(\mathcal{U}, \mathcal{Y})}$ with admissible data set (P, T, E, N) as above. Then the space $\mathcal{M}_{S, B}$ is given explicitly as $\mathcal{M}_{S, B}=G \cdot \mathcal{H}\left(K_{\mathcal{E}}\right)$ where $\mathcal{E}=$ unique function in $\mathcal{S}\left(\widetilde{\Delta}, \widetilde{\Delta}_{*}\right)$ s.t. $S=\mathcal{R}_{\Sigma}[\mathcal{E}]$ and $G(z)=\Sigma_{12}(z)\left(I-\mathcal{E}(z) \Sigma_{22}(z)\right)^{-1}$
Furthermore $M_{G}: \mathcal{H}\left(K_{\mathcal{E}}\right) \rightarrow \mathcal{M}_{S, B}$ is unitary

Connections with parametrizing kernels of Toeplitz operators, ...

Thanks!

REFERENCES:
 Ball-Bolotnikov, IEOT 2008
 Ball-Bolotnikov-ter Horst, IEOT 2011

