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ScX
Extending a function f : S —» Y
to
afunction F: X - Y

Interpolation: existence.

Sampling: construction - use f to describe and find F.



ScX, f:8§->Y

Extension

F:X-Y |F-f]l=0

Approximation

F:X>Y |F-fl<e

Analysis: extensions unique, “so" usually do not exist.

Analytic agnostic: believes there is at most one God.

Approximation: analyst’s substitute for extension.



Approximation: a GOOD substitute for extension

ScX, f:8-Y

Extension: dF : X — Y,
FF=f1=0

Approximation: Ve > 0, dF : X — ¥,
F:X->Y |F-fl<e

Heisenberg Uncertainty Principle: If e small enough (smaller
than diameter of an electron ?), no future instrument will
detect difference

between € and O,
hence
between F and f.



Complex approximation
On compact sets K ¢ C well known.
On closed sets F' c C, well developed, not well known.
Carleman 1927. For arbitrary continuous functions ¢ and

e > 0, on R, there exists an entire function f, such that

If(x) —o(x)| < e(x), VYxeR.

Dirichlet problem for upper half-plane. (Nevanlinna 1925)
Given ¢ continuous on R, there exists u continuous on
y > 0, harmonicony > 0,

u(x) = o(x), VYxekR.

Proof (Kaplan 1955). Carleman = 1 f entire.

If — ¢l < 1.
Solution

M:P¢_f+f,

where P,_ ¢ is the Poisson integral of ¢ — f for the upper
half-plane.



Negilgeable sets in potential theory

A set E is said to be polar, if there is a subharmonic func-
tion s in a neighbourhood of E, such that E c s~ !(—).

A compact set is polar iff it is of zero capacity.

Polar sets are undetectable by Brownian motion.
That is, Brownian motion almost surely misses them.

Polar sets are removeable singularities for bounded har-
monic functions.



Cave domain U cR"=R" 1 xR, n>2

U= (U’ c,d) =
(X, ) eRV"IXR: ¥ e U, c(X) <y <dX))

Region of R” between the graphs of two functions ¢ and
d defined on a domain U’ c R*"!

Theorem. Let U = (U’, ¢, d) be a cave domain and F’ C
U’ an F, polar set. Then, for every ¢ € C(U), there is a
harmonic function 4 on U such that Yx" € F’,

(h—¢)(x',y) >0, as ylc@), or yTdx).

d (x,d(x"))

h —
Yy U ) (X’, Y)

© —
c (x’, c(x"))

Example. Countable dense subsets of R”~1 are polar.
Main example. U could be upper half-space R x R*.
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Starlike domain U c R". In polar coordinates,
U=U",R) =
{((0,p) e R" = §"1 x [0, +0),: 0 € U’, p < R(H)).

Starlike shell domain U c R”.
U=UrR) =
{(@,p) € S 1 x (0, +c0),: 0 € U’, r(0) < p < R(H)).

We consider a starlike domain to be a degenerate star-
like shell domain.

Theorem. Let U c R”" be a starlike shell domain and
F’ c U’ an F polar set. Then, for every ¢ € C(U), there
is a harmonic function 4 on U such that, V6 e F’,

(h—¢)0,p) >0, as plr@), or pTR®O).



Complex analysis

Lehto 1955.
If 1,45 : [0,271) — [—c0, +c0] are measurable functions,
there exists f holomorphic in D c C, such that

li/rri f(ré?) =y 1(0) + ivy(©), for ae. 6€l0,2n).

Theorem.
If Yi,¥p : T" — [—o0,+00] are measurable functions,
there exists f = u + iv holomorphic in D", such that

li 0) =y 1(0), Lmv(ro) =yr0), ae OHeT"
r%u(r) ¥1(0) rl/ﬂ}v(r) Yo(0), a.e

Remark. This does not follow from potential theory. Po-
tential theory might give us harmonic functions u and v,
but we would need for u and v to satisfy the system of
Cauchy-Riemann equations.



Approximating continuous functions

For a compact set K ¢ R, denote by P(K) the functions
on K which are uniform limits of polynomials.

Weierstrass 1885.
If 1 is a closed interval, then P(I) = C(1).

Stone-Welerstrass. A subalgebra A ¢ C(K) is dense in
C(K) if it contains constants and separates points.

Corollary. If K c R", then P(K) = C(K).
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Complex approximation

For a compact set K c C", denote by C(K) the continu-
ous (complex) functions on K and by P(K) the functions
on K which are uniform limits of (complex) polynomials.

Complex Stone-Weierstrass. A subalgebra A c C(K) is
dense in C(K) if it contains constants, separates points
and contains conjugates.

This is not a theorem on complex analysis, but merely
a theorem on complex algebra and complex topology,
because the conjugate of a (complex) analytic function
is rarely a (complex) analytic function. For example, the
conjugate of the function z — z is the function z — z,
which is not (complex) analytic.
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Authentic complex approximation
Walsh 1926. If J ¢ Cis a Jordan arc, then P(J) = C(J).

Lavrentiev 1936.
If K° =0, P(K) = C(K) iff C\ K is connected.

For approximation on closed sets F' c C, it is natural to
approximate by entire functions rather than polynomials.

Definition. F c C is a Carleman set if, for arbitrary con-
tinuous functions ¢ and € > 0 on F, there exists an entire
function £, such that

1f(2) — (2| < &(z), VzeF.

Carleman 1927. R is a Carleman set.

Arakelian 1964. If F° = , then F is a Carleman set iff
(C U {oo}) \ F is connected and locally connected.
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Arakelian 1964. If F° = (, then F is a Carleman set iff
(C U {0}) \ F is connected and locally connected.

Arakelian’s original formulation. If F° = 0, then F is a
Carleman set iff, for each r > 0, there exists ' > r, such
that each point in C \ F ouside |z] = ¥ can be connected
to oo by a path in C \ F outside |z| = r.

Example.

| 1
F:{z:x+iy:x7&(),y:—sin(—)}UiR.
X X

(C U {o0}) \ F is connected but not locally connected.

Generalization. Q ¢ C open. F c Q closed. Fis a
Carleman set in Q if, for every ¢ and g in C(F), with £ > 0,
there exists f holomorphic in Q2 such that

1f(2) — ()| < &(z), VzeF.

Arakelian 1968. F° = 0. F c Q is a Carleman set in
Q iff Q* \ F is connected and locally connected, where
Q* = QU {x} is the one-point compactification of Q.
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Arakelian 1968. F° = 0. F c Q is a Carleman set in Q iff
Q* \ F is connected and locally connected.

Example: Q arectangle and F a union of horizontal lines.
Then, Q" \ F' is connected and locally connected.

14



Arakelian 1968. F° = 0. F c Q is a Carleman set in Q iff
Q* \ F is connected and locally connected.

Example: Q a disc of finite or infinite radius and F a union
of rays. Then, Q*\ F is connected and locally connected.
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Arakelian 1964. If F° = (, then F is a Carleman set iff
(C U {o0}) \ F is connected and locally connected.

Boivin thesis 1984 F° = ( in open Riemann surface Q.
Then F is a Carleman set iff Q* \ F is connected and
locally connected.

Reminder
Walsh 1926. If J c Cis a Jordan arc, then P(J) = C(J).
Not true in C*, n > 1.

Chacrone, G, Nersessian 1998. Q; open Riemann sur-
faces, j=1,...,n. F; Carleman sets in Q;. Then,
F=F; x---xFyisaCarlemansetin Q =0Q; x---x£,.

Theorem.
If ¢ € C(D"), there is a function f holomorphic in D",
such that

(f—¢)rd) -0, as r 1, for ae. 6eT"
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Proof for the disc D!.

Pretend this is the disc and the left edge is the unit circle
and horizontal lines are rays.

HF;. Cc T, closed nowhere dense. F’ = U]-F;., m(F’) = 2n.
Fj:{z:reie:rj£r< 1, eiQEF}}, ri /1

F=F{UF,U---
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F:FIUFQU“'

Each F; is a closed nowhere dense set of rays each of
which is of length 1 — r. which tends to zero. The col-
lection of F;’s is a locally finite family, so the union F
is closed nowhere dense. D* \ F is connected and lo-
cally connected so F is a Carleman set in D. We can
approximate a continuous function ¢ on F by functions
holomorphic on D.

Chacrone, G, Nersessian 1998. Q; open Riemann sur-
faces, j = 1,...,n. Fj Carleman sets in Q. Then,
F=F;x---xFyisaCarlemansetin Q =0Q; x---x£,.

Theorem.
If ¢ € C(D"), there is a function f holomorphic in D",
such that

(f—@)@9) -0, as r "1, for ae. 6T

Proof. Case n = 1 and CGN Theorem.
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We have just proved:

Theorem 1.
If ¢ € C(D"), there is a function f holomorphic in D",
such that

(f—¢)r9) -0, as r 71, for ae. 6T

Theorem 2.
If Yi,¥p : T" — [—o00,+00] are measurable functions,
there exists f = u + iv holomorphic in D", such that

li 0) = ¢1(0), Lmv(ro) =yr0), ae. 0T
rl/niu(r) 1) rl/n}v(r) Y2(0), a.e

Theorem 2 follows from Theorem 1, if we can prove the
following.

Lemma. Set y = ¢ + iyr. Then, there exists ¢ € C(D")
having radial limits ¥(6), at almost all 6 € T".

May seem contradictory, but we are not asking that ¢
have a continuous extension to even one single point of
T".
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Lemma

FixneNN, 0<c< +oo,

measurable y1,yo : T" — [—c,+c], ¥ =y + iys.
Then, there exists ¢ = ¢ + iy € C(D") :

lim ¢(r@) = y(@) for a.e. 6HeT"
r/1

Proof. . May assume ¢ = 1. By Lusin’s theorem,

3 F; c T" disjoint compact nowhere dense, j=1,2,....
The restriction of ¢ to each F} is continuous.

For F/ = Fi U Fé U---, Haar measure m(F’") = 1.
SetFj={r6:(1-1/j)<r<1, HeF}.}.

Extend the restriction of ¢ on F; to a continuous function
Q: F;.UF]- — [=1,+1], ¢:F;— (=1,+1), goIF} =y

lim @(r8) = w(6), forall 6eF., j=1,2,....
r/IsO(r) y(6) poJ

(F ;) j locally finite family closed sets, so F = U ;F; closed
and ¢ : F — (-1, +1) continuous. Extend ¢ continuously
@ :D" - (—1,+1). O
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Recall: We just now proved

Lemma

Y measurable i, ¢y : T" — [—o0, +00], ¥ = Y1 + iy,
d continuous ¢, ¢ : D" — (=00, +00), @ = @1 + iY>.

limo(rd) = y(0) for ae. 0T
r/

Theorem
Fix ¢ € C(D"),
There exists function f holomorphic in D", such that

(f—)@9) -0, as r "1, for ae. 6HeT"

Theorem
If Y1, : T" — [—o0,+00] are measurable functions,
there exists f = u + iv holomorphic in D", such that

li 0) = y1(0), 1 0) = Yn(0), ae. 0T
r%u(r) Y1(0) F%V(r) Yn(0), a.e
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The set of boundary points at which a continuous func-
tion has radial limits is measurable and the radial limit
function is measurable on this measurable set. We have
the following converse.

Theorem.

V measurable Al, A% c T

¥ measurable | : Al - [—c0, +00], Yy : A2 = [—00, +00],
d holomorphic f : D" - C, f = u+ iv, such that

lim u(rd) = 1(0), for ae. 6O€Al;
r/'1
lim v(r0) = Yo(0), for ae. 6€ A%
r/'1

Cr(u,0) = [0, +0], for ae. OeT'\ Al

Cr(v,0) = [~o0, +o0], for ae. 6T\ A>
where Cg(u, 0) is the radial cluster set of u at 8 (similarly
for v).

Cr(u,0) = {w € [—oo, +oo] : Aty 7 1, limy_,cou(t3,0) = w}

Cr(u, 0) is the set of values approached radially
by u at the boundary point 6.
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What we have shown:

For harmonic functions, we can prescribe limits along
segments ending at a subset of the boundary which is
small in the sense of potential theory, a countable union
of closed polar sets.

For holomorphic functions on the polydisc, we can pre-
scribe limits along radii ending at a subset of the bound-
ary which is topologically small, a countable union of
closed nowhere dense sets.

An important difference is that sets which are topologi-
cally small can have full measure, while polar sets are of
measure zero.

Krantz and Min (2020) have a result for holomorphic func-
tions on the ball in C", which is similar to our result for the
polydisc. Their work extends work by Hakim and Sibony.
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For holomorphic approximation, we used conditions which
are both necessary and sufficient, in order for a set to be
a Carleman set.

For harmonic approximation, these same conditions are
no longer necessary, but they are still sufficient, provided
we add a condition on polarity.

Thus, the only difficulty in translating the holomorphic
proof to the harmonic proof resides in properties of polar
sets. An essential tool is a result of Fuglede in axiomatic
potential theory regarding the relations between projec-
tions and liftings of polar sets in harmonic spaces.
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MERCI !
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