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reproducing kernel

D denotes open unit disk in C.
dA denotes area measure on D,
normalized so that dA(D) = 1.

De�nition: Bergman space

The Bergman space L2
a is the set of

analytic functions h on D such that∫
D
|h|2 dA <∞.

With the inner product

〈h, g〉 =
∫
D
h g dA,

the Bergman space L2
a is a Hilbert space.

For each z ∈ D, the point evaluation map

h 7→ h(z)

is a bounded linear functional on L2
a.

Thus for each z ∈ D, ∃kz ∈ L2
a such that

h(z) = 〈h, kz〉
for all h ∈ L2

a. (z = zee = zed)
kz is called the reproducing kernel at z for L2

a.
If z, w ∈ D, then

kz(w) =
1

(1− zw)2
.

Thus if h ∈ L2
a and z ∈ D, then

h(z) =

∫
D

h(w)

(1− zw)2
dA(w).
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Berezin transform

De�nition: normalized reproducing kernel

For z ∈ D the normalized reproducing kernel

Kz ∈ L2
a and is de�ned by

Kz =
kz
‖kz‖2

.

Thus ‖Kz‖2 = 1 for all z ∈ D.
Note that

‖kz‖2 =
√
〈kz, kz〉 =

√
kz(z) =

1

1− |z|2
.

Thus

Kz(w) =
1− |z|2

(1− zw)2

for all z, w ∈ D.

For z ∈ D, the reproducing kernel kz
satis�es

h(z) = 〈h, kz〉

for all h ∈ L2
a.

kz(w) =
1

(1− zw)2
.

De�nition: Berezin transform [5]

For a bounded linear operator

S : L2
a → L2

a,

the Berezin transform of S is the
function

S̃ : D→ C

de�ned by

S̃(z) = 〈SKz,Kz〉.

Note that

|S̃(z)| = |〈SKz,Kz〉| ≤ ‖SKz‖2 ‖Kz‖2 ≤ ‖S‖
for all z ∈ D.
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properties of the Berezin transform

S̃(z) = 〈SKz,Kz〉

If S is a bounded operator on L2
a, then

|S̃(z)| ≤ ‖S‖ for all z ∈ D;
S̃ is a real analytic function on D ⊂ R2;

S̃∗ = S̃.

The map
S 7→ S̃

is linear and injective.

Thus S̃ contains all information about S.
What properties of S can be deduced from
properties of S̃?
Example: S is self-adjoint ⇐⇒

S̃ is a real-valued function.

Claim: Kz → 0 weakly in L2
a as |z| ↑ 1.

In other words, for every h ∈ L2
a, we have

〈h,Kz〉 → 0 as |z| ↑ 1.

Proof: Suppose h ∈ L2
a and ε > 0. There

exists a bounded analytic function f on D
such that ‖h− f‖2 < ε. Now

|〈h,Kz〉| ≤ |〈h− f,Kz〉|+ |〈f,Kz〉|

≤ ‖h− f‖2 + (1− |z|2)|f(z)|

< ε+ (1− |z|2)‖f‖∞
< 2ε

for |z| su�ciently close to 1.
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compact operators

Compact operators send sequences
converging weakly to 0 to sequences
converging to 0 in norm.

If S : L2
a → L2

a is compact, then

S̃(z)→ 0 as |z| ↑ 1.
Proof:

|S̃(z)| = |〈SKz,Kz〉| ≤ ‖SKz‖2 → 0

as |z| ↑ 1.

Is the converse true? In other words, if
S : L2

a → L2
a is bounded and

S̃(z)→ 0 as |z| ↑ 1,
then is S compact? No!

Example: De�ne S : L2
a → L2

a by

(Sf)(z) = f(−z).
Then S is not compact. In fact, S is unitary.
However,

S̃(z) = (1− |z|2)2〈Skz, kz〉

= (1− |z|2)2(Skz)(z)

=
(1− |z|2)2

(1 + |z|2)2
because

kz(w) =
1

(1− zw)2
→ 0 as |z| ↑ 1.
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Toeplitz operators

Let P : L2(D)→ L2
a be the orthogonal

projection of L2(D) onto L2
a.

If u ∈ L2(D) and z ∈ D, then

(Pu)(z) = 〈Pu, kz〉
= 〈u, kz〉

=

∫
D

u(w)

(1− zw)2
dA(w).

For f ∈ L∞(D), de�ne the Toeplitz

operator Tf : L
2
a → L2

a by

Tfh = P (fh).

Clearly
‖Tf‖ ≤ ‖f‖∞.

If f ∈ L∞(D) and z ∈ D, then

T̃f (z) = 〈TfKz,Kz〉
= 〈P (fKz),Kz〉
= 〈fKz,Kz〉

= (1− |z|2)2
∫
D

f(w)

|1− zw|4
dA(w).

De�nition: Berezin transform of function

For f ∈ L∞(D), the Berezin transform of f is
the function f̃ : D→ C de�ned by

f̃ = T̃f .

Thus if z ∈ D then

f̃(z) = (1− |z|2)2
∫
D

f(w)

|1− zw|4
dA(w).
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compact Toeptiltz operators with symbol continuous on D

f̃(z) = (1− |z|2)2
∫
D

f(w)

|1− zw|4
dA(w)

Because

1 = (1− |z|2)2
∫
D

1

|1− zw|4
dA(w)

for all z ∈ D, think of f̃(z) as a weighted
average of the values of f(w), with most
of the weight near z if |z| ≈ 1.

Thus if f ∈ C(D), then f̃ ∈ C(D) and
f̃ |∂D = f |∂D.

Coburn [6]

Suppose f ∈ C(D). Then the following
are equivalent:

1 Tf is compact.

2 f |∂D = 0.

3 f̃(z)→ 0 as |z| ↑ 1.
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Berezin transforms of harmonic functions

f̃(z) = (1− |z|2)2
∫
D

f(w)

|1− zw|4
dA(w)

Let H∞ = bounded analytic functions
on D. If f ∈ H∞ and h ∈ L2

a, then

Tfh = fh.

If f ∈ H∞, then
f̃(z) = T̃f (z)

= (1− |z|2)2〈Tfkz, kz〉
= (1− |z|2)2〈fkz, kz〉
= (1− |z|2)2f(z)kz(z)
= f(z).

Thus f ∈ H∞ =⇒ f̃ = f .

Thus the real part of each function in H∞ equals
its Berezin transform. This leads to:
If u is a bounded harmonic function on D,
then ũ = u.
Is the converse true?
If u ∈ L∞(D) and ũ = u, is u harmonic? Yes!

Engli² [8]

Suppose u ∈ L∞(D). Then

u is harmonic on D ⇐⇒ ũ = u.

Is the result above valid on the unit ball in Cn,
with harmonic replaced byM-harmonic?
Ahern, Flores, Rudin [1]: The Englis result above
holds on the unit ball of Cn if and only if n ≤ 11.
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then ũ = u.
Is the converse true?
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Ahern, Flores, Rudin [1]: The Englis result above
holds on the unit ball of Cn if and only if n ≤ 11.
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back to Toeplitz operators

For f ∈ L∞(D), de�ne the Toeplitz

operator Tf : L
2
a → L2

a by

Tfh = P (fh),

where P is the orthogonal projection of
L2(D) onto L2

a.

(Tfh)(z) =

∫
D

f(w)h(w)

(1− zw)2
dA(w)

for f ∈ L∞(D), h ∈ L2
a, and z ∈ D.

f̃(z) = T̃f (z)

= (1− |z|2)2
∫
D

f(w)

|1− zw|4
dA(w)

for f ∈ L∞(D) and z ∈ D.

A., Zheng [4]

If S is a �nite sum of �nite products of Toeplitz
operators then the following are equivalent:

1 S is compact.

2 S̃(z)→ 0 as |z| ↑ 1.
3 ‖SKz‖2 → 0 as |z| ↑ 1.

Previously known special cases of
f̃(z)→ 0 as |z| ↑ 1 =⇒ Tf is compact:

f is a nonnegative function on D. (Zhu [16])

f is a radial function. (Korenblum and Zhu [9])

f is uniformly continuous with respect to the
hyperbolic metric. (Stroetho� [14])
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Hankel operators

Recall that P denotes the orthogonal
projection of L2(D) onto L2

a. Thus
I − P is the orthogonal projection of
L2(D) onto L2(D)	 L2

a, which is the
orthogonal complement of L2

a.

For g ∈ L∞(D), the Hankel operator

Hg : L
2
a → L2(D)	 L2

a

is de�ned by

Hgh = (I − P )(gh).

Suppose g ∈ L∞(D). Then

g ∈ H∞ ⇐⇒ Hg = 0.

If g ∈ L∞(D), h ∈ L2
a, and z ∈ D, then

(Hgh)(z) = g(z)h(z)−
(
P (gh)

)
(z)

=

∫
D

(
g(z)− g(w)

)
h(w)

(1− zw)2
dA(w).

For which g ∈ L∞(D) is Hg compact? Note
that Hg does not map L2

a into L2
a and thus it

does not make sense to take the Berezin
transform of Hg. However,

Hg is compact ⇐⇒ Hg
∗Hg : L

2
a → L2

a is compact.

If f, g ∈ L∞(D), then

Hf
∗Hg = Tfg − TfTg.
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Hankel operators with conjugate analytic symbol

A. [2]

Suppose f ∈ H∞. Then
Hf is compact ⇐⇒ lim

|z|↑1
(1− |z|2)f ′(z) = 0.

Thus if f ∈ H∞ ∩ (Dirichlet space),
then Hf is compact.

There exist Blaschke products f with
in�nitely many zeros such that
lim|z|↑1(1− |z|2)f ′(z) = 0 (see [12]).
Thus there exist Blaschke products f
with in�nitely many zeros such that Hf

is compact.

Proof in one direction:

Hf is compact

⇐⇒ Hf
∗Hf is compact

⇐⇒ H̃f
∗Hf (z)→ 0 as |z| ↑ 1

⇐⇒ 〈Hf
∗HfKz,Kz〉 → 0 as |z| ↑ 1

⇐⇒ ‖HfKz‖2 → 0 as |z| ↑ 1

⇐⇒ ‖fKz − P
(
fKz

)
‖2 → 0 as |z| ↑ 1

⇐⇒ ‖fKz − f(z)Kz‖2 → 0 as |z| ↑ 1

⇐⇒ ‖
(
f − f(z)

)
Kz‖2 → 0 as |z| ↑ 1.
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bound on (1− |z|2)f ′(z)

Suppose g =

∞∑
n=0

anz
n ∈ L2

a. Then

‖g−g(0)‖22 =
∞∑
n=1

|an|2

n+ 1
≥ |a1|

2

2
=
|g′(0)|2

2
.

Thus

(∗) |g′(0)| ≤
√
2 ‖g − g(0)‖2.

For z ∈ D, de�ne ϕz : D→ D by

ϕz(w) =
z − w
1− zw

.

Then

|ϕz
′(w)| = 1− |z|2

|1− zw|2
.

For f ∈ H∞, the operator Hf is compact

⇐⇒ ‖
(
f − f(z)

)
Kz‖2 → 0 as |z| ↑ 1.

If z ∈ D and f ∈ H∞ then

|(f ◦ ϕz)
′(0)| = |f ′

(
ϕz(0)

)
ϕz
′(0)|

= (1− |z|2)|f ′(z)|.
Use (∗) with g = f ◦ ϕz, getting

(1− |z|2)|f ′(z)| ≤
√
2‖f ◦ ϕz − f(z)‖2

=
√
2‖
(
f − f(z)

)
Kz‖2.

Thus if f ∈ H∞ and Hf is compact, then

lim
|z|↑1

(1− |z|2)f ′(z) = 0.
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Bloch space and little Bloch space

De�nition: Bloch space

The Bloch space B is the set of analytic
functions f on D such that

sup
z∈D

(1− |z|2)|f ′(z)| <∞.

The little Bloch space B0 is the set of
analytic functions f on D such that

lim
|z|↑1

(1− |z|2)f ′(z) = 0.

The Bloch space B is a Banach space and
B0 is a closed subspace with the norm

‖f‖B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)|.

For g ∈ L2(D), de�ne the Hankel operator
Hg from H∞ (with the L2

a-norm) to L2
a by

Hgh = (I − P )
(
gh
)
.

A. [2]

Suppose f ∈ L2
a. Then

Hf is bounded if and only if f ∈ B.
Hf is compact if and only if f ∈ B0.

The Möbius invariant space generated by
H2 is BMOA.

The Möbius invariant space generated by
L2
a is B.
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dual and predual of L1
a

Coifman, Rochberg, and Weiss [7]

(L1
a)
∗ ≈ B, meaning the dual of L1

a can be
identi�ed with B.

More precisely, if f ∈ B then

h 7→ lim
r↑1

∫
rD
h(z)f(z) dA(z)

de�nes a bounded linear functional on L1
a.

Furthermore, if ϕ : L1
a → C is a bounded linear

functional, then ∃ a unique f ∈ B such that

ϕ(h) = lim
r↑1

∫
rD
h(z)f(z) dA(z)

for all h ∈ L1
a.

Also, (B0)∗ ≈ L1
a.

Recall that

P : L2(D)→ L2
a

is orthogonal projection.

C(D) ⊂ L∞(D) ⊂ L2(D).

P
(
L∞(D)

)
= B.

Also,
P
(
C(D)

)
= B0.
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Littlewood on Bloch's theorem

Littlewood ([10], page 145):

�Bloch's theorem. One of the queerest
things in mathematics, and one might
judge that only a madman could do it.
He was aiming at an elementary proof of
Picard's theorem, an impudently damn
fool idea. With this as a start it is a just
reasonable stroke of insight to conjecture
Bloch's theorem. The result once
conjectured (and being true), a proof
was, of course, bound to emerge sooner
or later. But, to keep up the air of farce
to the end, the proof itself is crazy.�
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