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Part 1: Interpolation problems for Schur-class operator-valued
functions

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak



The Schur class

U, Y, X = Hilbert spaces

S(U,Y) = holomorphic functions S on D with values equal to
contraction operators in L(U,))

TFAE:
» SesSU,Y)
» The de Branges-Rovnyak kernel Ks(z,() := y=5@S(E)" g 4

1-z¢
positive kernel on D : z;,...,zy €D, y1,...,yn € Y,

N=1,2... = YN (Ks(zz)y.yi)y >0
» K has a Kolmogorov decomposition: 3 H: D = L(X,))
olo
st. K(z,¢) = H)H(C)"
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The Schur class continued

SeSU,Y) also equivalent to:
» Unitary state-space realization: 3 unitary system matrix
U=[258]: [a]=1[3] st
S(z) =D+ zC(ly — zZA) "B

Control motivation: Linear i/s/o linear system associated with U:
- { x(n+1) = Ax(n)+ Bu(n), x(0)= xo,

U y(n) = Cx(n)+ Du(n)
n € Zy = point in discrete time; above = “time-domain”
equations

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak



Control motivation continued

n

Application of Z-transform {w(n)}p>0 — w(z) 1= > -
converts “time-domain” equations
5y { x(n+1) = Ax(n)+ Bu(n), x(0)= xo,
' y(n) = Cx(n)+ Du(n)
to “freqeuncy-domain” equations
S0 { x(z) = (I —2zA)"tx + z(I — zA)"1Bi(2)
|l Y(2) = Oca(z)xo+Ou(z)u(z)

0 WnZ

where

» Oca(z) = C(lx — zA)™! = the observabiliy operator of the
system Yy, and

» Ou(z) = D+ zC(I — zA)"1B = the transfer function of the
system Xy

Special cases:
»u=0 =y(z) = Oca(z)x & x =0 = y(z) = Oy(z)u(z)
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Control motivation continued I

Recall “frequency-domain” equations:
s X(z) = (I —2zA)"1x+ z(I — zA)"1Bu(=z)
uU-

~

y(z) = Oca(z)xo+ Ou(z)u(z)

» Oc.a(z) = C(lx — zA)™! = the observabiliy operator of the
system >U, and

» Oy(z) = D+ zC(I — zA)"1B = the transfer function of the
system Xy

Furthermore, if U is unitary and A is stable (A"xyp — 0 in
n—o0

norm for each xp € X), then Oc a: X — H3, is isometric, © s
inner (i.e., Mg: HZ — H32, is isometric) and

[(’)C’A M@U] : [ng{] — HJ% is unitary
(so in particular H3, = Ran Oc a @ Mo, Hy;)

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak



Alternative formulas for O¢ a(z) and ©y(z)

Slick formulas at the system-matrix level for Oc a4 and ©y(z):

/
> OQA(Z) = [0 /y] U(/XEBU — ZPX@{O}U)il [g:|,

> Ou(z) = [0 hy] U(lxay — zPxeoU) [ ]

Thus U unitary and A stable =

[Oca Mg] = Mo 1y JU(1-2Preou)—1 : [,_),22{} — HJZ, is unitary
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Interpolation problem for Schur-class functions

Left-tangential Nevanlinna-Pick interpolation problem (LTNP)

Given points zy,...,zy € D and vectors ay,...,ay € Y and
c,...,ecy €U find SeSU,Y) st. arS(z) = ¢ for
i=1,...,N

Motivation: H*°-control (1980s-1990s)
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LTOA point-evaluation and observability operators

Assume (E, T) € L(X,Y) x L(X) is a output-stable pair:

Op1: X = H3 so E(I —zT) 'x =Y 2 ET"xz" € H} V
xeX

Define left-tangential operator-argument point-evaluation

S € H®U,Y) — (E*S)"\H(T*) =300 TE*S, if

5(z) = 2020 Sn2"

Compute for u € U:

(O g TE*Squ, x)x = > o2 oS, ET"X)y = <M5U,OE7TX>H§}
Note: (E, T) output-stable & S € H>®(U,Y) = series converges

Conclude (E*S)(T*) = Of +Mslu
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LTNP vs LTOA interpolation

Example: E* = [ :
=t a aS(z1)
B |
zy

ay
ayS(zn)

*

<1
: ] means a'S(zj)) = ¢’ fori=1,...,N,

*

N

This equal to N* =

i.e.

Conclusion: LTOA point-evaluation interpolation
(E*S)M(T*) = N* or Of tMsy = N*

for this example of (T, E, N) equivalent to

LTNP interpolation conditions a*S(z) =c¢ fori=1,...,N
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Additional information on LTOA data set D = (T, E, N)

Suppose
» (E, T)€e L(X,)) x L(X) output-stable,
» SesSU,Y),
» (E*S)\H(T*) = N* € L(U, X)

Then

» (N, T) also output-stable and Of +Ms = O 1 € L(Hf, X)
= extension of O rMsly = N* € L(U, X))

Thus view LTOA interpolation as an equation in L(H7, X):
O*E,TMS - OT\/,Tv
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Positivity condition for solvability of LTOA(T,E,N)

Suppose LTOA(T,E,N) interpolaton problem has a solution,
now written as O +Ms = O\, for some S € S(U, V)

Then: Op 7Oe1 — O 7On,7 = Of 70,7 — Of 1 MsMsOk 7
= Of (g — MsM5)Og,7 = 0 since S € SU,))

= P:= 0Ot ;O 1 — Op +On, 7 = 0 is a necessary condition for
existence of solutions to LTOA int-problem

Deeper fact: P > 0 also sufficient for existence of solutions to
LTOAint-problem
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Parametrization of solutions to LTOA int-problem

Special case: Assume T is strongly stable (T"x oo for x € X)

n—oo
and P~ 0. Set J= | G |
u
Then there is an explicitly constructible (possibly unbounded) J-

: : _ | ©1 ©12
inner function © = [@21 @22}

(so ©(2)*JO(z) = J, ©(2)JO(2)* = J forae.z€ T
Me‘dom(M@) = J-unitary on Li}éu) so that:

S solves LTOA(T,E,N) & 3 e SU,Y) st
5(2) = (011(2) + ©12(2)(2)) (©21(2) + O2(2)E(2)) "

=:To()[E(2)] (Chain-matrix linear-fractional transformation)
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Construction of ©

The algorithm starting with the data (T, E, N):
Set C=[E]

» Construct a system matrix of the form U = [7C— g} (already

have T and C = [£] , must still solve for B, D so that
Ulrslur =% 8] ur (55 u=[59]
This comes down to finding
B:YeU—-X and D: Y PU — Y S U solving the
Cholesky factorization problem:
[B]Jle o] = [F" §] = [Z] P77 ]

» Then let ©(z) = Oy(z) be the transfer function of the
system Yy: O(z) = D+ zC(l —zT)"'B
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Additional ingredients of the proof

Then also

» Opan,T is isometric from (XF) into H;éu

» Mg is (possibly unbounded) J-unitary operator on Lyeau

> (Mg - {polynomialsin H @M}) —RanOEéN’T

Then one can arrive at the statement S solves LTOA int-problem
& §S=Te(E) forsome £ € S(U,Y) (via either Ball-Helton
Grassmannian approach or Potapov/Dym /Bolotnikov
kernel-function approach) in a straightforward way
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T not strongly stable

Without the strong stability assumption:

— * 2,J
Ran O[E/]’T ot H(O[E],T(Z)P 10[5],T(€) ) Co%tr Hy@N
© not J -inner
H32,’Ju = Ran O[E] + (© - (polynomials)) ~ is a Brangesian
N bl

@ T

J-minimal decomposition and not a J-orthogonal decomposition
= not clear how to proceed

=- motivation for a more flexible reformulation of the LTOA
int-problem (Potapov operator-theory school Kharkiv, Ukraine)
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LTOA int-problem reformulated: Preliminaries

Douglas lemma: Given A € L(A, &3), B € L(X7, A3) 3
X € L(X,X) st. |X]| <1 and AX =B

* * [} B*
o BB* < AA @[Pgw}to

Variant of Douglas lemma: Given A € L(X2, A3), B € L( X1, A3),
X € L(X1,X,), then [X]|<1land AX=B <«
Iy, B* X* X,
M::[B AA* A} =0 on |:X3:|
X A Iy, X
Proof: Note by Schur-complement analysis M > 0 <

I, B* X+ 1 [l —X*X B*X*A*
[:\‘;IAA*}i[A][XA]_[XéfAX 0 =0 &

IIX]| <1 and B = AX

ASIDE: Thus original Douglas lemma is a matrix-completion
problem: Given A, B, find X so that M =0
Many papers on this from the 1980s
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Preliminaries: de Branges-Rovnyak spaces

Given a Schur-class function S € S(U,)):

» The associated de Branges-Rovnyak kernel is

Ks(z,¢) = 71)}_51(,232(0*

with associated de Branges-Rovnyak space = H(Ks)
(RKHS with reproducing kernel Ks)
» In operator-theory form H(Ks) = Ran(/ — Msl\/lg)%

isometrically
with lifted norm, where Ms € L(H3, H}) is the
multiplication operator Ms: f(z) — S(z)f(z)
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itive-kernel reformulation of the LTOA int-problem

A pos

Given an admissible LTOA int-problem data set (7, E, N) (so

(E,

FS
1

N
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T) output-stable), and given S € Holp(L(U,)) , set
= Op,1 — MsOp,1 € L(X,H}) , TFAE:
. S solves the LTOA int-problem with data set D = (T, E, N)
. P (FS)* . X X . g
. P= [FS I—MSI\/I;} . [,_@] — ["@} satisfies P >~ 0
P (I=CT*) " HE"=N*S()*) | .
K(z,¢) = [(E_S(Z)N)(I—ZT)1 b sastar } e

. lsz
positive kernel

L SeSU,Y), FSx e H(Ks) with [|FSx|lz k) < |P2x]lx ¥
xeX

SeSU,Y), FSx € H(Ks) with |[F x|z ke) = |P2x]|

Vx e X



(2) & (3)

(2) = (3)
Recall:
S\ *
(2) P:= [; /,(LS)M;} : [,_)é] — [%} satisfies P > 0
(I=CT*)~YE*=N*S(O)*) | .
(3) K(Za C) = |:(ES(Z)N)(IZT)_1 ’Q*S(Z)E(C)* :| IS a
1—z¢

positive kernel
Proof: Note that
(Pf, f>X@H§, = Z},é:l <K(ZJ>Z£) (3], [yf] >X@y

where f € X & H32, is of the form f = Z;:l [ksZ(ﬁZj)yj]

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak



(1) = (5)

(1) = (5)

Recall
(1) S solves the LTOA int-problem with data set D = (T, E, N)
(5) S € SU,Y), FSx € H(Ks) and ||[F x|l ks) = | P>

Note that
F? = Op 1~ MsOn 1 = O 1 — MsM:Og 1 = (I - MsM%)Og 7

= | FoxIBys) = (1 = MsME)Ok 7x, O, 7x) 1

= (Of 7OE.T — O 70N, T)x, )2 = (Px,x)x = ||P2x]%
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(4) = (2)
Recall:

(2) P:= [;Ifﬁs);ﬂ*} : {,_2,22;] — {,3%}} satisfies P > 0
S

(4) SeSU,Y), FSxeMH(Ks) with |[FSx|lyke) < |P2x]|x ¥
xeX

Proof: Slightly finer Schur-complement argument
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(2) < (1)

(2) = (1):
Recall:
(1) S solves the LTOA int-problem with data set D = (T, E, N)

(2) P:= [;I_(:Z);/I;} : [,fé] — [,_j‘;z}} satisfies P > 0
Proof:

Suppose P =0 = | — MsM¢ =0, ie, SeSU,Y)
OE,TOEJ—_OKI,TOMT OET_OXI,TM; =0
OEnyMsoNYT I*MsM; -
By a Schur-complement argument

~ he  Onr M
< P = OE,T OE,TOEJ— OE,T =0
Ms  Ogt /H§}

From the definitions P = [

Now Douglas-lemma variant = ||[Ms|| <1 (as already known)
and ONJ' = M;OE’T , i.e.,

S solves LTOAint-problem and (2) = (1).

(1) = (2): The steps are reversible.

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak



Conclusions

Note: Reliance on Krein-space geometry (difficult to interpret
when strong stability assumption is not present) is eliminated;
Instead all the analysis is manipulation of positive kernels
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Conclusions 2

Formulation of LTOA(T,E,N) int-problem appears to require that
Og,7 and Oy 7 be bounded (in L£(X, H32,) and L(X, H?)
respectively)

However (2),(3),(4) in positive-kernel reformulation theorem make
sense if

> we take P equal to any positive-semidefinite operator on X,
and

> Assume that (’)[E] X [E](1—2T)™* maps X into
N I
Holyg/(D) (holomorphic functions on D with values in
Yyaou)

Furthermore, we still have (2) < (3) < (4) if we also assume
P >0 solves P— T*PT = C*JC, where C = [E,]

(If T strongly stable, P = Of +Oe, 1 — Oy 7On, 7 is the unique
solution)
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The aAlP

This suggests:  Assume that (T, E, N, P) is admissible data set
for aAlP:
> O E L HOIy@M(D
[T

» P >0 satisfies P— T*PT = C*JC, where C = [m

Then we can take any of (2), (3), (4) as the definition of a more
general problem: we shall take (4) as the Definition.

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak



The analytic Abstract Interpolation Problem

Analytic Abstract Interpolation Problem aAIP(T, E, N, P)
Given D = (T,E,N,P) with T € L(X), [§] € L(X, Y aU),

0[5]7T: X — Holygy(D), find all S € S(U,Y) so that

(4) FS:=Op1 — MsOn1: X — H(Ks) with |FSx| < |Pzx]|

Theorem on solution of aAIP(T, E, N, P):
Given aAlP admissible data set T, E, N, P, TFAE:
(4) S is a solution of the aAIP(E, N, T, P)

@ P=|~ (F)" | =0

FS 1—MsM}
P (I=¢T*)"YE*=N*S(O)*) ] .
(3) K(z¢) = [(E_s(z)N)(l—zT)‘1 b Bl 'S4

positive kernel
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LFT parametrization of solution set

Furthermore, if P = 0 and if © is constructed as above, then any
solution S has the form

S(z) = (©11(2)€(2) + ©12(2))(©21(2)E(2) + O22(2)) "1 for
EesSU,y)

Smooth proof starting with (4) instead of old (1): By formulation
(4) of a solution (now the definition of a solution), S solves <
(x) F° :=[1 -Ms] [gi;] maps X'F contractively into H(Ks) .
But by general RKHS results,

O[E] T:XP.—> H(KP ):H(Ké’J).

N isom. [EI]’T
K[ij(z, ¢) = O{EI}’T(Z)P_ZLO[EI]’T(C)* while
Kg(z,¢) = =220

Now use a (not hard) general result that says
property (x) characterizes S € Ran Tg = done
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Boundary Nevanlinna-Pick interpolation

More general application: boundary Nevanlinna-Pick interpolation
with bounds on angular derivatives

P not uniquely determined by the Stein equation; diagonal
entries of P provide bounds on angular derivatives at
interpolation nodes on the boundary
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Parametrization of solution set in case only P = 0

Suppose only P = 0. Set X7 = Hilbert space associated with P
(completion of equivalence classes in X'/ KerP)

Notational sloppiness: X = X*

In particular P is well defined on X'°

We assume: P — T*PT = E*E — N*N (%)

Then we define an isometry V: Dy — Ry where
Dy = Ran ['§] €[], Ry = Ran [£] ¢ [§] by
V: [,(,]x»—> [E]X forall xe X

Note that (x) = V: Dy — Ry is an isometry
(with X' equipped with the P metric)

V is the lurking isometry for this problem!
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Alternative characterization of solutions of aAlIP

We say that a system matrix U: [}] — [}f] is a minimal
unitary-system-matrix extension of V if

(1) X is a subspace of H,
(2) U‘Dv =V :Dy —- Ry
(3) X CN CH, N reducing forU = N =H

Theorem: characterization of solutions of aAlP

S solves aAlP with admissible data set D = (T,E,N,P) < S
has the form

S(z) = D+zC(l — zA)'B where U= [25]: [J{] — [¥] is
a minimal unitary system-matrix extension of the partially defined
isometry V constructed from D as above.

In this case the associated map F° = [1-Ms] [851} given by
F(z) = C(1 — zZA) 7| - X — H(Ks)
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Parametrization of solution set for aAlP

Furthermore, minimal unitary system-matrix extensions of V
given by free-parameter closely connected unitary system matrix
U; coupled with a universal unitary system matrix Ug defined as
follows:

(1) Universal unitary system matrix determined by V:
Introduce defect spaces A = [ ] © Dy, A, = [F] 6 Ry
Let A = another copy of A, A, = another copy of A,
with identificaton maps ¢: A — A, Le: DNy — Z*

Vx if x € Dy,
Define Uy by Ugx = u(x) ifxeA,
(X)) ifxeA,

*

Identify [22’] with [5] and identify [z"] with [§]

Uyr Urp Uss X X
= Uy decomposes as Ug = | U Unp Uz | : | U | — | Y
Us1 U O A A
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Parametrization of the solution set (2)

(2) Free parameter unitary system-matrix: Uj:
_ A1 Bl . X1 X1
b=[a8]: (3]~ [2]
(3) The feedback connection of Ug and U; toget U =
minimal unitary system-matrix extention of Vjy:

u: [%]—> [%} & 36€eN, 5, €A, st
Uo: [Sfﬂ > E] and U;: [%] > [;zj

Since U3z = 0 we can solve explicitly:
U1+ U12D1Us1 U3 Ci | [ Ui+U13D; Usp
U=[A8]= [{ I ]}

B1U31 Ar B1Us
[U214Ux3D1Usy Uz Cr]  Ux+Ux3Dy Uso
Now we want the transfer function Ty (2)

Joseph A. Ball Interpolation Problems for Vector-Valued de Branges-Rovnyak



Parametrization of the solution set (3)

Write Ty, (2) = [53 Ugﬂ +z [g;ﬂ (1 — 2U11)" 1 [ Uro Uss]

. [211(2) Z12(2)]

_' 221(2) 222(2)

Write Ry [W] = £11(2) + Z12(2)W(2)(I — Z22(2)W(2)) 1 Z21(2)
(Redheffer LFT)

Y(z)eS(YalU,YDdU) and £22(0) =0 = Re[W] e S(U,DY)
well-defined whenever W € S(U, )

Calculus of realizations and feedback connections:

Tu(Z) = RUO[TU1(Z)] if U = Uo F% U1

Set W = Ty, = free parameter sweeping S(A, A*)

Conclusion: The set of all solutions of aAIP(T, E, N, P) is given
by S(z) = Rx(z)[W(z)] where the free parameter WW(z) sweeps
S(A,A,)
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Part 2: Interpolation problems for functions in vector-valued de
Branges-Rovnyak spaces
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The AlP4(ks) problem

APy (ks)-admissible data set D = (S, T, E, N,x):
» SeL(U,Y), xeX

» TeL(X) EecL(X,Y)Net(X,U)s.t.
OEJ—: X — HO|L(X’))(]D)), O/\/J—Z X — HO|£(X7M(]D))
> /\//,:5 = OE,T — MSON,T3 X — H(Ks)
where F(z) = E(I —zT)™ — S(z)N(I — zT)~*
> P = MUIMps satisfies P — T*PT = E*E — N*N where [+]
is adjoint w.r.t. H(Ks) norm
In case (E, T) is output-stable and Of +Ms = O}, 7. then
MEMEs = Of 1Og 7 — Ofy 1ON,7 = P as before
The AIPy(ks) interpolation problem: Find all f € H(Ks) s.t.
MELF = x and ||f|leks) < 1
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Connection with interpolation

If (E, T) is output-stable and we define N by N* = O +Ms|y, ,
then we have seen that

ORI,T = OE,TMS: 'sz/, — X, or ONJ' = M;OEyT

and then Mgs = O 7 — MsOpn,17 = (I = MsMg)Og 7 from
which it follows that

M,[_-*] = OE,T‘H(KS) = /\/I,[_-*]f = x amounts to imposing LTOA
interpolation conditions on f € H(Ks) with a norm constraint:
1Fll34(ks) < 1
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Solution criterion for AlPy (k)

AlPy ) Find f € H(Ks) st. MELF = x and |[f]l,) < 1
Identify f with Ms: C — H(Ks);

Conversely any operator X € L(C,H(Ks)) has the form X = M¢
for f € H(Ks)

AlP3,(ks) -problem is: solve the operator equation MI[E*S] M = x for
M;¢  with ||Mf|| <1

By the Douglas lemma, this is possible < xx* < P := M,[:S]I\/I,_—s
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Characterization of solutions of AlPy()-problem

Application of the Douglas-lemma variant gives the following
theorem (no use of Stein equation yet):

Theorem: characterization of solutions of AIP4(x,)-problem
Given an admissible AIPy(x,) dataset D = (T,E,N,S,x)
together with a prospective solution f € H(Ks), we set

P =M Mps. Then TFAE:

(1) f soves the AlPy(,)-problem

Lox (O
(2) K(z,¢) = [ x P FS(()*] is a positive kernel on ID
f(2) F*(2) Ks(z2)
N 1 x* M,[r*]
B)P:=1] x p Ml ]| =0

Mr Mes ly(kg)
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Connection with aAlP s y)-problem

Given a APy (k,) dataset (T,E,N,S,P,x) with

N* = Of +Ms|y then (T,E,N,P) is a aAlP-data set and we
can consider the aAlP-problem for this data set and there is a
Redheffer LFT parametrization for the set of all solutions:

W e S(A,A,) — Rs(2)[W(z2)]

Set G(Z) = 212(2)(/ — 5(2)222(2))71,

r(z) = U21 + G(Z)S(Z)U31)(I — ZU11)_1

Then one can use all this to parametrize solutions of AlPy(k,):

> f solves AlPy(kg)-problem < f has the form
f(z) =T(z)x+ G(z)h(z)
where x = P2X and h € H(Ks) subject to

[Alla(ks) < /1= [1X]2
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Parametrizatoin continued

> In this case
11134 ks) = IMX[1Z + (M hl[? = [IXII* + || Pro(ice)oker M hII?
and fin(z) = I'(2)x

> The problem AIPy,(k,) admits a unique solution < |x|| =1
or Rian MS = H(Ks)
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Part 3: Applications

Given inner S, B, Ms is an isometry in E(Hgl, H32,) I\/lstl = the
form for a general M, invariant subspace of H3 (Beurling-Lax)
Set Ks = H32, © MsH? (the model space)

Let B € S(W,Y) be another inner funtion

Characterizations of intersections Mst, N I\/IBH)%V and LsNKp
well known.

Of interest here: Ms g = Ks N /\/IBH%,
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The space Ms g = Ks N MgH3,

Introduce T € L(Kg), E € L(KB,Y), N € L(Kg,U) by
» T:h(z)— w (strongly stable),
» E: hw— h(0) ((E, T) output-stable)
> N:h(z) =372, hiz/ > j>05 i where S(z) =375, Sz
so N = O*E,TM5|Z/{
= D ={S,E,N, T,x =0} is AlPy (k) is admissible
and MEL = OF k)
In this case Og 7h)(z) = ZjZO(ETjh)zj =250 hiz/ = h(z)
i.e., Og 1 s the inclusion map ¢1: Kg — H32, and /* is the
projection .* = Py (gy: H3 — K(B)
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The space Ms g = Ks N MgH;, continued

Thus for f € HJZ, we have O*Eny =0 &fe Hf,@ICB = I\/IBH%,

and P := M,[:S]I\/I,_-s = O:,TOE,T — OT\/,TON,T amounts to
P = Iz — PxgMsMg|k,

Theorem

Given inner S € S(U,Y) and B € SOV,Y), let & = Ei Eiﬂ

come from the associate aAlPs(;/ ) with admissible data set

(P, T,E,N) asabove. Then the space Ms g is given explicitly as
Ms g = G-H(Kg) where £ = unique function in S(A,A,) sit.
S =Rs[€] and G(z) = T12(2)(I — E(2)Z22(2)) 7L

Furthermore Mg : H(Kg) — Ms g is unitary
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Connections with parametrizing kernels of Toeplitz operators, ...
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