Exponential frames and syndetic Riesz sequences

Marcin Bownik

University of Oregon

Mini-course and Workshop on Interpolation and Sampling Focus Program on Analytic Function Spaces and their Applications

September 14-17, 2021

The Fields Institute for Research in Mathematical Sciences

・ 同 ト ・ ヨ ト ・ ヨ ト

\mathcal{H} separable Hilbert space, I a countable set.

Definition

 $\{\varphi_i\}_{i \in I} \subset \mathcal{H}$ is a *frame* with bounds $0 < A \leq B < \infty$ if

$$A \|f\|^{2} \leq \sum_{i \in I} |\langle f, \varphi_{i} \rangle|^{2} \leq B \|f\|^{2}$$

for all vectors $f \in \mathcal{H}$. $\{\varphi_i\}_{i \in I}$ is a *Bessel sequence* if A = 0.

Definition

 $\{\varphi_i\}_{i\in I}\subset \mathcal{H}$ a *Riesz sequence* in \mathcal{H} with bounds $0< A\leq B<\infty$ if

$$A\sum_{i\in I}|a_i|^2 \leq \left\|\sum_{i\in I}a_i\varphi_i\right\|_{\mathcal{H}}^2 \leq B\sum_{i\in I}|a_i|^2$$

for every finite sequence of scalars $\{a_i\}_{i \in I}$.

< ロ > < 同 > < 回 > < 回 >

Paley-Wiener space

Definition

 $\mathcal{S} \subset \mathbb{R}$ set of finite positive Lebesgue measure. Define Paley-Wiener space

$$PW_{\mathcal{S}} = \{f \in L^2(\mathbb{R}) : \hat{f}(\xi) = 0 \quad \text{for a.e. } \xi \in \mathbb{R} \setminus \mathcal{S} \}.$$

向下 イヨト イヨト

Paley-Wiener space

Definition

 $\mathcal{S} \subset \mathbb{R}$ set of finite positive Lebesgue measure. Define Paley-Wiener space

$$\mathcal{PW}_{\mathcal{S}}=\{f\in L^2(\mathbb{R}): \hat{f}(\xi)=0 \hspace{1em} ext{for a.e.} \hspace{1em} \xi\in \mathbb{R}\setminus \mathcal{S}\}.$$

Definition

 $\Lambda \subset \mathbb{R}$ a countable set.

 $\Lambda \subset \mathbb{R}$ is sampling set for $\textit{PW}_{\mathcal{S}}$ if $\exists A,B>0$

$$A||f||_2 \leq \sum_{\lambda \in \Lambda} |f(\lambda)|^2 \leq B||f||^2 \qquad ext{for all } f \in PW_\mathcal{S}.$$

 $\Lambda \subset \mathbb{R}$ is interpolation set for PW_S if for every $c \in \ell^2(\Lambda)$ there exists $f \in PW_S$ such that

$$f(\lambda) = c_{\lambda}$$
 for all $\lambda \in \Lambda$.

Dictionary: complex analysis \leftrightarrow frame theory

Define exponential system
$$E(\Lambda) = \{e^{i\lambda x}\}_{\lambda \in \Lambda}$$
.

Theorem

Suppose $\mathcal{S} \subset \mathbb{R}$ is a bounded set and $\Lambda \subset \mathbb{R}$ is uniformly discrete

$$\inf_{\lambda,\mu\in\Lambda,\lambda\neq\mu}|\lambda-\mu|>0.$$

• Λ is a sampling set for $PW_{\mathcal{S}} \iff E(\Lambda)$ is a frame in $L^{2}(\mathcal{S})$.

伺 ト イヨト イヨト

Dictionary: complex analysis \leftrightarrow frame theory

Define exponential system $E(\Lambda) = \{e^{i\lambda x}\}_{\lambda \in \Lambda}$.

Theorem

Suppose $\mathcal{S} \subset \mathbb{R}$ is a bounded set and $\Lambda \subset \mathbb{R}$ is uniformly discrete

$$\inf_{\lambda,\mu\in\Lambda,\lambda\neq\mu}|\lambda-\mu|>0.$$

- Λ is a sampling set for $PW_{\mathcal{S}} \iff E(\Lambda)$ is a frame in $L^{2}(\mathcal{S})$.
- Λ is an interpolation set for PW_S ⇐⇒ E(Λ) is a Riesz sequence in L²(S).

通 ト イ ヨ ト イ ヨ ト

Dictionary: complex analysis \leftrightarrow frame theory

Define exponential system
$$E(\Lambda) = \{e^{i\lambda x}\}_{\lambda \in \Lambda}$$
.

Theorem

Suppose $\mathcal{S} \subset \mathbb{R}$ is a bounded set and $\Lambda \subset \mathbb{R}$ is uniformly discrete

$$\inf_{\lambda,\mu\in\Lambda,\lambda\neq\mu}|\lambda-\mu|>0.$$

- Λ is a sampling set for $PW_{\mathcal{S}} \iff E(\Lambda)$ is a frame in $L^{2}(\mathcal{S})$.
- Λ is an interpolation set for PW_S ⇐⇒ E(Λ) is a Riesz sequence in L²(S).

Example

 $S \subset \mathbb{T} = \mathbb{R}/2\pi\mathbb{Z} \cong [-\pi, \pi)$ set of positive Lebesgue measure. \mathbb{Z} is a sampling set for PW_S . $E(\mathbb{Z})$ is a tight frame in $L^2(S)$ with bound 2π .

イロト イヨト イヨト イヨト

э

Theorem (Kahane (1957))

Let $I \subset \mathbb{R}$ be an interval. If the upper density

$$D^{+}(\Lambda) := \lim_{r \to \infty} \sup_{a \in \mathbb{R}} \frac{\# \left(\Lambda \cap (a, a + r)\right)}{r} < \frac{|I|}{2\pi},$$

then $E(\Lambda)$ is a Riesz sequence in $L^2(I)$. On the other hand if $D^+(\Lambda) > \frac{|I|}{2\pi}$ then $E(\Lambda)$ is not a Riesz sequence in $L^2(I)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Kahane (1957))

Let $I \subset \mathbb{R}$ be an interval. If the upper density

$$D^+\left(\Lambda
ight):=\lim_{r o\infty}\sup_{a\in\mathbb{R}}rac{\#\left(\Lambda\cap\left(a,a+r
ight)
ight)}{r}<rac{|I|}{2\pi},$$

then $E(\Lambda)$ is a Riesz sequence in $L^2(I)$. On the other hand if $D^+(\Lambda) > \frac{|I|}{2\pi}$ then $E(\Lambda)$ is not a Riesz sequence in $L^2(I)$.

Theorem (Landau (1967))

Let S be a measurable set. If $E(\Lambda)$ is a Riesz sequence in $L^{2}(S)$ then $D^{+}(\Lambda) \leq \frac{|S|}{2\pi}$.

(4回) (4回) (4回)

Question

Given a set S, does there exist a set Λ of positive density such that the exponential system $E(\Lambda)$ is a Riesz sequence in $L^2(S)$?

伺 ト イヨト イヨト

Question

Given a set S, does there exist a set Λ of positive density such that the exponential system $E(\Lambda)$ is a Riesz sequence in $L^2(S)$?

Theorem (Bourgain-Tzafriri (1987))

Given $S \subset \mathbb{T}$ of positive measure, there exists a set $\Lambda \subset \mathbb{Z}$ with positive asymptotic density

$$\mathit{dens}\left(\Lambda
ight) = \lim_{r o \infty} rac{\#\left(\Lambda \cap (-r,r)
ight)}{2r} > c \left|\mathcal{S}
ight|$$

and such that $E(\Lambda)$ is a Riesz sequence in $L^2(S)$. Here c is an absolute constant, independent of S.

・ 同 ト ・ ヨ ト ・ ヨ ト

Question

Given a set S, does there exist a set Λ of positive density such that the exponential system $E(\Lambda)$ is a Riesz sequence in $L^2(S)$?

Theorem (Bourgain-Tzafriri (1987))

Given $S \subset \mathbb{T}$ of positive measure, there exists a set $\Lambda \subset \mathbb{Z}$ with positive asymptotic density

$${\it dens}\left(\Lambda
ight) = \lim_{r o \infty} rac{\#\left(\Lambda \cap (-r,r)
ight)}{2r} > c \left|{\cal S}
ight|$$

and such that $E(\Lambda)$ is a Riesz sequence in $L^2(S)$. Here c is an absolute constant, independent of S.

Every space PW_S , $S \subset \mathbb{T}$, has an interpolation set $\Lambda \subset \mathbb{Z}$ with positive upper density proportional to |S|.

< ロ > < 同 > < 三 > < 三 >

Definition

A subset $\Lambda = \{\ldots < \lambda_0 < \lambda_1 < \lambda_2 < \ldots\} \subset \mathbb{Z}$ is *syndetic* if the consecutive gaps in Λ are bounded

$$\gamma(\Lambda) := \sup_{n \in \mathbb{Z}} (\lambda_{n+1} - \lambda_n) < \infty.$$

・日・ ・ヨ・ ・ヨ・

Э

Definition

A subset $\Lambda = \{\ldots < \lambda_0 < \lambda_1 < \lambda_2 < \ldots\} \subset \mathbb{Z}$ is *syndetic* if the consecutive gaps in Λ are bounded

$$\gamma(\Lambda) := \sup_{n\in\mathbb{Z}} (\lambda_{n+1} - \lambda_n) < \infty.$$

Theorem (Lawton (2010) and Paulsen (2011)) Given a set $S \subset \mathbb{T}$ of positive measure, TFAE: (i) There exists $r \in \mathbb{N}$ and a partition $\mathbb{Z} = \bigcup_{j=1}^{r} \Lambda_{j}$ such that $E(\Lambda_{j})$ is a Riesz sequences in $L^{2}(S)$ for all j = 1, ..., r. (ii) There exists $d \in \mathbb{N}$ and a syndetic set $\Lambda \subseteq \mathbb{Z}$ with $\gamma(\Lambda) = d$ such that $E(\Lambda)$ is a Riesz sequence in $L^{2}(S)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A subset $\Lambda = \{\ldots < \lambda_0 < \lambda_1 < \lambda_2 < \ldots\} \subset \mathbb{Z}$ is *syndetic* if the consecutive gaps in Λ are bounded

$$\gamma(\Lambda) := \sup_{n\in\mathbb{Z}} (\lambda_{n+1} - \lambda_n) < \infty.$$

Theorem (Lawton (2010) and Paulsen (2011)) Given a set $S \subset \mathbb{T}$ of positive measure, TFAE: (i) There exists $r \in \mathbb{N}$ and a partition $\mathbb{Z} = \bigcup_{j=1}^{r} \Lambda_{j}$ such that $E(\Lambda_{j})$ is a Riesz sequences in $L^{2}(S)$ for all j = 1, ..., r. (ii) There exists $d \in \mathbb{N}$ and a syndetic set $\Lambda \subseteq \mathbb{Z}$ with $\gamma(\Lambda) = d$ such that $E(\Lambda)$ is a Riesz sequence in $L^{2}(S)$.

Remark

(ii) \implies (i) can take $r \le d$ by considering translates of Λ . (i) \implies (ii) no upper bound on d in terms of r.

Suppose that $\{u_i\}_{i \in I}$ is a frame in \mathcal{H} such that

 $\inf_{i\in I} \|u_i\|^2 > 0.$

Then, I can be partitioned into subsets I_1, \ldots, I_r such that every subfamily $\{u_i\}_{i \in I_i}$, $j = 1, \ldots, r$, is a Riesz sequence in \mathcal{H} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose that $\{u_i\}_{i \in I}$ is a frame in \mathcal{H} such that

 $\inf_{i\in I} \|u_i\|^2 > 0.$

Then, I can be partitioned into subsets I_1, \ldots, I_r such that every subfamily $\{u_i\}_{i \in I_i}$, $j = 1, \ldots, r$, is a Riesz sequence in \mathcal{H} .

Theorem (Paley-Wiener space)

Every sampling set Λ in PW_S is a finite union of interpolation sets.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose that $\{u_i\}_{i \in I}$ is a frame in \mathcal{H} such that

 $\inf_{i\in I} \|u_i\|^2 > 0.$

Then, I can be partitioned into subsets I_1, \ldots, I_r such that every subfamily $\{u_i\}_{i \in I_i}$, $j = 1, \ldots, r$, is a Riesz sequence in \mathcal{H} .

Theorem (Paley-Wiener space)

Every sampling set Λ in PW_S is a finite union of interpolation sets.

Remark

The Feichtinger conjecture has been proved to be equivalent to the Kadison-Singer problem by Casazza-Christensen-Lindner-Vershynin (2005) and Casazza-Tremain (2006).

э

Suppose that $\{u_i\}_{i \in I}$ is a frame in \mathcal{H} such that

 $\inf_{i\in I} \|u_i\|^2 > 0.$

Then, I can be partitioned into subsets I_1, \ldots, I_r such that every subfamily $\{u_i\}_{i \in I_i}$, $j = 1, \ldots, r$, is a Riesz sequence in \mathcal{H} .

Theorem (Paley-Wiener space)

Every sampling set Λ in PW_S is a finite union of interpolation sets.

Remark

The Feichtinger conjecture has been proved to be equivalent to the Kadison-Singer problem by Casazza-Christensen-Lindner-Vershynin (2005) and Casazza-Tremain (2006). The latter has been solved by Marcus, Spielman and Srivastava (2013).

э

Theorem (Marcus-Spielman-Srivastava (2013))

If $\varepsilon > 0$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with finite support. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} \mathbf{v}_{i} \mathbf{v}_{i}^{*}\right] = \mathbf{I} \quad \text{and} \quad \mathbb{E}\left[\|\mathbf{v}_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$

Theorem (Marcus-Spielman-Srivastava (2013))

If $\varepsilon > 0$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with finite support. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = 1 \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$
$$\implies \mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq \left(1 + \sqrt{\varepsilon}\right)^{2}\right) > 0.$$

If $0 < \epsilon < 1/2$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with support of size 2. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = \mathsf{I} \qquad \text{and} \qquad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \qquad \text{for all } i$$

向下 イヨト イヨト

If $0 < \epsilon < 1/2$ and v_1, \ldots, v_m are independent random vectors in \mathbb{C}^d with support of size 2. Then,

$$\mathbb{E}\left[\sum_{i=1}^{m} v_{i} v_{i}^{*}\right] = 1 \quad \text{and} \quad \mathbb{E}\left[\|v_{i}\|^{2}\right] \leq \epsilon \quad \text{for all } i$$
$$\implies \quad \mathbb{P}\left(\left\|\sum_{i=1}^{m} v_{i} v_{i}^{*}\right\| \leq 1 + 2\sqrt{\epsilon}\sqrt{1-\epsilon}\right) > 0.$$

白 ト イヨト イヨト

Let $\varepsilon > 0$ and suppose that $\{u_i\}_{i \in I}$ is a Bessel sequence in \mathcal{H} with bound 1 that consists of vectors of norms $||u_i||^2 \ge \varepsilon$. Then there exists a universal constant C > 0, such that I can be partitioned into $r \le \frac{C}{\varepsilon}$ subsets I_1, \ldots, I_r such that every subfamily $\{u_i\}_{i \in I_j}$, $j = 1, \ldots, r$ is a Riesz sequence in \mathcal{H} . Moreover, if $\varepsilon > 3/4$, then r = 2 works.

Let $\varepsilon > 0$ and suppose that $\{u_i\}_{i \in I}$ is a Bessel sequence in \mathcal{H} with bound 1 that consists of vectors of norms $||u_i||^2 \ge \varepsilon$. Then there exists a universal constant C > 0, such that I can be partitioned into $r \le \frac{C}{\varepsilon}$ subsets I_1, \ldots, I_r such that every subfamily $\{u_i\}_{i \in I_j}$, $j = 1, \ldots, r$ is a Riesz sequence in \mathcal{H} . Moreover, if $\varepsilon > 3/4$, then r = 2 works.

Corollary

There exists a universal constant C > 0 such that for any subset $S \subset \mathbb{T}$ with positive measure, the exponential system $E(\mathbb{Z})$ can be decomposed as a union of $r \leq \frac{C}{|S|}$ Riesz sequences $E(\Lambda_j)$ in $L^2(S)$ for j = 1, ..., r. Moreover, if $\frac{|S|}{2\pi} > 3/4$, then r = 2 works.

< ロ > < 同 > < 三 > < 三 >

Remark

Lawton's Theorem and the solution of Kadison-Singer problem (Feichtinger conjecture) \implies there exists a syndetic Riesz sequence of exponentials in $L^2(S)$.

Remark

Lawton's Theorem and the solution of Kadison-Singer problem (Feichtinger conjecture) \implies there exists a syndetic Riesz sequence of exponentials in $L^2(S)$.

Question (Olevskii)

What is the bound on a gap $\gamma(\Lambda)$ for syndetic $\Lambda \subset \mathbb{Z}$ such that $E(\Lambda)$ is a Riesz sequence in $L^2(S)$?

ヘロト ヘヨト ヘヨト

Remark

Lawton's Theorem and the solution of Kadison-Singer problem (Feichtinger conjecture) \implies there exists a syndetic Riesz sequence of exponentials in $L^2(S)$.

Question (Olevskii)

What is the bound on a gap $\gamma(\Lambda)$ for syndetic $\Lambda \subset \mathbb{Z}$ such that $E(\Lambda)$ is a Riesz sequence in $L^2(S)$?

Theorem (Nitzan, Olevskii, Ulanovskii (2016))

For every $S \subset \mathbb{R}$ of finite measure, the space $L^2(S)$ admits an exponential frame.

Every space PW_S , where $|S| < \infty$, has a sampling set.

Theorem (B.-Londner (2019))

Let $\varepsilon > 0$ and suppose that $\{u_i\}_{i \in I}$ is a Bessel sequence in \mathcal{H} with bound 1 and

 $\|\boldsymbol{u}_i\|^2 \geq \varepsilon \qquad \forall i \in I.$

Suppose $\{J_k\}_k$ is a collection of disjoint subsets of I with

$$\#J_k \ge r = \left\lceil \frac{C}{\varepsilon} \right\rceil$$
 for all k

イロト イヨト イヨト イヨト

э

Theorem (B.-Londner (2019))

Let $\varepsilon > 0$ and suppose that $\{u_i\}_{i \in I}$ is a Bessel sequence in \mathcal{H} with bound 1 and

$$\|u_i\|^2 \ge \varepsilon \qquad \forall i \in I.$$

Suppose $\{J_k\}_k$ is a collection of disjoint subsets of I with

$$\#J_k \ge r = \left\lceil \frac{C}{\varepsilon} \right\rceil$$
 for all k .

Then there exists a selector, i.e. a subset $J \subset \bigcup_k J_k$ satisfying

$$\#(J\cap J_k)=1 \qquad \forall k$$

such that $\{u_i\}_{i \in J}$ is a Riesz sequence in \mathcal{H} . Moreover, if $\varepsilon > \frac{3}{4}$, then r = 2 works.

< ロ > < 同 > < 三 > < 三 >

э

Applying the main theorem to the exponential system $E(\mathbb{Z}) = \{\mathbf{1}_{\mathcal{S}} e^{int}\}_{n \in \mathbb{Z}}$ with $J_k = [kr, (k+1)r) \cap \mathbb{Z}$, $k \in \mathbb{Z}$, yields:

・ 回 ト ・ ヨ ト ・ ヨ ト

Applying the main theorem to the exponential system $E(\mathbb{Z}) = \{1_{\mathcal{S}}e^{int}\}_{n \in \mathbb{Z}}$ with $J_k = [kr, (k+1)r) \cap \mathbb{Z}$, $k \in \mathbb{Z}$, yields:

Corollary

There exists a universal constant C > 0 such that for any subset $S \subset \mathbb{T}$ with positive measure, there exists a syndetic set $\Lambda \subset \mathbb{Z}$ with gaps

$$\gamma\left(\mathsf{\Lambda}
ight) \leq \mathcal{C} \left|\mathcal{S}
ight|^{-1}$$

so that $E(\Lambda)$ is a Riesz sequence in $L^2(S)$. Moreover, if $\frac{|S|}{2\pi} > \frac{3}{4}$ then such Λ exists with $\gamma(\Lambda) \leq 3$.

Applying the main theorem to the exponential system $E(\mathbb{Z}) = \{1_{\mathcal{S}}e^{int}\}_{n \in \mathbb{Z}}$ with $J_k = [kr, (k+1)r) \cap \mathbb{Z}$, $k \in \mathbb{Z}$, yields:

Corollary

There exists a universal constant C > 0 such that for any subset $S \subset \mathbb{T}$ with positive measure, there exists a syndetic set $\Lambda \subset \mathbb{Z}$ with gaps

$$\gamma\left(\mathsf{\Lambda}
ight)\leq \mathsf{C}\left|\mathcal{S}
ight|^{-1}$$

so that $E(\Lambda)$ is a Riesz sequence in $L^2(S)$. Moreover, if $\frac{|S|}{2\pi} > \frac{3}{4}$ then such Λ exists with $\gamma(\Lambda) \leq 3$.

Every space PW_S , $S \subset \mathbb{T}$, has a syndetic interpolation set $\Lambda \subset \mathbb{Z}$ with gaps proportional to $|S|^{-1}$.

< ロ > < 同 > < 三 > < 三 >

Corollary

Let $S \subset \mathbb{T}^d$ be any subset of positive measure. Let $\mathcal{R} \subset \mathbb{Z}^d$ be any d-dimensional rectangle with $\# |\mathcal{R}| > C |\mathcal{S}|^{-1}$. Let $\mathbb{Z}^d = \bigcup \mathcal{R}_k$ be and any partition into translated copies of \mathcal{R} .

Corollary

Let $S \subset \mathbb{T}^d$ be any subset of positive measure. Let $\mathcal{R} \subset \mathbb{Z}^d$ be any d-dimensional rectangle with $\# |\mathcal{R}| > C |S|^{-1}$. Let $\mathbb{Z}^d = \bigcup \mathcal{R}_k$ be and any partition into translated copies of \mathcal{R} . Then there exists a set $\Lambda \subset \mathbb{Z}^d$ such that

$$\#|\Lambda \cap \mathcal{R}_k| = 1 \quad \forall k$$

and $E(\Lambda)$ is a Riesz sequence in $L^2(S)$.

Corollary

Let $S \subset \mathbb{T}^d$ be any subset of positive measure. Let $\mathcal{R} \subset \mathbb{Z}^d$ be any d-dimensional rectangle with $\# |\mathcal{R}| > C |S|^{-1}$. Let $\mathbb{Z}^d = \bigcup \mathcal{R}_k$ be and any partition into translated copies of \mathcal{R} . Then there exists a set $\Lambda \subset \mathbb{Z}^d$ such that

$$\#|\Lambda \cap \mathcal{R}_k| = 1 \qquad \forall k$$

and $E(\Lambda)$ is a Riesz sequence in $L^2(S)$. In particular, if \mathcal{R} is a cube, then

$$\sup_{\lambda \in \Lambda} \inf_{\mu \in \Lambda \setminus \{\lambda\}} |\lambda - \mu| \le C \sqrt{d} |\mathcal{S}|^{-\frac{1}{d}}$$

Partitioning the lattice \mathbb{Z}^d into thin and long rectangles in a checkerboard way yields:

Corollary

For any subset $S \subset \mathbb{T}^d$ of positive measure, there exists $\Lambda \subset \mathbb{Z}^d$ so that $E(\Lambda)$ is a Riesz sequence in $L^2(S)$ and every one dimensional section of Λ in every direction

$$\Lambda(k_1,\ldots,\hat{k}_j,\ldots,k_{d-1})=\{k_j\in\mathbb{Z}:(k_1,\ldots,k_j,\ldots,k_{d-1})\in\Lambda\}$$

is syndetic for any $(k_1,\ldots,\hat{k}_j,\ldots,k_d)\in\mathbb{Z}^{d-1}$ and $j=1,\ldots,d$ with gap

$$\gamma\left(\Lambda\left(k_{1},\ldots,k_{d-1}
ight)
ight)\leq \mathit{Cd}\left|\mathcal{S}
ight|^{-1}.$$

Theorem

Let $r, M \in \mathbb{N}$ and $\delta > 0$. Suppose that $\{u_i\}_{i=1}^M \subset \mathcal{H}$ is a Bessel sequence with bound 1 and $\|u_i\|^2 \leq \delta$ for all *i*. Then for every collection of disjoint subsets $J_1, \ldots, J_n \subset [M]$ with $\#J_k \geq r$ for all k, there exists a subset $J \subset [M]$ such that $\#(J \cap J_k) = 1$ for all $k \in [n]$ and the system of vectors $\{u_i\}_{i \in J}$ is a Bessel sequence with bound

$$\left(\frac{1}{\sqrt{r}} + \sqrt{\delta}\right)^2$$

Proof.

WLOG $\#J_k = r$. Define independent random vectors v_k : for k = 1, ..., n the vector v_k takes values $\sqrt{ru_i}$ for any $i \in J_k$ with probability $\frac{1}{r}$. Then,

$$\sum_{k=1}^{''} \mathbb{E}(v_k v_k^*) \leq \mathsf{I}_{\mathcal{H}} \quad \text{and} \quad \mathbb{E} \|v_k\|^2 \leq r\delta \quad \forall k.$$

イロト イヨト イヨト イヨト

Э

Proof.

WLOG $\#J_k = r$. Define independent random vectors v_k : for k = 1, ..., n the vector v_k takes values $\sqrt{r}u_i$ for any $i \in J_k$ with probability $\frac{1}{r}$. Then,

$$\sum_{k=1}^{n} \mathbb{E}\left(v_{k} v_{k}^{*}\right) \leq \mathsf{I}_{\mathcal{H}} \quad \text{and} \quad \mathbb{E}\left\|v_{k}\right\|^{2} \leq r\delta \quad \forall k.$$

By Theorem of Marcus-Spielman-Srivastava

$$\mathbb{P}\left(\left\|\sum_{k=1}^n v_k v_k^*\right\| \le \left(1 + \sqrt{r\delta}\right)^2\right) > 0.$$

< ロ > < 同 > < 三 > < 三 >

Э

Proof.

WLOG $\#J_k = r$. Define independent random vectors v_k : for k = 1, ..., n the vector v_k takes values $\sqrt{r}u_i$ for any $i \in J_k$ with probability $\frac{1}{r}$. Then,

$$\sum_{k=1}^{n} \mathbb{E}\left(v_{k} v_{k}^{*}\right) \leq \mathsf{I}_{\mathcal{H}} \quad \text{and} \quad \mathbb{E}\left\|v_{k}\right\|^{2} \leq r\delta \quad \forall k.$$

By Theorem of Marcus-Spielman-Srivastava

$$\mathbb{P}\left(\left\|\sum_{k=1}^n v_k v_k^*\right\| \le \left(1 + \sqrt{r\delta}\right)^2\right) > 0.$$

which implies the existence of a set $J \subset [M]$ such that $\left\|\sum_{i \in J} u_i u_i^*\right\| \leq \left(\frac{1}{\sqrt{r}} + \sqrt{\delta}\right)^2$.

< ロ > < 同 > < 三 > < 三 >

Theorem

Let $M \in \mathbb{N}$ and $\delta_0 \in (0, \frac{1}{4})$. Suppose that $\{u_i\}_{i=1}^M \subset \mathcal{H}$ is a Bessel sequence with Bessel bound 1 and $||u_i||^2 \leq \delta_0$ for all *i*. Then for every collection of disjoint subsets $J_1, \ldots, J_n \subset [M]$ with $\#J_k = 2$ for all *k*, there exists a subset $J \subset [M]$ such that $\#(J \cap J_k) = 1$ for all $k \in [n]$ and the system of vectors $\{u_i\}_{i \in J}$ is a Bessel sequence with bound $1 - \varepsilon_0$, where $\varepsilon_0 = \frac{1}{2} - \sqrt{2\delta_0(1 - 2\delta_0)}$.

Lemma (B.-Casazza-Marcus-Speegle (2019))

Let $P : \mathcal{H} \to \mathcal{H}$ be the orthogonal projection onto a closed subspace $H \subset \mathcal{H}$, and let $\{e_i\}_{i \in I}$ be an orthogonal basis for \mathcal{H} . Then for any subset $J \subset I$ and $\delta > 0$ the following are equivalent:

• $\{Pe_i\}_{i \in J}$ is a Bessel sequence with bound $1 - \delta$.

 $(I_{\mathcal{H}} - P) e_i \}_{i \in J} \text{ is a Riesz sequence with lower bound } \delta.$

(4月) トイヨト イヨト

Lemma (B.-Casazza-Marcus-Speegle (2019))

Let $P : \mathcal{H} \to \mathcal{H}$ be the orthogonal projection onto a closed subspace $H \subset \mathcal{H}$, and let $\{e_i\}_{i \in I}$ be an orthogonal basis for \mathcal{H} . Then for any subset $J \subset I$ and $\delta > 0$ the following are equivalent: $\{Pe_i\}_{i \in J}$ is a Bessel sequence with bound $1 - \delta$. $\{I_{\mathcal{H}} - P)e_i\}_{i \in I}$ is a Riesz sequence with lower bound δ .

Corollary

Let $M \in \mathbb{N}$ and $\delta_0 \in (0, \frac{1}{4})$. Suppose that $\{u_i\}_{i=1}^M \subset \mathcal{H}$ is a Bessel sequence with Bessel bound B and $||u_i||^2 \geq B(1 - \delta_0)$ for all *i*. Then for every collection of disjoint subsets $J_1, \ldots, J_n \subset [M]$ with $\#J_k = 2$ for all k, there exists a subset $J \subset [M]$ such that $\#(J \cap J_k) = 1$ for all $k \in [n]$ and the system of vectors $\{u_i\}_{i \in J}$ is a Riesz sequence with lower Riesz bound $B\varepsilon_0$.

イロン イヨン イヨン イヨン

Э

Combine two selectors theorems with

Lemma

Let \mathcal{H} be an infinite dimensional Hilbert space, $M \in \mathbb{N}$ and $\delta \in (0,1)$. Suppose $\{u_i\}_{i=1}^M \subset \mathcal{H}$ is a Bessel sequence with Bessel bound 1 and $\|u_i\|^2 \geq \delta$ for all *i*. Then for every large enough $K \in \mathbb{N}$, there exist vectors $\varphi_1, \ldots, \varphi_K \in \mathcal{H}$ with $\|\varphi_i\|^2 \geq \delta$ for all *i* such that $\{u_i\}_{i=1}^M \cup \{\varphi_i\}_{i=1}^K$ is a Parseval frame for its linear span.

Combine two selectors theorems with

Lemma

Let \mathcal{H} be an infinite dimensional Hilbert space, $M \in \mathbb{N}$ and $\delta \in (0,1)$. Suppose $\{u_i\}_{i=1}^M \subset \mathcal{H}$ is a Bessel sequence with Bessel bound 1 and $\|u_i\|^2 \geq \delta$ for all *i*. Then for every large enough $K \in \mathbb{N}$, there exist vectors $\varphi_1, \ldots, \varphi_K \in \mathcal{H}$ with $\|\varphi_i\|^2 \geq \delta$ for all *i* such that $\{u_i\}_{i=1}^M \cup \{\varphi_i\}_{i=1}^K$ is a Parseval frame for its linear span.

Theorem (Finite version of main result)

Let $\varepsilon > 0$ and $M \in \mathbb{N}$. Suppose that $\{u_i\}_{i=1}^M \subset \mathcal{H}$ is a Bessel sequence with Bessel bound 1 and $||u_i||^2 \ge \varepsilon$ for all *i*. Then there exists $r = O\left(\frac{1}{\varepsilon}\right)$, independent of M, such that for every collection of disjoint subsets $J_1, \ldots, J_n \subset [M]$ with $\#J_k \ge r$ for all k, there exists a subset $J \subset [M]$ such that $\#(J \cap J_k) = 1$ for all $k \in [n]$ and the system of vectors $\{u_i\}_{i \in J}$ is a Riesz sequence with lower Riesz bound $\varepsilon\varepsilon_0$. Moreover, if $\varepsilon > \frac{3}{4}$ then the same conclusion holds with r = 2.

Lemma

Let $\{J_k\}_k$ be a collection of disjoint subsets of I. Assume for every $n \in \mathbb{N}$ we have a subset $I_n \subset \bigcup_{k=1}^n J_k$ such that

$$\#(I_n \cap J_k) = 1$$
 for $k = 1, \ldots, n$

Then, there exists a subset $I_{\infty} \subset I$ and an increasing sequence $\{n_j\}$ such that

$$I_{n_j} \cap \left(\bigcup_{k=1}^j J_k\right) = I_\infty \cap \left(\bigcup_{k=1}^j J_k\right)$$

In particular, we have

$$\#(I_{\infty}\cap J_k)=1 \qquad \forall k.$$

This yields infinite dimensional version of main result.

Theorem ($R_{arepsilon}$ conjecture of Casazza-Tremain)

Let $\{u_i\}_{i \in I}$ be a unit norm Bessel sequence in \mathcal{H} with bound B. Then there exists a universal constant C > 0 such that for any $\varepsilon > 0$ and any collection of disjoint subsets of I, $\{J_k\}_k$ satisfying $\#J_k \ge r = \left\lceil \frac{C}{\epsilon^4} \right\rceil$, for all k. There exists a selector $J \subset \bigcup_k J_k$ satisfying

 $\#(J\cap J_k)=1 \qquad \forall k$

and such that $\{u_i\}_{i \in I}$ is a Riesz sequence in \mathcal{H} with bounds $1 \pm \varepsilon$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem ($R_{arepsilon}$ conjecture of Casazza-Tremain)

Let $\{u_i\}_{i \in I}$ be a unit norm Bessel sequence in \mathcal{H} with bound B. Then there exists a universal constant C > 0 such that for any $\varepsilon > 0$ and any collection of disjoint subsets of I, $\{J_k\}_k$ satisfying $\#J_k \ge r = \left\lceil C\frac{B}{\varepsilon^4} \right\rceil$, for all k. There exists a selector $J \subset \bigcup_k J_k$ satisfying

$$\#(J\cap J_k)=1 \qquad \forall k$$

and such that $\{u_i\}_{i \in J}$ is a Riesz sequence in \mathcal{H} with bounds $1 \pm \varepsilon$.

Remark

A multi-paving result of Ravichandran-Srivastava (2017) suggest that $r = O(\frac{B}{\varepsilon^2})$ should work. Hence, this would yield syndetic Riesz sequences of exponentials in $L^2(S)$ with Riesz bounds $\frac{|S|}{2\pi}(1 \pm \varepsilon)$ and gaps $O(\frac{1}{|S|\varepsilon^2})$ instead of $O(\frac{1}{|S|\varepsilon^4})$.

Question

Does an arbitrary measurable set $S \subset \mathbb{T}$ of (almost full) measure admit an exponential Riesz sequence $E(\Lambda)$, $\Lambda \subset \mathbb{Z}$, such that

$$\inf_{\substack{\lambda,\mu\in\mathbb{Z}\setminus\Lambda,\lambda\neq\mu}}|\lambda-\mu|\geq\frac{\mathcal{C}}{|\mathbb{T}\setminus\mathcal{S}|}?$$

伺下 イヨト イヨト

Question

Does an arbitrary measurable set $S \subset \mathbb{T}$ of (almost full) measure admit an exponential Riesz sequence $E(\Lambda)$, $\Lambda \subset \mathbb{Z}$, such that

$$\inf_{\lambda,\mu\in\mathbb{Z}\setminus\Lambda,\lambda\neq\mu}|\lambda-\mu|\geq\frac{\mathcal{C}}{|\mathbb{T}\setminus\mathcal{S}|}?$$

(B., Londner) True if $\mathcal{S} \subset \mathbb{T}$ is open using quasicrystals.

周 ト イ ヨ ト イ ヨ

Question

Does an arbitrary measurable set $S \subset \mathbb{T}$ of (almost full) measure admit an exponential Riesz sequence $E(\Lambda)$, $\Lambda \subset \mathbb{Z}$, such that

$$\inf_{\lambda,\mu\in\mathbb{Z}\setminus\Lambda,\lambda\neq\mu}|\lambda-\mu|\geq\frac{\mathcal{C}}{|\mathbb{T}\setminus\mathcal{S}|}?$$

(B., Londner) True if $\mathcal{S} \subset \mathbb{T}$ is open using quasicrystals.

Question (Olevskii)

Does an arbitrary measurable set $S \subset \mathbb{T}$ of finite measure admit an exponential Riesz **basis** $E(\Lambda)$ for some $\Lambda \subset \mathbb{R}$?

THANK YOU FOR ATTENTION

ヘロア 人間 アメヨア 人間 アー

2