Some results on \mathcal{Q}_K spaces

Hasi Wulan (Shantou University)

Focus Program on Analytic Function Spaces and their Applications July 1-December 31, 2021, The Fields Institute

October 6, 2021

Hasi Wulan (STU)

Some results on \mathcal{Q}_K spaces

October 6, 2021 1 / 21

• Let $H(\mathbb{D})$ denote the set of analytic functions in the unit disk \mathbb{D} and let dm(z) be the area measure on \mathbb{D} . Let $K : [0, \infty) \to [0, \infty)$ be a right-continuous and nondecreasing function. $f \in H(\mathbb{D})$ is said to be a member of the space \mathcal{Q}_K if

$$||f||_{\mathcal{Q}_K}^2 = \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 K(g(z,a)) \, \mathrm{d}m(z) < \infty.$$
(1.1)

- Modulo constants, Q_K is a Banach space under the semi-norm defined in (1.1). For 0 p</sup> gives the space Q_p. Choosing K(t) = 1, we get the Dirichlet space D.
- Note that \mathcal{Q}_K is a Möbius invariant space; that is

$$||f \circ \varphi||_{\mathcal{Q}_K} = ||f||_{\mathcal{Q}_K},$$

where φ is the Möbius transformation of \mathbb{D} .

• From the definition, Q_K can be viewed as a space generated by a Hilbert spaces \mathcal{D}_K , denoted by $Q_K = \mathcal{M}(\mathcal{D}_K)$; that is

$$\|f\|_{\mathcal{Q}_K} = \sup_{a \in \mathbb{D}} \|f \circ \varphi_a\|_{\mathcal{D}_K},$$

where

$$||f||_{\mathcal{D}_K}^2 = \int_{\mathbb{D}} |f'(z)|^2 K\left(\log \frac{1}{|z|}\right) \, \mathrm{d}m(z) < \infty.$$
 (1.2)

• For all non-trivial increasing functions K, we have that

 $\mathcal{D} \subset \mathcal{Q}_K \subset \mathcal{B}.$

• One of the main motivations for the introduction of Q_K spaces was to understand the gap between BMOA and the Bloch space. For example, there is a function K_0 such that

$$BMOA \subsetneqq \mathcal{Q}_{K_0} \subsetneqq \mathcal{B}.$$

 A. Aleman and A. Simbotin proved that the space Q_K equals the Möbius invariant space generated by a (radial) weighted Bergman space L²_a(wdm); that is

$$\mathcal{Q}_K = \mathcal{M}(L_a^2(wdm)), \tag{1.3}$$

where the weight function

$$w(t) = \frac{1}{t^2} \frac{\mathrm{d}^2}{\mathrm{d}t^2} K(\log \frac{1}{t}).$$

• $f \in \mathcal{Q}_K$ if and only if

$$\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}|f\circ\varphi_a(z)-f(a)|^2w(|z|)\,\mathrm{d}m(z)<\infty.$$
 (1.4)

• Clearly, such function K gives that $BMOA \subseteq \mathcal{Q}_K \subset \mathcal{B}$.

• A useful function $\log \frac{1}{1-z} \in \mathcal{Q}_K$ if and only if

$$\int_0^1 K(\log(1/r))(1-r^2)^{-1} r \,\mathrm{d}r < \infty.$$
 (1.5)

• Generally, the space Q_K is not separable. However, it always contains the following very important separable subspace:

$$\mathcal{Q}_{K,0} = \left\{ f \in H(\mathbb{D}) : \lim_{|a| \to 1^-} \int_{\mathbb{D}} |f'(z)|^2 K(g(z,a)) \, \mathrm{d}m(z) = 0 \right\}.$$

- M. Essén and H. Wulan, On analytic and meromorphic functions and spaces of Q_K type, Uppsala Univ., Dept. Math. Report 32 (2000), 1-26. Illinois J. Math. 46(2002), 1233-1258.
- M. Essén, H. Wulan and J. Xiao, Several function-theoretic characterizations of Möbius invariant Q_K spaces, J. Funct. Anal., 230(2006),78-115.
- 3 H. Wulan and K. Zhu, Möbius invariant \mathcal{Q}_K spaces, Springer, 2017.

Weight functions

We make the following standing assumptions on the weight function K:

• $K:[0,\infty)\to [0,\infty)$ is non-decreasing and right continuous;

•
$$K(0) = 0$$
 and $K(t) = K(1)$ for $t \ge 1$.

Note that Q_K depends only on the behavior of K(t) near t = 0. In many situations we need to consider the following constraints on K:

$$\int_0^1 \frac{\varphi_K(s)}{s} \,\mathrm{d}s < \infty,\tag{A}$$

and

$$\int_{1}^{\infty} \frac{\varphi_K(s)}{s^{1+\sigma}} \,\mathrm{d}s < \infty, \qquad 0 < \sigma < 2, \tag{B}$$

where the auxiliary function

$$\varphi_K(s) = \sup_{0 < t \le 1} \frac{K(st)}{K(t)}, \qquad 0 < s < \infty.$$

Weight functions

- Suppose K satisfies (A) and the doubling condition on (0,1). Then there exists a weight function K₁ satisfying all standing assumptions such that K₁ is comparable with K on (0,1) and the function K₁(t)/t^c is increasing on (0,1) for sufficiently small constant c > 0. Conversely, if the function K(t)/t^c is increasing on (0,1) for some c > 0, then K satisfies condition (A).
- Suppose K satisfies (B) for some σ > 0. Then there exists a weight function K₂ satisfying all the standing assumptions such that K₂ is comparable with K on (0, 1) and the function K₂(t)/t^{σ-c} is decreasing on (0, 1) for sufficiently small constant c > 0. Conversely, if the function K(t)/t^{σ-c} is decreasing for some 0 < c < σ, then K satisfies condition (B) for the same σ > 0.
- It is clear that the weight function $K(t) = t^p$ satisfies (A) for 0 and satisfies condition (B) whenever <math>0 .

 \bullet A positive Borel measure μ on $\mathbb D$ is said to be a $K\text{-}\mathsf{Carleson}$ measure provided

$$\|\mu\|_{K} = \sup_{I \subset \partial \mathbb{D}} \int_{S(I)} K\left(\frac{1-|z|}{|I|}\right) \mathrm{d}\mu(z) < \infty.$$
(3.1)

• A positive Borel measure μ on $\mathbb D$ is a K-Carleson measure if and only if

$$\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}K(1-|\varphi_a(z)|^2)\mathrm{d}\mu(z)<\infty.$$
(3.2)

• Let K satisfy (A) and (B) for some $\sigma > 0$. Let n be a positive integer. Then $f \in Q_K$ if and only if

$$|f^{(n)}(z)|^2 (1-|z|^2)^{2(n-1)} \mathrm{d}m(z)$$
(3.3)

is a K-Carleson measure on \mathbb{D} .

• Let K satisfy (A) and (B) for some $\sigma > 0$. Let $\alpha > 1/2$. Then $f \in Q_K$ if and only if

$$|f^{(\alpha)}(z)|^2 (1-|z|^2)^{2(\alpha-1)} \,\mathrm{d}m(z) \tag{3.4}$$

is a K-Carleson measure on \mathbb{D} . Here $f^{(\alpha)}$ denotes the α -order derivative of $f \in H(\mathbb{D})$.

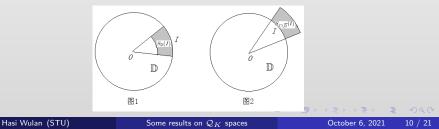
K-Carleson measures both on \mathbb{D} and $\mathbb{C} \setminus \overline{\mathbb{D}}$

• Define the Carleson box by

$$S_G(I) = \begin{cases} \{r\zeta \in G : 1 - \frac{|I|}{2\pi} < r < 1, \zeta \in I\}, & G = \mathbb{D}, \\ \{r\zeta \in G : 1 < r < 1 + |I|, \zeta \in I\}, & G = \mathbb{C} \setminus \overline{\mathbb{D}}. \end{cases}$$

• A positive Borel measure μ on $G=\mathbb{D}$ or $G=\mathbb{C}\setminus\overline{\mathbb{D}}$ is said to be a K-Carleson measure if

$$\sup_{I \subset T} \int_{S_G(I)} K\left(\frac{|1-|z||}{|I|}\right) \mathrm{d}\mu(z) < \infty.$$
(3.5)



• For a weight function K, let H_K^2 (Morrey type space) denote the space of all functions f in the Hardy space H^2 such that

$$\|f\|_{H^2_K} = \left(\sup_{I \subset \partial \mathbb{D}} \frac{1}{K(|I|)} \int_I |f(\zeta) - f_I|^2 |\mathrm{d}\zeta|\right)^{\frac{1}{2}} < \infty, \qquad (4.1)$$

where

$$f_I = \frac{1}{|I|} \int_I f(\zeta) \, |\mathrm{d}\zeta|.$$

Let K satisfy conditions (A) and (B) for some σ > 0. If q ∈ (0, σ) is sufficiently close to σ, then f ∈ Q_K implies that the fractional derivative f^(1-q)/₂ belongs to H²_K. Conversely, there exists a q ∈ (0, σ) such that f ∈ H²_K implies that f^(q-1)/₂ ∈ Q_K.

▲冊 ▶ ▲ 目 ▶ ▲ 目 ● ● ● ●

Applications of K-Carleson measures

- If K satisfies (A) and (B) for some $\sigma > 0$, then $f \in \mathcal{Q}_K$ if and only if $\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{|f \circ \varphi_a(z) - f \circ \varphi_a(w)|^2}{|1 - z\overline{w}|^4} K(1 - |z|^2) \mathrm{d}m(z) \mathrm{d}m(w) < \infty.$ (4.2)
- If K satisfies (A) and (B) for some $\sigma > 0$, then $f \in \mathcal{Q}_K$ if and only if $\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{|f \circ \varphi_a(z) - f \circ \varphi_a(w)|^2}{|1 - z\overline{w}|^4} K^{1/2} (1 - |z|^2) K^{1/2} (1 - |w|^2) \mathrm{d}m(z) \mathrm$
- If K satisfies (A) and (B) for some $\sigma > 0$, then $f \in \mathcal{Q}_K$ if and only if $\sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \left(\int_{\partial \mathbb{D}} |f(\zeta)|^2 \, \mathrm{d}\mu_z(\zeta) - |f(z)|^2 \right) \frac{K(1 - |\varphi_a(z)|^2)}{(1 - |z|^2)^2} \, \mathrm{d}m(z) < \infty,$ (4.4)

where

$$\mathrm{d}\mu_z(\zeta) = \frac{1-|z|^2}{2\pi|\zeta-z|^2} |\mathrm{d}\zeta|, \quad z \in \mathbb{D}, \quad \zeta \in \partial \mathbb{D}.$$

Hasi Wulan (STU)

October 6, 2021 12 / 21

• For all nontrivial K, we have

$$\mathcal{D} \subset \mathcal{Q}_K \subset \mathcal{B}.$$

•
$$\mathcal{Q}_K = \mathcal{D}$$
 if and only if $K(0) > 0$.

• $Q_K = B$ if and only if

$$\int_0^1 K(\log(1/r))(1-r^2)^{-2} r \, \mathrm{d}r < \infty.$$

• $Q_K = BMOA$ if and only if K = ?

Problem 1: BMOA

If K satisfies (B) for σ = 1, then Q_K ⊂ BMOA. Convesely, it is not true since there exists a function K satisfying (B) for σ > 1 such that Q_K ⊂ BMOA. For example, choose K(t) = t(log ^e/_t)^p for p > 0.

•
$$K$$
 is convex $\Longrightarrow BMOA \subset \mathcal{Q}_K$.

• K is concave $\Longrightarrow \mathcal{Q}_K \subset BMOA$.

Theorem (G. Bao, J, Mashreghi, S. Pouliasis and W, 2017) If K is concave, then $Q_K = BMOA$ if and only if

$$\int_0^1 [K'(t) - (1-t)K''(t)]dt < \infty.$$

Problem 1

Find a sufficient and necessary condition on K such that

$$\mathcal{Q}_K = BMOA.$$

• Let M(X) be the multiplier of a Banach space X; that is,

$$M(X) = \{g \in H(\mathbb{D}) : fg \in X \text{ for all } f \in X\}.$$

- $M(H^2) = H^{\infty}$.
- $M(\mathcal{B}) = H^{\infty} \cap \mathcal{B}^{\log}$.
- $M(\mathcal{Q}_p) = H^{\infty} \bigcap \mathcal{Q}_p^{\log}, \ 0$
- $M(\mathcal{D}_p) = H^{\infty} \bigcap \mathcal{W}_p, \ 0$
- $M(\mathcal{Q}_K) = ?$

Problem 2: Multiplier Spaces

We conjecture that

$$M(\mathcal{Q}_K) = H^{\infty} \bigcap \mathcal{Q}_K^{\log},$$

where

$$\|f\|_{Q_K^{\log}}^2 = \sup_{a \in \mathbb{D}} \left(\log \frac{2}{1 - |a|^2} \right)^2 \int_{\mathbb{D}} |f'(z)|^2 K(1 - |\varphi_a(z)|^2) dA(z) < \infty.$$

• If we consider Blaschke products

$$B(z) = \prod_{n=1}^{\infty} \frac{\overline{z_n}}{|z_n|} \frac{z - z_n}{1 - \overline{z_n} z},$$

where $\{z_n\}$ is the sequence of zeros of B with satisfying the condition $\sum_{n=1}^{\infty} (1-|z_n|^2) < \infty$, our conjecture is true; that is

Theorem (Li and W, 2021)

Let K satisfy (A) and (B) for $\sigma = 1$ and let B be a Blaschke product with zeros $\{z_n\}$. The following statements are equivalent:

(i)
$$B \in M(\mathcal{Q}_K)$$
;
(ii) $B \in H^{\infty} \bigcap \mathcal{Q}_K^{\log}$;
(iii)

$$\binom{1}{2} \sum_{k=1}^{2} \sum_{k=1}^{\infty} W(1 - |x_k|^2) \leq 1$$

$$\sup_{a \in \mathbb{D}} \left(\log \frac{2}{1 - |a|^2} \right) \sum_{n=1} K(1 - |\varphi_a(z_n)|^2) < \infty.$$

Problem 2

$$M(\mathcal{Q}_K) = ?$$

- L. Carleson (1962) for $M(H^2) = H^{\infty}$.
- V. Tolokonnikov (1991) for $M(\mathcal{D})$ and M(BMOA).
- A. Nicolau and J. Xiao (1997) for $H^{\infty} \bigcap Q_p, 0 .$
- J. Pau (2008) for $M(Q_p), 0 .$
- J. Pau (2008) for $H^{\infty} \bigcap Q_K$.
- Li and W (2021) for $M(\mathcal{Q}_K)$.

Theorem (Li and W, 2021)

Let K satisfy (A) and (B) for $\sigma = 1$. If f_1, f_2, \ldots, f_n in $M(\mathcal{Q}_K)$ with

$$0 < \delta \le |f_1(z)| + \dots + |f_n(z)|, \ z \in \mathbb{D},$$

then there exist g_1, g_2, \ldots, g_n in $M(\mathcal{Q}_K)$ such that

$$f_1(z)g_1(z) + \dots + f_n(z)g_n(z) = 1.$$

Problem 3

Let K satisfy (A) and (B) for some $\sigma > 1$. Does the Corona Theorem for $M(\mathcal{Q}_K)$ still hold?

• $f \in L^2$ is said to be a $\mathcal{Q}_K(\partial \mathbb{D})$ function if

$$||f||_{\mathcal{Q}_{K}(\partial\mathbb{D})}^{2} := \sup_{I\subset\partial\mathbb{D}} \int_{I} \int_{I} \frac{|f(\zeta) - f(\eta)|^{2}}{|\zeta - \eta|^{2}} K\left(\frac{|\zeta - \eta|}{|I|}\right) |\mathrm{d}\zeta||d\eta| < \infty.$$
(4.5)

• If K satisfies (A) and (B) for some $\sigma=1,$ then

$$\mathcal{Q}_K = \mathcal{Q}_K(\partial \mathbb{D}).$$

Problem 4

Let K satisfy (A) and (B) for some $\sigma > 1$.

$$\mathcal{Q}_K = \mathcal{Q}_K(\partial \mathbb{D})?$$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ● ● ● ●

Thank you for your attention!