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reproducing kernel

D denotes open unit disk in C.
dA denotes area measure on D,
normalized so that dA(D) = 1.

[Deﬁnition: Bergman space B

The Bergman space L? is the set of
analytic functions h on D such that

/|h|2dA < oo.
D

1\
With the inner product

(hg) = / hgdA,
D

the Bergman space L2 is a Hilbert space.




reproducing kernel

D denotes open unit disk in C.
dA denotes area measure on D,
normalized so that dA(D) = 1.

[Deﬁnition: Bergman space

\

The Bergman space L? is the set of
analytic functions h on D such that

/|h|2dA < oo.
\ D

With the inner product

(hg) = / hgdA,
D

the Bergman space L2 is a Hilbert space.

For each z € D, the point evaluation map
h+— h(z)

is a bounded linear functional on L2.
Thus for each z € D, 3k, € Lg such that

h(z) = (h k)
for all h € L2. (z = zee = zed)
k. is called the reproducing kernel at = for L2.
If z,w €D, then
b
(1—2zw)?
Thus if h € L?L and z € D, then

h(z) = / Miz")? dA(w).
D (

1 —zw)

k.(w) =



Berezin transform

For z € D, the reproducing kernel k.

satisfies
h(z) = (h, k)
for all h € L2.
1
k() = gy



Berezin transform

(Definition: normalized reproducing kernep

For z € D the normalized reproducing kernel
K, € L2 and is defined by
k.

K, = :
N

\_

Thus | K,||2 = 1 for all z € D.

For z € D, the reproducing kernel k.
satisfies

h(z) = (h, k)
for all h € L2.
1
k() = T Z0



Berezin transform

(Definition: normalized reproducing kernep For z € D, the reproducing kernel k.
satisfies
For z € D the normalized reproducing kernel h(z) = (h, k)
K, € L2 and is defined by )
forall h € L.
k.
T 1
z|12
k., = —
\- J W) =Ty
Thus | K,||2 = 1 for all z € D.
Note that
1
kxlle = v/ (kz, kz) k. _
|| H2 \/ \/ 1 — ’2’2
Thus "
1—1z
K.(w) = ——
(W) = T —Z0p

for all z,w € D.



Berezin transform

(Definition: Berezin transform [5]\

(Definition: normalized reproducing kernep

For z € D the normalized reproducing kernel For a bounded linear operator

K, € L2 and is defined by
k.
ezl

K, =

\_

Thus | K,||2 = 1 for all z € D.

S: L2 L2
the Berezin transform of S is the

function N
S:D—C

Note that defined by
1 ~
= _— S == SKZ7KZ o
Thus | |2
1—1z
K, -
(W) = T —Z0p

for all z,w € D.



Berezin transform

( Definition: normalized reproducing kernel ) [Definition: Berezin transform [5]
For z € D the normalized reproducing kernel For a bounded linear operator
2 . .
K, € L and is defined by S: L2 12,
k. . :
K, = Tl the Berezin transform of S is the
\_ =112 Y, function N
Thus | K,||2 = 1 for all z € D. SRS
Note that defined by
1 ~
= _— S z) = SKZ7KZ .
[Eallz = v/ ks b2) = Va(2) = — oE L (2) = ) )
Thus L2 Note that
— |z ~
Kew) = o 8(2)] = |(SK. )| < [ISK. 2| Kl < IS
for all z € D.

for all z,w € D.

I



properties of the Berezin transform

S(z) = (SK., K.)
If S is a bounded operator on LZ, then
o |S(2)| < |9 for all z € D;
o Sisa real analytic function on D C R?;

o S*=3.
@ The map _
S8

is linear and injective.



properties of the Berezin transform

S(z) = (SK., K.)
If S is a bounded operator on LZ, then
o |S(2)| < |9 for all z € D;
o Sisa real analytic function on D C R?;

o S*=3.
@ The map _
S8

is linear and injective.
Thus S contains all information about S.
What properties of S can be deduced from
properties of S?
Example: S is self-adjoint <=
S is a real-valued function.



properties of the Berezin transform

g(z) = (SK.,K) Claim: K, — 0 weakly in L2 as |z| 1 1.
If S is a bounded operator on L2, then In other words, for every h € L2, we have
o |S(z)| < ||S] for all z € D; (h, K3) = 0as [z] T 1.
o Sisa real analytic function on D C R?;
o 5 =5
@ The map _
S S

is linear and injective.
Thus S contains all information about S.
What properties of S can be deduced from
properties of S?
Example: S is self-adjoint <=
S is a real-valued function.



properties of the Berezin transform

S(z) = (SK.,K.) Claim: K, — 0 weakly in L2 as |2] 1 1.

If S is a bounded operator on L2, then In other words, for every h € L2, we have
o |S(z)| < ||S] for all z € D; (h, K3) = 0as [z] T 1.

° :S’vls a;eal analytic function on D C R?; Proof: Suppose h € LZ and € > 0. There
@ S*=5. exists a bounded analytic function f on D
@ The map such that ||h — f]l2 < e. Now

58 [(h, KC)] < [(h = [ )|+ (. K2)
is linear and injective. < Hh - fH2 + (1 - |z\2)\f(z)]

Thus S contains all information about S. 9
What properties of S can be deduced from <et+ (1= fllo
properties of S? < 2
Example: S is self-adjoint <=

S is a real-valued function.

for |z| sufficiently close to 1. W



compact operators

Compact operators send sequences
converging weakly to 0 to sequences
converging to 0 in norm.

If S: L2 — L2 is compact, then

S(z) = 0as|z| 1T 1.

Proof:
’§(2)| = |(SK., K.)| < [|SK.|l2 — 0
as |z| 1T 1. 1



compact operators

Compact operators send sequences
converging weakly to 0 to sequences
converging to 0 in norm.

If S: L2 — L2 is compact, then

S(z) = 0as|z| 1T 1.

Proof:
’§(2)| = |(SK., K.)| < [|SK.|l2 — 0
as |z| 1T 1. 1

Is the converse true? In other words, if
S: L2 — L2 is bounded and

S(z) = 0as |z T1,

then is S compact?



compact operators

Compact operators send sequences
converging weakly to 0 to sequences
converging to 0 in norm. (SH)(z) = f(—=2).

Example: Define S: L2 — L2 by

If S: L2 — L2 is compact, then Then S is not compact. In fact, S is unitary.

S(z) = 0as|z| 1T 1.

Proof:
’§(2)| = |(SK., K.)| < [|SK.|l2 — 0
as |z| 1T 1. 1

Is the converse true? In other words, if
S: L2 — L2 is bounded and

S(z) = 0as |z T1,

then is S compact? No!



compact operators

Compact operators send sequences
converging weakly to 0 to sequences
converging to 0 in norm.

If S: L2 — L2 is compact, then

S(z) = 0as|z| 1T 1.

Proof:
’§(2)| = |(SK., K.)| < [|SK.|l2 — 0
as |z| 1T 1. 1

Is the converse true? In other words, if
S: L2 — L2 is bounded and

S(z) = 0as |z T1,

then is S compact? No!

Example: Define S: L2 — L2 by
(Sh)(2) = f(=2).

Then S is not compact. In fact, S is unitary.
However,

S(2) = (1 = |2*)*(Sks, k=)
= (1= 2*)*(Sk2)(2)
1 — |z]?)2
= El n :2;2;2 because ,
k.(w) = A=zu)?

—0as |z 1 1.



Toeplitz operators

Let P: L?(D) — L2 be the orthogonal
projection of L2(DD) onto L2.
If u € L?(D) and z € D, then
(Pu)(2) = (Pu, k)
= (’U,, k)

:/D(u(—w)QdA(w).

1 —zw)



Toeplitz operators

Let P: L?(D) — L2 be the orthogonal
projection of L2(DD) onto L2.
If w € L?(D) and z € D, then

(Pu)(z) = (Pu, k)
= (u, k)

:/D(lli(fz)u)QdA(w)'

For f € L>(DD), define the Toeplitz
operator Ty: L2 — L2 by

Tsh = P(fh).

Clearly
IT¢ [l < 1l oo



Toeplitz operators

Let P: L?(D) — L2 be the orthogonal ﬁ(z) =(I'TK.,K)
projection of L2(DD) onto L2. = (P(fK.),K.)
If u € L*(D) and 2 € D, then — (fK K7>
(Pu)(2) = (P, ) op [ S
= (u, k) = (1= /D|1—zw4 Alw)
_ u(w)
= /D Ty dA(w).

For f € L>(DD), define the Toeplitz
operator Ty: L2 — L2 by

Tsh = P(fh).

Clearly
IT¢ [l < 1l oo

If fe L>*(D) and z € D, then
S



Toeplitz operators

Let P: L?(D) — L2 be the orthogonal

projection of L2(DD) onto L2.
If w € L?(D) and z € D, then

(Pu)(z) = (Pu, k)
= (u, k)

u(w

= /]D) (1—(21)0)2 dA(w).
For f € L>(DD), define the Toeplitz
operator Ty: L2 — L2 by

T¢h = P(fh).
Clearly

ITel < 11 flloo-
If fe L>*(D) and z € D, then

(Definition: Berezin transform of function\

For f € L>°(ID), the Berezin transform of f is
the function f: D — C defined by

f=1T.
Thus if z € D then

| Fo-a-eey | daw)

J




compact Toeptiltz operators with symbol continuous on D

foy= =Py [ L daw)

Because

1:(1—|z|2)2/D‘1_1ZWLdA(w)

for all z € D, think of f(z) as a weighted
average of the values of f(w), with most
of the weight near z if |z] =~ 1.

Thus if f € C(D), then f € C(D) and

flan = flan.



compact Toeptiltz operators with symbol continuous on D

For=a- ke [ |

Coburn 6] A
Because Suppose f € C(D). Then the following
1 i 0
1= (1- |z|2)2/ L A(w) are equivalent:
p |1 —Zw| O 1% is compact.
for all z € D, think of f(z) as a weighted _
average of the values of f(w), with most @ flon =0.
of the weight near z if |z] =~ 1. e f(z) > 0as |2 1 1. )

Thus if f € C(D), then f € C(D) and

flan = flan.



Berezin transforms of harmonic functions

For= =B [ I i)

Let H*° = bounded analytic functions
onD. If fe H® and h € L?I, then

Tih = fh.



Berezin transforms of harmonic functions

TON (1 1412)2 f(w)

fo) = =1y [ TR daq)
Let H*° = bounded analytic functions
onD. If fe H® and h € L?I, then

T¢h = fh.
If f € H>, then
F(z) = Ty(2)

= (1= [2)*(Trks, k=)
= (1= o) (fhe )
= (1= [2)?f(2)k=(2)
= f(2).
Thus f € H® = f=f.
S



Berezin transforms of harmonic functions

Thus the real part of each function in H*® equals
J’c”(z) —(1— |z|2)2/ f(i”) L dA(w) its B.erezin transform. Th.is Ieads.to:

D |1 —Zw| If v is a bounded harmonic function on D,
then u = u.

Let H*° = bounded analytic functions
onD. If fe H® and h € L?I, then

T¢h = fh.
If f € H>, then
F(z) = Ty(2)

= (1= [2])*(Tyk=, k=)
= (1= [2[*)*(fkz k=)

= (1= [2[*)?f(2)k=(2)
= f(2).

Thus f € H® = [=F.
S



Berezin transforms of harmonic functions

Thus the real part of each function in H*® equals
J’c”(z) —(1— |z|2)2/ f(i”) L dA(w) its B.erezin transform. Th.is Ieads.to:

D |1 —Zw| If v is a bounded harmonic function on D,
then u = u.

Let H*° = bounded analytic functions

onD. If f € H* and h € L2, then Is the converse truej ] ]
If w e L>®(D) and u = u, is u harmonic?

T¢h = fh.
If f € H>, then
F(z) = Ty(2)

= (1= [2])*(Tyk=, k=)
= (1= [2[*)*(fkz k=)

= (1= [2[*)?f(2)k=(2)
= f(2).

Thus f € H® = [=F.
S



Berezin transforms of harmonic functions

For= =B [ I i)

Let H*° = bounded analytic functions
onD. If fe H® and h € Lg, then

Trh = fh.
If f € H>, then
F(2) =Ty(2)

= (1= [2)*(Tykz, k2)
= (1= |2*)*(fk, kz)
= (1= [2*)*f(2)k=(2)
= f(2).

Thus f € H® = [=F.

Thus the real part of each function in H*® equals
its Berezin transform. This leads to:

If 4 is a bounded harmonic function on D,

then ©w = u.

Is the converse true?

If w e L>®(D) and u = u, is u harmonic? Yes!

(Englis' [8]

LSuppose u € L*(D). Then J

% is harmonicon D <— u = w.




Berezin transforms of harmonic functions

For= =B [ I i)

Let H*° = bounded analytic functions
onD. If fe H® and h € LZ, then

Trh = fh.
If f € H>, then
F(2) =Ty(2)

= (1= [2)*(Tykz, k2)
= (1= |2*)*(fk, kz)
= (1= [2*)*f(2)k=(2)
= f(2).

Thus f € H® = [=F.

Thus the real part of each function in H*® equals
its Berezin transform. This leads to:

If 4 is a bounded harmonic function on D,

then ©w = u.

Is the converse true?

If w e L>®(D) and u = u, is u harmonic? Yes!

(Englis' [8]

LSuppose u € L*(D). Then J

% is harmonicon D <— u = w.

Is the result above valid on the unit ball in C",
with harmonic replaced by M-harmonic?



Berezin transforms of harmonic functions

For= =B [ I i)

Let H*° = bounded analytic functions
onD. If fe H® and h € LZ, then

T¢h = fh.
If f € H>, then
F(z) = Ty(2)

= (1= [2)*(Tykz, k2)
= (1= |2*)*(fk, kz)
= (1= [2*)*f(2)k=(2)
= f(2).

Thus f € H® = [=F.

Thus the real part of each function in H*® equals
its Berezin transform. This leads to:

If 4 is a bounded harmonic function on D,

then ©w = u.

Is the converse true?

If w e L>®(D) and u = u, is u harmonic? Yes!

(Englis' [8]

LSuppose u € L*(D). Then J

% is harmonicon D <— u = w.

Is the result above valid on the unit ball in C",
with harmonic replaced by M-harmonic?

Ahern, Flores, Rudin [1]: The Englis result above
holds on the unit ball of C™ if and only if n < 11.



back to Toeplitz operators

For f € L>°(DD), define the Toeplitz
operator Ty: L2 — L2 by

Tyh = P(fh),

where P is the orthogonal projection of
L?*(D) onto L2.

f(w)h(w)
) = [ 5 e 4Aw)

for f € L°(D), h € L%, and 2z € D.

for f € L*°(D) and z € D.



back to Toeplitz operators

For f € L>°(DD), define the Toeplitz e N
operator Ty: L2 — L2 by A., Zheng [4]

Tsh = P(fh), If S is a finite sum of finite products of Toeplitz
where P is the orthogonal projection of operators then the following are equivalent:
L*(D) onto Lg. O S is compact.

Fw)hiw) Q@ S(z) —» 0as |z| 1 1.
T A
@) = [ FOT dAw) @ SKela = 0as o 11 )

for f € L>*(D), h € Lg, and z € D.

f(2) =Ty(2)

for f € L*°(D) and z € D.



back to Toeplitz operators

For f € L>°(DD), define the Toeplitz s ~\
operator Ty: L2 — L2 by A., Zheng [4]

Trh = P(fh), If S is a finite sum of finite products of Toeplitz
where P is the orthogonal projection of operators then the following are equivalent:
L*(D) onto Lg. O S is compact.

fw)h(w) Q@ S(z) —» 0as |z| 1 1.
T¢h dA :
@) = [ G dAw) (@ SKda = 0as 2|11 )
for f € L>*(D), h € L7, and z € D. Previously known special cases of
f(z) = 0as |z| 11 = Ty is compact:
flz) = ﬁ(z) e f is a nonnegative function on D. (Zhu [16])

for f € L*°(D) and z € D.



back to Toeplitz operators

For f € L>°(DD), define the Toeplitz
operator Ty: L2 — L2 by

Tyh = P(fh),
where P is the orthogonal projection of
L?*(D) onto L2.
f(w)h(w)
() = [ e dAw)

for f € L>*(D), h € Lg, and z € D.

f(2) =Ty(2)

for f € L*°(D) and z € D.

( )

A., Zheng [4]

If S is a finite sum of finite products of Toeplitz
operators then the following are equivalent:

@ S is compact.
Q@ S(z) —» 0as |z| 1 1.

e ISK.||l2 — 0 as |z| 1 1.

Previously known special cases of
f(z) = 0as |z| 11 = Ty is compact:

e f is a nonnegative function on D. (Zhu [16])
e fis a radial function. (Korenblum and Zhu [9])



back to Toeplitz operators

For f € L>°(DD), define the Toeplitz
operator Ty: L2 — L2 by

Tyh = P(fh),
where P is the orthogonal projection of
L?*(D) onto L2.
f(w)h(w)
() = [ e dAw)

for f € L>*(D), h € Lg, and z € D.

f(2) =Ty(2)

for f € L*°(D) and z € D.

(A., Zheng [4] A

If S is a finite sum of finite products of Toeplitz
operators then the following are equivalent:

@ S is compact.
Q@ S(z) —» 0as |z| 1 1.

e ISK.||l2 — 0 as |z| 1 1.

Previously known special cases of
f(z) = 0as |z| 11 = Ty is compact:

e f is a nonnegative function on D. (Zhu [16])
e fis a radial function. (Korenblum and Zhu [9])

e f is uniformly continuous with respect to the
hyperbolic metric. (Stroethoff [14])



Hankel operators

Recall that P denotes the orthogonal
projection of L2(D) onto L2. Thus
I — P is the orthogonal projection of
L?*(D) onto L?(D) © L2, which is the
orthogonal complement of L2.
For g € L>°(ID), the Hankel operator
Hy: L2 — L*(D)o L2

is defined by

Hyh = (I - P)(gh).

Suppose g € L>°(ID). Then
ge H*® < H,=0.



Hankel operators

Recall that P denotes the orthogonal |t ; ¢ L®(D), h € L2, and z € D, then

projection of L2(D) onto L2. Thus
I — P is the orthogonal projection of (Hgh)(2) = g(2)h(z) — (P(gh))(z)

L2(D) onto L2(D) © L2, which s the -/ (9(2) — g(w))h(w)
D

orthogonal complement of L2.
For g € L>°(ID), the Hankel operator
H,: L2 -~ D)o L2
is defined by
Hyh = (1 - P)(gh).

Suppose g € L>°(ID). Then
ge H*® < H,=0.



Hankel operators

Recall that P denotes the orthogonal
projection of L2(D) onto L2. Thus
I — P is the orthogonal projection of
L?*(D) onto L?(D) © L2, which is the
orthogonal complement of L2.
For g € L>°(ID), the Hankel operator
Hy: L2 — L*(D)o L2

is defined by

Hyh = (I - P)(gh).

Suppose g € L>°(ID). Then
ge H*® < H,=0.

If g € L*(D), h € L?L, and z € D, then
(Hgh)(2) = g(2)h(2) — (P(gh))(2)

[ (9(2) = g(w)) h(w)
= /11)) 1= ) dA(w).

For which g € L>(D) is H, compact? Note
that H, does not map L2 into L2 and thus it
does not make sense to take the Berezin
transform of H,. However,

H, is compact <= H,*H,: L? — L2 is compact.

If f,g € L>*(D), then

H?* g =Tty —TsT,.



Hankel operators with conjugate analytic symbol
(i )

Suppose f € H*. Then

Hy is compact <= lim (1 — |2) f'(z) = 0.
|2[11




Hankel operators with conjugate analytic symbol
(o )

Suppose f € H*. Then

Hy is compact <= lim (1 — |2) f'(z) = 0.
|2[11

Thus if f € H* N (Dirichlet space),
then Hf is compact.



Hankel operators with conjugate analytic symbol
(o )

Suppose f € H*. Then

Hy is compact <= lim (1 — |2) f'(z) = 0.
|2[11

Thus if f € H* N (Dirichlet space),
then Hf is compact.

There exist Blaschke products f with
infinitely many zeros such that
limpzpsy (1 [2]2)f/(2) = O (see [12])
Thus there exist Blaschke products f
with infinitely many zeros such that Hy
is compact.



Hankel operators with conjugate analytic symbol

(A_ [2] w Proof in one direction:

Hf is compact

Suppose f € H*. Then

Hy is compact <= lim (1 — |2) f'(z) = 0.
|2[11

H?*H? is compact

—_—~—

Hy"Hp(z) = 0 as || 11

Thus if f € H* N (Dirichlet space),

then Hy is compact. (Hf*H7K,,K,) — 0as |z| 11

o

There exist Blaschke products f with |[HFK:[l2 = 0as [2[ 11

infinitely many zeros such that
limpzpsy (1 [2]2)f/(2) = O (see [12])
Thus there exist Blaschke products f
with infinitely many zeros such that Hy
is compact.

|fK. = P(fK.)|l2—0as |z| 11

H?Kz - f(Z)KzHQ — 0 as ’Z‘ T 1
|(f = f(z))K.|l2 = 0 as |z| 1 1.
S

r1r11010107



bound on (1 — |2]?)f'(2)

o0
Suppose g = Z anz™ € L2. Then

n=0
0 2 2 1N |12
9 |an| la1|*  [g'(0)]
lg—g(0)I5 = nriZ 3 5

Thus
(x)  19'(0)] < V2]lg — g(0)]|2-



bound on (1 — |2]?)f'(2)

o0
Suppose g = Z anz™ € L2. Then
n=0

jan? \a1|2 lg'(0)?
Hz—z :

lg=g(0 n—i—l_ 2

Thus
(x) 190 < V2]lg— g(0)]2.

For z € D, define p,: D — D by

Z—w
=(w) = 1—zw’
Then
1—|z]?
I —



bound on (1 — |2]?)f'(2)

o0 .
F H*>, th tor H+ is compact
Suppose g = Zanz” € L2. Then or f e © operator Hy 1s comp

n=0 — ||(f—f(2))1<z||2—>035 |z| T 1.
2 |an|2 \611|2 ’9/(0)|2
— = > = .
Hg 9(0)”2 n§1n 1= 9 9

Thus
(x) 190 < V2]lg— g(0)]2.

For z € D, define p,: D — D by

Z—w
=(w) = 1—2zw
Then
1—|z]?
I —
|302' (w)’ - |1 —Ew!Q'



bound on (1 — |2]?)f'(2)

o0 -
F H*>, th tor H+ is compact
Suppose g = Zanzn € L2, Then or f € e operator H is comp

n=0 = ||(f - f(z))K.|l2 = 0 as [z] T 1.

e = lanl Ja?  |g(0)) .,
lg Q(O)HQ*Zn_i_lZ 5 5 If zeDand f € H*™ then
- (f ow)(0)] = | £ (:(0)) 2 (0)]

Thus
(x)  19'(0)] < V2llg = g(0)]l2- = 1=z ).
For z € D, define ¢,: D — D by
pa(w) = 12—_;:0'
Then
o) = 12



bound on (1 — |z|)f(2)

o0
Suppose g = Z anz" € L2, Then

19'(0)] < V2]lg — g(0)]]2.

For z € D, define p,: D — D by

For f € H*, the operator H? is compact
= [[(f = f(2))K:ll2 = O as |2 T 1.
If ze D and f € H® then
[(f 002)(0)] = ' (:(0)) - (0)]
= (1= ) (2)]-
Use (x) with g = f o ¢, getting
(1= 2P ) < V2 f o0z — f(2)ll2
= V2I|(f ~ f(2)) K:|2.
Thus if f € H* and H7 is compact, then

|h‘m(l—| 22)f'(z) = 0.



Bloch space and little Bloch space

~N

(Definition: Bloch space

The Bloch space B is the set of analytic
functions f on D such that

sup(1 — [2[*)|.f'(2)| < oo.
z€D

The little Bloch space By is the set of

analytic functions f on D such that
|1i‘1%11(1 — |21} f'(2) = 0.
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Bloch space and little Bloch space

(Definition: Bloch space A For g € L?(D), define the Hankel operator
H, from H* (with the L2-norm) to L2 by
The Bloch space B is the set of analytic B
functions f on D such that Hgh = (I = P)(gh).
sup(1 = )] f'(2)] < oo (A 2] b
The little Bloch space By is the set of Suppose f € L2. Then
analytic functions f (2)n D such that o Hyis bounded if and only if f € B.
. /
|l;‘1fT111(1 =29 f'(2) = 0. o Hy is compact if and only if f € By.
\_ J
The Bloch space B is a Banach space and @ The Mébius invariant space generated by
By is a closed subspace with the norm H? is BMOA.
I £ll5 = | £(0)] + sup(1 — |z|*)|f'(2)]. @ The Mbdbius invariant space generated by
€D L% is B.
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dual and predual of L}

(Coifman, Rochberg, and Weiss [7] A Recall that
(L})* ~ B, meaning the dual of L} can be P: L*(D) — L]
identified with B. More precisely, if f € B then is orthogonal projection.
h li%rll/ h(z)f(z) dA(z) C(D) c L*(D) c L*(D).
a rD
defines a bounded linear functional on L. P(L®(D)) = B
Furthermore, if ©: L1 — C is a bounded linear
3 a Also,
functional, then 3 a unique f € B such that P(C’(ﬁ)) _B
= Bp.
p(h) =lim [ h(z)f(z)dA(z)
1 JrD
for all h € L.
Also, (Bo)* ~ L1.
\ so, (Byp) " )




Littlewood on Bloch's theorem

Littlewood ([10], page 145):

“Bloch’s theorem. One of the queerest
things in mathematics, and one might
judge that only a madman could do it.
He was aiming at an elementary proof of
Picard’s theorem, an impudently damn
fool idea. With this as a start it is a just
reasonable stroke of insight to conjecture
Bloch's theorem. The result once
conjectured (and being true), a proof
was, of course, bound to emerge sooner
or later. But, to keep up the air of farce
to the end, the proof itself is crazy.”



References

[1] Patrick Ahern, Manuel Flores, and Walter Rudin, An invariant
volume-mean-value property, J. Funct. Anal. 111 (1993), 380-397.

[2] Sheldon Axler, The Bergman space, the Bloch space, and commutators
of multiplication operators, Duke Math. J. 53 (1986), 315-332.

[3] Sheldon Axler, Bergman spaces and their operators, pages 1-50 in
Surveys of Some Recent Results in Operator Theory, volume |, edited
by John B. Conway and Bernard B. Morrel, Pitman Research Notes in
Mathematics, vol. 171, Longman Scientific & Technical, 1988.

[4] Sheldon Axler and Dechao Zheng, Compact operators via the Berezin
transform, Indiana Univ. Math. J. 47 (1998), 387—400.

[5] Feliks Aleksandrovich Berezin, Covariant and contravariant symbols of
operators, (Russian) lzv. Akad. Nauk SSSR Ser. Mat. 36 (1972),
1134-1167.

English translation: Math. USSR-Izv. 6 (1972), 1117-1151.



References (continued)

[6] Lewis Coburn, Singular integral operators and Toeplitz operators on
odd spheres, Indiana Univ. Math. J. 23 (1974), 433-439.

[7] R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems

for Hardy spaces in several variables, Ann. of Math. 103 (1976),
611-635.

[8] Miroslav Englis, Functions invariant under the Berezin transform, J.
Funct. Anal. 121 (1994), 233-254.

[9] Boris Korenblum and Kehe Zhu, An application of Tauberian theorems
to Toeplitz operators, J. Operator Theory 33 (1995), 353-361.

[10] John E. Littlewood, Littlewood’s Miscellany, revised edition, Cambridge
University Press, 1986.

[11] Richard M. Timoney and Lee A. Rubel, An extremal property of the
Bloch space, Proc. Amer. Math. Soc. 75 (1979), 45-49.



References (continued)

[12] Donald Sarason, Blaschke products in By, pages 337-338 in Linear and
Complex Analysis Problem Book, edited by V. P. Havin, S. V. Hruscév,
and N. K. Nikol’skii, Lecture Notes in Mathematics, vol. 1043,
Springer, 1984.

[13] Karel Stroethoff, Compact Hankel operators on the Bergman space,
llinois J. Math. 34 (1990), 159-174.

[14] Karel Stroethoff, Compact Toeplitz operators on Bergman spaces,
Math. Proc. Cambridge Philos. Soc. 124 (1998), 151-160.

[15] Kehe Zhu, VMO, ESV, and Toeplitz operators on the Bergman space,
Trans. Amer. Math. Soc. 302 (1987), 617-646.

[16] Kehe Zhu, Toeplitz operators on weighted Bergman spaces of
bounded symmetric domains, J. Operator Theory 20 (1988), 329-357.

[17] Kehe Zhu, Operator Theory in Function Spaces, second edition,
American Mathematical Society, 2007.



THANK YOU!




