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H separable Hilbert space, I a countable set.

Definition

{ϕi}i∈I ⊂ H is a frame with bounds 0 < A ≤ B <∞ if

A ‖f ‖2 ≤
∑
i∈I
|〈f , ϕi 〉|2 ≤ B ‖f ‖2

for all vectors f ∈ H. {ϕi}i∈I is a Bessel sequence if A = 0.

Definition

{ϕi}i∈I ⊂ H a Riesz sequence in H with bounds 0 < A ≤ B <∞
if

A
∑
i∈I
|ai |2 ≤

∥∥∥∥∥∑
i∈I

aiϕi

∥∥∥∥∥
2

H

≤ B
∑
i∈I
|ai |2

for every finite sequence of scalars {ai}i∈I .
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Paley-Wiener space

Definition

S ⊂ R set of finite positive Lebesgue measure.
Define Paley-Wiener space

PWS = {f ∈ L2(R) : f̂ (ξ) = 0 for a.e. ξ ∈ R \ S}.

Definition

Λ ⊂ R a countable set.
Λ ⊂ R is sampling set for PWS if ∃A,B > 0

A||f ||2 ≤
∑
λ∈Λ

|f (λ)|2 ≤ B||f ||2 for all f ∈ PWS .

Λ ⊂ R is interpolation set for PWS if for every c ∈ `2(Λ) there
exists f ∈ PWS such that

f (λ) = cλ for all λ ∈ Λ.
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Dictionary: complex analysis ↔ frame theory

Define exponential system E (Λ) =
{
e iλx

}
λ∈Λ

.

Theorem

Suppose S ⊂ R is a bounded set and Λ ⊂ R is uniformly discrete

inf
λ,µ∈Λ,λ 6=µ

|λ− µ| > 0.

Λ is a sampling set for PWS ⇐⇒ E (Λ) is a frame in L2(S).

Λ is an interpolation set for PWS ⇐⇒ E (Λ) is a Riesz
sequence in L2(S).

Example

S ⊂ T = R/2πZ ∼= [−π, π) set of positive Lebesgue measure.
Z is a sampling set for PWS .
E (Z) is a tight frame in L2 (S) with bound 2π.
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Classical results

Theorem (Kahane (1957))

Let I ⊂ R be an interval. If the upper density

D+ (Λ) := lim
r→∞

sup
a∈R

# (Λ ∩ (a, a + r))

r
<
|I |
2π
,

then E (Λ) is a Riesz sequence in L2 (I ). On the other hand if

D+ (Λ) > |I |
2π then E (Λ) is not a Riesz sequence in L2 (I ).

Theorem (Landau (1967))

Let S be a measurable set. If E (Λ) is a Riesz sequence in L2 (S)

then D+ (Λ) ≤ |S|2π .
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Question

Given a set S, does there exist a set Λ of positive density such that
the exponential system E (Λ) is a Riesz sequence in L2 (S)?

Theorem (Bourgain-Tzafriri (1987))

Given S ⊂ T of positive measure, there exists a set Λ ⊂ Z with
positive asymptotic density

dens (Λ) = lim
r→∞

# (Λ ∩ (−r , r))

2r
> c |S|

and such that E (Λ) is a Riesz sequence in L2 (S).
Here c is an absolute constant, independent of S.

Every space PWS , S ⊂ T, has an interpolation set Λ ⊂ Z with
positive upper density proportional to |S|.
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Definition

A subset Λ = {. . . < λ0 < λ1 < λ2 < . . .} ⊂ Z is syndetic if the
consecutive gaps in Λ are bounded

γ (Λ) := sup
n∈Z

(λn+1 − λn) <∞.

Theorem (Lawton (2010) and Paulsen (2011))

Given a set S ⊂ T of positive measure, TFAE:

(i) There exists r ∈ N and a partition Z =
⋃r

j=1 Λj such that

E (Λj) is a Riesz sequences in L2 (S) for all j = 1, . . . , r .

(ii) There exists d ∈ N and a syndetic set Λ ⊆ Z with γ (Λ) = d
such that E (Λ) is a Riesz sequence in L2 (S).

Remark

(ii) =⇒ (i) can take r ≤ d by considering translates of Λ.
(i) =⇒ (ii) no upper bound on d in terms of r .
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Theorem (the Feichtiner conjecture)

Suppose that {ui}i∈I is a frame in H such that

inf
i∈I
‖ui‖2 > 0.

Then, I can be partitioned into subsets I1, . . . , Ir such that every
subfamily {ui}i∈Ij , j = 1, . . . , r , is a Riesz sequence in H.

Theorem (Paley-Wiener space)

Every sampling set Λ in PWS is a finite union of interpolation sets.

Remark

The Feichtinger conjecture has been proved to be equivalent to the
Kadison-Singer problem by Casazza-Christensen-Lindner-Vershynin
(2005) and Casazza-Tremain (2006). The latter has been solved
by Marcus, Spielman and Srivastava (2013).
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Solution of Kadison-Singer Problem

Theorem (Marcus-Spielman-Srivastava (2013))

If ε > 0 and v1, . . . , vm are independent random vectors in Cd with
finite support. Then,

E

[
m∑
i=1

viv
∗
i

]
= I and E

[
‖vi‖2

]
≤ ε for all i

=⇒ P

(∥∥∥∥∥
m∑
i=1

viv
∗
i

∥∥∥∥∥ ≤ (1 +
√
ε
)2

)
> 0.
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Improvement for support of size 2

Theorem (B.-Casazza-Marcus-Speegle (2019))

If 0 < ε< 1/2 and v1, . . . , vm are independent random vectors in
Cd with support of size 2. Then,

E

[
m∑
i=1

viv
∗
i

]
= I and E

[
‖vi‖2

]
≤ ε for all i

=⇒ P

(∥∥∥∥∥
m∑
i=1

viv
∗
i

∥∥∥∥∥ ≤ 1 + 2
√
ε
√

1− ε

)
> 0.
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Quantitative Feichtinger conjecture

Theorem (B.-Casazza-Marcus-Speegle (2019))

Let ε > 0 and suppose that {ui}i∈I is a Bessel sequence in H with

bound 1 that consists of vectors of norms ‖ui‖2 ≥ ε. Then there
exists a universal constant C > 0, such that I can be partitioned
into r ≤ C

ε subsets I1, . . . , Ir such that every subfamily {ui}i∈Ij ,
j = 1, . . . , r is a Riesz sequence in H. Moreover, if ε > 3/4, then
r = 2 works.

Corollary

There exists a universal constant C > 0 such that for any subset
S ⊂ T with positive measure, the exponential system E (Z) can be
decomposed as a union of r ≤ C

|S| Riesz sequences E (Λj) in L2 (S)

for j = 1, . . . , r . Moreover, if |S|2π > 3/4, then r = 2 works.
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Remark

Lawton’s Theorem and the solution of Kadison-Singer problem
(Feichtinger conjecture) =⇒ there exists a syndetic Riesz
sequence of exponentials in L2(S).

Question (Olevskii)

What is the bound on a gap γ(Λ) for syndetic Λ ⊂ Z such that
E (Λ) is a Riesz sequence in L2(S)?

Theorem (Nitzan, Olevskii, Ulanovskii (2016))

For every S ⊂ R of finite measure, the space L2(S) admits an
exponential frame.

Every space PWS , where |S| <∞, has a sampling set.
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Main result

Theorem (B.-Londner (2019))

Let ε > 0 and suppose that {ui}i∈I is a Bessel sequence in H with
bound 1 and

‖ui‖2 ≥ ε ∀i ∈ I .

Suppose {Jk}k is a collection of disjoint subsets of I with

#Jk ≥ r =

⌈
C

ε

⌉
for all k.

Then there exists a selector, i.e. a subset J ⊂
⋃

k Jk satisfying

# (J ∩ Jk) = 1 ∀k

such that {ui}i∈J is a Riesz sequence in H.
Moreover, if ε > 3

4 , then r = 2 works.
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Syndetic Riesz sequences

Applying the main theorem to the exponential system
E (Z) = {1Se int}n∈Z with Jk = [kr , (k + 1)r) ∩ Z, k ∈ Z, yields:

Corollary

There exists a universal constant C > 0 such that for any subset
S ⊂ T with positive measure, there exists a syndetic set Λ ⊂ Z
with gaps

γ (Λ) ≤ C |S|−1

so that E (Λ) is a Riesz sequence in L2 (S). Moreover, if |S|2π >
3
4

then such Λ exists with γ (Λ) ≤ 3.

Every space PWS , S ⊂ T, has a syndetic interpolation set Λ ⊂ Z
with gaps proportional to |S|−1.
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Higher dimensional syndetic sets 1

Corollary

Let S ⊂ Td be any subset of positive measure.
Let R ⊂ Zd be any d-dimensional rectangle with # |R| > C |S|−1.
Let Zd =

⋃
Rk be and any partition into translated copies of R.

Then there exists a set Λ ⊂ Zd such that

#|Λ ∩Rk | = 1 ∀k

and E (Λ) is a Riesz sequence in L2 (S).
In particular, if R is a cube, then

sup
λ∈Λ

inf
µ∈Λ\{λ}

|λ− µ| ≤ C
√
d |S|−

1
d .
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Higher dimensional syndetic sets 2

Partitioning the lattice Zd into thin and long rectangles in a
checkerboard way yields:

Corollary

For any subset S ⊂ Td of positive measure, there exists Λ ⊂ Zd so
that E (Λ) is a Riesz sequence in L2 (S) and every one dimensional
section of Λ in every direction

Λ(k1, . . . , k̂j , . . . , kd−1) = {kj ∈ Z : (k1, . . . , kj , . . . , kd−1) ∈ Λ}

is syndetic for any (k1, . . . , k̂j , . . . , kd) ∈ Zd−1 and j = 1, . . . , d
with gap

γ (Λ (k1, . . . , kd−1)) ≤ Cd |S|−1 .
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Idea of the proof — Basic selector theorem

Theorem

Let r ,M ∈ N and δ > 0. Suppose that {ui}Mi=1 ⊂ H is a Bessel
sequence with bound 1 and ‖ui‖2 ≤ δ for all i . Then for every
collection of disjoint subsets J1, . . . , Jn ⊂ [M] with #Jk ≥ r for all
k , there exists a subset J ⊂ [M] such that # (J ∩ Jk) = 1 for all
k ∈ [n] and the system of vectors {ui}i∈J is a Bessel sequence with
bound (

1√
r

+
√
δ

)2

.
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Proof.

WLOG #Jk = r . Define independent random vectors vk : for
k = 1, . . . , n the vector vk takes values

√
rui for any i ∈ Jk with

probability 1
r . Then,

n∑
k=1

E (vkv
∗
k ) ≤ IH and E ‖vk‖2 ≤ rδ ∀k .

By Theorem of Marcus-Spielman-Srivastava

P

(∥∥∥∥∥
n∑

k=1

vkv
∗
k

∥∥∥∥∥ ≤ (1 +
√
rδ
)2
)
> 0.

which implies the existence of a set J ⊂ [M] such that∥∥∑
i∈J uiu

∗
i

∥∥ ≤ ( 1√
r

+
√
δ
)2
.
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Selector theorem for short vectors

Theorem

Let M ∈ N and δ0 ∈
(
0, 1

4

)
. Suppose that {ui}Mi=1 ⊂ H is a Bessel

sequence with Bessel bound 1 and ‖ui‖2 ≤ δ0 for all i . Then for
every collection of disjoint subsets J1, . . . , Jn ⊂ [M] with #Jk = 2
for all k , there exists a subset J ⊂ [M] such that # (J ∩ Jk) = 1
for all k ∈ [n] and the system of vectors {ui}i∈J is a Bessel

sequence with bound 1− ε0, where ε0 = 1
2 −

√
2δ0 (1− 2δ0).
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Naimark’s complements

Lemma (B.-Casazza-Marcus-Speegle (2019))

Let P : H → H be the orthogonal projection onto a closed
subspace H ⊂ H, and let {ei}i∈I be an orthogonal basis for H.
Then for any subset J ⊂ I and δ > 0 the following are equivalent:

1 {Pei}i∈J is a Bessel sequence with bound 1− δ.

2 {(IH − P) ei}i∈J is a Riesz sequence with lower bound δ.

Corollary

Let M ∈ N and δ0 ∈
(
0, 1

4

)
. Suppose that {ui}Mi=1 ⊂ H is a Bessel

sequence with Bessel bound B and ‖ui‖2 ≥ B (1− δ0) for all i .
Then for every collection of disjoint subsets J1, . . . , Jn ⊂ [M] with
#Jk = 2 for all k , there exists a subset J ⊂ [M] such that
# (J ∩ Jk) = 1 for all k ∈ [n] and the system of vectors {ui}i∈J is
a Riesz sequence with lower Riesz bound Bε0.
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Combine two selectors theorems with

Lemma

Let H be an infinite dimensional Hilbert space, M ∈ N and
δ ∈ (0, 1). Suppose {ui}Mi=1 ⊂ H is a Bessel sequence with Bessel
bound 1 and ‖ui‖2 ≥ δ for all i . Then for every large enough
K ∈ N, there exist vectors ϕ1, . . . , ϕK ∈ H with ‖ϕi‖2 ≥ δ for all i
such that {ui}Mi=1 ∪ {ϕi}Ki=1 is a Parseval frame for its linear span.

Theorem (Finite version of main result)

Let ε > 0 and M ∈ N. Suppose that {ui}Mi=1 ⊂ H is a Bessel
sequence with Bessel bound 1 and ‖ui‖2 ≥ ε for all i . Then there
exists r = O

(
1
ε

)
, independent of M, such that for every collection

of disjoint subsets J1, . . . , Jn ⊂ [M] with #Jk ≥ r for all k , there
exists a subset J ⊂ [M] such that # (J ∩ Jk) = 1 for all k ∈ [n]
and the system of vectors {ui}i∈J is a Riesz sequence with lower
Riesz bound εε0. Moreover, if ε > 3

4 then the same conclusion
holds with r = 2.
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Diagonal argument with the pigeonhole principle

Lemma

Let {Jk}k be a collection of disjoint subsets of I . Assume for every
n ∈ N we have a subset In ⊂

⋃n
k=1 Jk such that

# (In ∩ Jk) = 1 for k = 1, . . . , n

Then, there exists a subset I∞ ⊂ I and an increasing sequence {nj}
such that

Inj ∩

(
j⋃

k=1

Jk

)
= I∞ ∩

(
j⋃

k=1

Jk

)
In particular, we have

# (I∞ ∩ Jk) = 1 ∀k .

This yields infinite dimensional version of main result.
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Syndetic sets and almost tight Riesz bounds

Theorem (Rε conjecture of Casazza-Tremain)

Let {ui}i∈I be a unit norm Bessel sequence in H with bound B.
Then there exists a universal constant C > 0 such that for any
ε > 0 and any collection of disjoint subsets of I , {Jk}k satisfying
#Jk ≥ r =

⌈
C B
ε4

⌉
, for all k . There exists a selector J ⊂

⋃
k Jk

satisfying
# (J ∩ Jk) = 1 ∀k

and such that {ui}i∈J is a Riesz sequence in H with bounds 1± ε.

Remark

A multi-paving result of Ravichandran-Srivastava (2017) suggest
that r = O( B

ε2 ) should work. Hence, this would yield syndetic Riesz

sequences of exponentials in L2(S) with Riesz bounds |S|2π (1± ε)
and gaps O( 1

|S|ε2 ) instead of O( 1
|S|ε4 ).
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Open problems on syndetic Riesz sequences

Question

Does an arbitrary measurable set S ⊂ T of (almost full) measure
admit an exponential Riesz sequence E (Λ), Λ ⊂ Z, such that

inf
λ,µ∈Z\Λ,λ 6=µ

|λ− µ| ≥ C

|T \ S|
?

(B., Londner) True if S ⊂ T is open using quasicrystals.

Question (Olevskii)

Does an arbitrary measurable set S ⊂ T of finite measure admit an
exponential Riesz basis E (Λ) for some Λ ⊂ R?
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