The Berezin Transform on the Bergman Space

Sheldon Axler

20 July 2021

Workshop on Bergman Spaces Focus Program on Analytic Function Spaces and their Applications Fields Institute

reproducing kernel

 \mathbb{D} denotes open unit disk in \mathbb{C} . dA denotes area measure on \mathbb{D} , normalized so that $dA(\mathbb{D}) = 1$.

Definition: Bergman space

The Bergman space L_a^2 is the set of analytic functions h on $\mathbb D$ such that $\int_{\mathbb D} |h|^2 \, dA < \infty.$

With the inner product

$$\langle h,g\rangle = \int_{\mathbb{D}} h\,\overline{g}\,dA,$$

the Bergman space L_a^2 is a Hilbert space.

reproducing kernel

 \mathbb{D} denotes open unit disk in \mathbb{C} . dA denotes area measure on \mathbb{D} , normalized so that $dA(\mathbb{D}) = 1$.

Definition: Bergman space

The Bergman space L_a^2 is the set of analytic functions h on $\mathbb D$ such that $\int_{\mathbb D} |h|^2 \, dA < \infty.$

With the inner product

$$\langle h,g \rangle = \int_{\mathbb{D}} h \, \overline{g} \, dA,$$

the Bergman space L_a^2 is a Hilbert space.

For each $z\in\mathbb{D}$, the point evaluation map $h\mapsto h(z)$

is a bounded linear functional on L_a^2 . Thus for each $z \in \mathbb{D}$, $\exists k_z \in L_a^2$ such that $h(z) = \langle h, k_z \rangle$ for all $h \in L_a^2$. (z = zee = zed) k_z is called the *reproducing kernel* at z for L_a^2 . If $z, w \in \mathbb{D}$, then

$$k_z(w) = \frac{1}{(1 - \overline{z}w)^2}.$$

Thus if $h \in L^2_a$ and $z \in \mathbb{D}$, then $h(z) = \int_{\mathbb{D}} \frac{h(w)}{(1-z\overline{w})^2} \, dA(w).$

For $z\in\mathbb{D},$ the reproducing kernel k_z satisfies

 $h(z) = \langle h, k_z \rangle$ for all $h \in L^2_a.$ $k_z(w) = \frac{1}{(1-\overline{z}w)^2}.$

Definition: normalized reproducing kernel

For $z\in\mathbb{D}$ the normalized reproducing kernel $K_z\in L^2_a$ and is defined by

$$K_z = \frac{k_z}{\|k_z\|_2}.$$

Thus $||K_z||_2 = 1$ for all $z \in \mathbb{D}$.

For $z \in \mathbb{D}$, the reproducing kernel k_z satisfies

$$h(z) = \langle h, k_z \rangle$$

for all $h \in L^2_a$.

$$k_z(w) = \frac{1}{(1 - \overline{z}w)^2}.$$

Definition: normalized reproducing kernel

For $z\in\mathbb{D}$ the normalized reproducing kernel $K_z\in L^2_a$ and is defined by

$$K_z = \frac{k_z}{\|k_z\|_2}.$$

Thus $||K_z||_2 = 1$ for all $z \in \mathbb{D}$. Note that

$$\|k_z\|_2 = \sqrt{\langle k_z, k_z \rangle} = \sqrt{k_z(z)} = \frac{1}{1 - |z|^2}.$$

Thus

$$K_z(w) = \frac{1 - |z|^2}{(1 - \overline{z}w)^2}$$

for all $z, w \in \mathbb{D}$.

For $z \in \mathbb{D}$, the reproducing kernel k_z satisfies

$$h(z) = \langle h, k_z \rangle$$

for all $h \in L^2_a$.

$$k_z(w) = \frac{1}{(1 - \overline{z}w)^2}.$$

Definition: normalized reproducing kernel

For $z\in\mathbb{D}$ the normalized reproducing kernel $K_z\in L^2_a$ and is defined by

$$K_z = \frac{k_z}{\|k_z\|_2}.$$

Thus
$$\|K_z\|_2 = 1$$
 for all $z \in \mathbb{D}.$
Note that

$$||k_z||_2 = \sqrt{\langle k_z, k_z \rangle} = \sqrt{k_z(z)} = \frac{1}{1 - |z|^2}.$$

Thus

$$K_z(w) = \frac{1 - |z|^2}{(1 - \overline{z}w)^2}$$

for all $z, w \in \mathbb{D}$.

Definition: Berezin transform [5]

For a bounded linear operator

$$S\colon L^2_a\to L^2_a,$$

the ${\it Berezin}\ transform$ of S is the function

$$\widetilde{S} \colon \mathbb{D} \to \mathbf{C}$$

defined by

$$\widetilde{S}(z) = \langle SK_z, K_z \rangle.$$

Definition: normalized reproducing kernel

For $z\in\mathbb{D}$ the normalized reproducing kernel $K_z\in L^2_a$ and is defined by

$$K_z = \frac{k_z}{\|k_z\|_2}.$$

Thus
$$\|K_z\|_2 = 1$$
 for all $z \in \mathbb{D}.$
Note that

$$||k_z||_2 = \sqrt{\langle k_z, k_z \rangle} = \sqrt{k_z(z)} = \frac{1}{1 - |z|^2}.$$

Thus

$$K_z(w) = \frac{1 - |z|^2}{(1 - \overline{z}w)^2}$$

for all $z, w \in \mathbb{D}$.

Definition: Berezin transform [5]

For a bounded linear operator

$$S\colon L^2_a\to L^2_a,$$

the ${\it Berezin}\ transform$ of S is the function

 $\widetilde{S} \colon \mathbb{D} \to \mathbf{C}$

defined by

$$\widetilde{S}(z) = \langle SK_z, K_z \rangle.$$

Note that

$$\widetilde{S}(z)| = |\langle SK_z, K_z \rangle| \le \|SK_z\|_2 \, \|K_z\|_2 \le \|S\|$$

for all $z \in \mathbb{D}$.

$$\widetilde{S}(z) = \langle SK_z, K_z \rangle$$

- If S is a bounded operator on L^2_a , then
- $|\widetilde{S}(z)| \leq ||S||$ for all $z \in \mathbb{D}$;
- \widetilde{S} is a real analytic function on $\mathbb{D} \subset \mathbf{R}^2$;
- $\widetilde{S^*} = \overline{\widetilde{S}}$.
- The map

$$S\mapsto \widetilde{S}$$

is linear and injective.

$$\widetilde{S}(z) = \langle SK_z, K_z \rangle$$

- If S is a bounded operator on L^2_a , then
- $|\widetilde{S}(z)| \leq ||S||$ for all $z \in \mathbb{D}$;
- \widetilde{S} is a real analytic function on $\mathbb{D} \subset \mathbf{R}^2$;

•
$$\widetilde{S^*} = \overline{\widetilde{S}}.$$

The map

$$S\mapsto \widetilde{S}$$

is linear and injective.

Thus \widetilde{S} contains all information about S. What properties of S can be deduced from properties of \widetilde{S} ? Example: S is self-adjoint \iff \widetilde{S} is a real-valued function.

$$\widetilde{S}(z) = \langle SK_z, K_z \rangle$$

- If S is a bounded operator on L^2_a , then
- $|\widetilde{S}(z)| \leq ||S||$ for all $z \in \mathbb{D}$;
- \widetilde{S} is a real analytic function on $\mathbb{D} \subset \mathbf{R}^2$;

•
$$\widetilde{S^*} = \overline{\widetilde{S}}$$

The map

 $S\mapsto \widetilde{S}$

is linear and injective.

Thus \widetilde{S} contains all information about S. What properties of S can be deduced from properties of \widetilde{S} ? Example: S is self-adjoint \iff \widetilde{S} is a real-valued function Claim: $K_z \to 0$ weakly in L_a^2 as $|z| \uparrow 1$.

In other words, for every $h\in L^2_a,$ we have $\langle h,K_z\rangle\to 0$ as $|z|\uparrow 1.$

$$\widetilde{S}(z) = \langle SK_z, K_z \rangle$$

- If S is a bounded operator on L^2_a , then
- $|\widetilde{S}(z)| \le ||S||$ for all $z \in \mathbb{D}$;
- \widetilde{S} is a real analytic function on $\mathbb{D} \subset \mathbf{R}^2$;

•
$$\widetilde{S^*} = \overline{\widetilde{S}}$$
.

The map

 $S\mapsto \widetilde{S}$

is linear and injective.

Thus \widetilde{S} contains all information about S. What properties of S can be deduced from properties of \widetilde{S} ? Example: S is self-adjoint \iff \widetilde{S} is a real-valued function Claim: $K_z \rightarrow 0$ weakly in L_a^2 as $|z| \uparrow 1$.

In other words, for every $h\in L^2_a,$ we have $\langle h,K_z\rangle\to 0$ as $|z|\uparrow 1.$

Proof: Suppose $h \in L^2_a$ and $\epsilon > 0$. There exists a bounded analytic function f on \mathbb{D} such that $||h - f||_2 < \epsilon$. Now $|\langle h, K_z \rangle| \leq |\langle h - f, K_z \rangle| + |\langle f, K_z \rangle|$ $< ||h - f||_{2} + (1 - |z|^{2})|f(z)|$ $< \epsilon + (1 - |z|^2) ||f||_{\infty}$ $< 2\epsilon$

for $|\boldsymbol{z}|$ sufficiently close to 1. \blacksquare

Compact operators send sequences converging weakly to 0 to sequences converging to 0 in norm.

If $S\colon L^2_a\to L^2_a$ is compact, then $\widetilde{S}(z)\to 0 \text{ as } |z|\uparrow 1.$

Proof:

$$|\widetilde{S}(z)| = |\langle SK_z, K_z\rangle| \le \|SK_z\|_2 \to 0$$
 as $|z| \uparrow 1$.

Compact operators send sequences converging weakly to 0 to sequences converging to 0 in norm.

If $S\colon L^2_a\to L^2_a$ is compact, then $\widetilde{S}(z)\to 0 \text{ as } |z|\uparrow 1.$

Proof:

$$|\widetilde{S}(z)| = |\langle SK_z, K_z\rangle| \le \|SK_z\|_2 \to 0$$
 as $|z| \uparrow 1$.

Is the converse true? In other words, if $S\colon L^2_a\to L^2_a$ is bounded and $\widetilde{S}(z)\to 0$ as $|z|\uparrow 1$,

then is S compact?

Compact operators send sequences converging weakly to 0 to sequences converging to 0 in norm.

If $S\colon L^2_a o L^2_a$ is compact, then $\widetilde{S}(z) o 0$ as $|z|\uparrow 1.$

Proof:

$$\begin{split} |\widetilde{S}(z)| &= |\langle SK_z,K_z\rangle| \leq \|SK_z\|_2 \to 0 \\ \text{as } |z| \uparrow 1. ~\blacksquare \end{split}$$

Is the converse true? In other words, if $S\colon L^2_a\to L^2_a$ is bounded and $\widetilde{S}(z)\to 0$ as $|z|\uparrow 1$,

then is S compact? No!

Example: Define $S \colon L^2_a \to L^2_a$ by (Sf)(z) = f(-z).

Then S is not compact. In fact, S is unitary.

Compact operators send sequences converging weakly to 0 to sequences converging to 0 in norm.

If $S\colon L^2_a\to L^2_a$ is compact, then $\widetilde{S}(z)\to 0 \text{ as } |z|\uparrow 1.$

Proof:

$$\begin{split} |\widetilde{S}(z)| &= |\langle SK_z,K_z\rangle| \leq \|SK_z\|_2 \to 0 \\ \text{as } |z| \uparrow 1. \ \blacksquare \end{split}$$

Is the converse true? In other words, if $S\colon L^2_a\to L^2_a$ is bounded and $\widetilde{S}(z)\to 0 \text{ as } |z|\uparrow 1,$

then is S compact? No!

Example: Define $S \colon L^2_a \to L^2_a$ by (Sf)(z) = f(-z).

Then S is not compact. In fact, S is unitary. However,

$$\widetilde{S}(z) = (1 - |z|^2)^2 \langle Sk_z, k_z \rangle$$

$$= (1 - |z|^2)^2 (Sk_z)(z)$$

= $\frac{(1 - |z|^2)^2}{(1 + |z|^2)^2}$ because
 $k_z(w) = \frac{1}{(1 - \overline{z}w)^2}$
 $\rightarrow 0$ as $|z| \uparrow 1$.

Let $P \colon L^2(\mathbb{D}) \to L^2_a$ be the orthogonal projection of $L^2(\mathbb{D})$ onto L^2_a . If $u \in L^2(\mathbb{D})$ and $z \in \mathbb{D}$, then $(Pu)(z) = \langle Pu k \rangle$

$$\begin{split} f(z) &= \langle Pu, k_z \rangle \\ &= \langle u, k_z \rangle \\ &= \int_{\mathbb{D}} \frac{u(w)}{(1 - z\overline{w})^2} \, dA(w) \end{split}$$

Let $P: L^2(\mathbb{D}) \to L^2_a$ be the orthogonal projection of $L^2(\mathbb{D})$ onto L^2_a . If $u \in L^2(\mathbb{D})$ and $z \in \mathbb{D}$, then $(Pu)(z) = \langle Pu, k_z \rangle$ $= \langle u, k_z \rangle$ $= \int_{\mathbb{T}^n} \frac{u(w)}{(1-z\overline{w})^2} \, dA(w).$ For $f \in L^{\infty}(\mathbb{D})$, define the *Toeplitz* operator $T_f: L^2_a \to L^2_a$ by

$$T_f h = P(fh).$$

Clearly

$$||T_f|| \le ||f||_{\infty}$$

Let $P: L^2(\mathbb{D}) \to L^2_a$ be the orthogonal projection of $L^2(\mathbb{D})$ onto L^2_a . If $u \in L^2(\mathbb{D})$ and $z \in \mathbb{D}$, then

$$(Pu)(z) = \langle Pu, k_z \rangle$$

= $\langle u, k_z \rangle$
= $\int_{\mathbb{D}} \frac{u(w)}{(1 - z\overline{w})^2} dA(w).$

For $f\in L^\infty(\mathbb{D}),$ define the Toeplitz operator $T_f\colon L^2_a\to L^2_a$ by

$$T_f h = P(fh).$$

Clearly

$$||T_f|| \le ||f||_{\infty}.$$

If $f\in L^\infty(\mathbb{D})$ and $z\in\mathbb{D}$, then

$$\begin{split} \widetilde{T_f}(z) &= \langle T_f K_z, K_z \rangle \\ &= \langle P(fK_z), K_z \rangle \\ &= \langle fK_z, K_z \rangle \\ &= (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w). \end{split}$$

 $\widehat{\tau}$

De

Let $P: L^2(\mathbb{D}) \to L^2_a$ be the orthogonal projection of $L^2(\mathbb{D})$ onto L^2_a . If $u \in L^2(\mathbb{D})$ and $z \in \mathbb{D}$, then

$$Pu)(z) = \langle Pu, k_z \rangle$$

= $\langle u, k_z \rangle$
= $\int_{\mathbb{D}} \frac{u(w)}{(1 - z\overline{w})^2} dA(w).$

For $f \in L^{\infty}(\mathbb{D})$, define the *Toeplitz* operator $T_f: L^2_a \to L^2_a$ by

$$T_f h = P(fh).$$

Clearly

$$\|T_f\| \leq \|f\|_{\infty}.$$
 If $f \in L^\infty(\mathbb{D})$ and $z \in \mathbb{D},$ then

$$\begin{split} \widetilde{T_f}(z) &= \langle T_f K_z, K_z \rangle \\ &= \langle P(fK_z), K_z \rangle \\ &= \langle fK_z, K_z \rangle \\ &= (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w). \end{split}$$
Definition: Berezin transform of function
For $f \in L^{\infty}(\mathbb{D})$, the Berezin transform of f is the function $\widetilde{f} : \mathbb{D} \to \mathbb{C}$ defined by

$$\widetilde{f} = \widetilde{T_f}.$$

Thus if $z \in \mathbb{D}$ then

$$\tilde{f}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w).$$

compact Toeptiltz operators with symbol continuous on $\overline{\mathbb{D}}$

$$\widetilde{f}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w)$$

Because

$$1 = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{1}{|1 - \overline{z}w|^4} \, dA(w)$$

for all $z \in \mathbb{D}$, think of $\widetilde{f}(z)$ as a weighted average of the values of f(w), with most of the weight near z if $|z| \approx 1$.

Thus if $f \in C(\overline{\mathbb{D}})$, then $\tilde{f} \in C(\overline{\mathbb{D}})$ and $\tilde{f}|_{\partial \mathbb{D}} = f|_{\partial \mathbb{D}}.$

compact Toeptiltz operators with symbol continuous on $\overline{\mathbb{D}}$

$$\widetilde{f}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w)$$

Because

$$1 = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{1}{|1 - \overline{z}w|^4} \, dA(w)$$

for all $z \in \mathbb{D}$, think of $\widetilde{f}(z)$ as a weighted average of the values of f(w), with most of the weight near z if $|z| \approx 1$.

Thus if $f \in C(\overline{\mathbb{D}})$, then $\tilde{f} \in C(\overline{\mathbb{D}})$ and $\tilde{f}|_{\partial \mathbb{D}} = f|_{\partial \mathbb{D}}.$

Coburn [6]

Suppose $f \in C(\overline{\mathbb{D}})$. Then the following are equivalent:

•
$$T_f$$
 is compact.

3)
$$\widetilde{f}(z) \to 0$$
 as $|z| \uparrow 1$.

$$\widetilde{f}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w)$$

Let H^{∞} = bounded analytic functions on \mathbb{D} . If $f \in H^{\infty}$ and $h \in L^2_a$, then

$$T_f h = f h.$$

$$\widetilde{f}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w)$$

Let H^{∞} = bounded analytic functions on \mathbb{D} . If $f \in H^{\infty}$ and $h \in L^2_a$, then

$$T_f h = f h.$$

If $f \in H^{\infty}$, then $\widetilde{f}(z) = \widetilde{T_f}(z)$ $= (1 - |z|^2)^2 \langle T_f k_z, k_z \rangle$ $= (1 - |z|^2)^2 \langle f k_z, k_z \rangle$ $= (1 - |z|^2)^2 f(z) k_z(z)$ = f(z).

Thus $f \in H^{\infty} \implies \widetilde{f} = f$.

$$\widetilde{f}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w)$$

Let H^{∞} = bounded analytic functions on \mathbb{D} . If $f \in H^{\infty}$ and $h \in L^2_a$, then

$$T_f h = f h.$$

If $f \in H^{\infty}$, then

$$\widetilde{f}(z) = \widetilde{T_f}(z)$$

$$= (1 - |z|^2)^2 \langle T_f k_z, k_z \rangle$$

$$= (1 - |z|^2)^2 \langle f k_z, k_z \rangle$$

$$= (1 - |z|^2)^2 f(z) k_z(z)$$

$$= f(z).$$

Thus $f \in H^{\infty} \implies \widetilde{f} = f$.

Thus the real part of each function in H^{∞} equals its Berezin transform. This leads to: If u is a bounded harmonic function on \mathbb{D} , then $\tilde{u} = u$.

$$\widetilde{f}(z) = (1-|z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1-\overline{z}w|^4} \, dA(w)$$

Let H^{∞} = bounded analytic functions on \mathbb{D} . If $f \in H^{\infty}$ and $h \in L^2_a$, then

$$T_f h = f h.$$

If $f \in H^{\infty}$, then $\widetilde{f}(z) = \widetilde{T_{2}}(z)$

$$f(z) = T_f(z) = (1 - |z|^2)^2 \langle T_f k_z, k_z \rangle = (1 - |z|^2)^2 \langle f k_z, k_z \rangle = (1 - |z|^2)^2 f(z) k_z(z) = f(z).$$

Thus $f \in H^{\infty} \implies \widetilde{f} = f$.

Thus the real part of each function in H^{∞} equals its Berezin transform. This leads to: If u is a bounded harmonic function on \mathbb{D} , then $\tilde{u} = u$. Is the converse true?

If $u \in L^{\infty}(\mathbb{D})$ and $\widetilde{u} = u$, is u harmonic?

$$\widetilde{f}(z) = (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w)$$

Let H^{∞} = bounded analytic functions on \mathbb{D} . If $f \in H^{\infty}$ and $h \in L^2_a$, then

$$T_f h = f h.$$

If $f \in H^{\infty}$, then $\widetilde{f}(z) = \widetilde{T_f}(z)$ $= (1 - |z|^2)^2 \langle T_f k_z, k_z \rangle$ $= (1 - |z|^2)^2 \langle f k_z, k_z \rangle$ $= (1 - |z|^2)^2 f(z) k_z(z)$ = f(z).

Thus $f \in H^{\infty} \implies \widetilde{f} = f$.

Thus the real part of each function in H^{∞} equals its Berezin transform. This leads to: If u is a bounded harmonic function on \mathbb{D} , then $\widetilde{u} = u$. Is the converse true? If $u \in L^{\infty}(\mathbb{D})$ and $\widetilde{u} = u$, is u harmonic? Yes!

Engliš [8]

Suppose $u \in L^{\infty}(\mathbb{D})$. Then

u is harmonic on $\mathbb{D} \iff \widetilde{u} = u$.

$$\widetilde{f}(z) = (1-|z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1-\overline{z}w|^4} \, dA(w)$$

Let H^{∞} = bounded analytic functions on \mathbb{D} . If $f \in H^{\infty}$ and $h \in L^2_a$, then

$$T_f h = f h.$$

If $f \in H^{\infty}$, then $\widetilde{f}(z) = \widetilde{T_f}(z)$ $= (1 - |z|^2)^2 \langle T_f k_z, k_z \rangle$ $= (1 - |z|^2)^2 \langle f k_z, k_z \rangle$ $= (1 - |z|^2)^2 f(z) k_z(z)$ = f(z).

Thus $f \in H^{\infty} \implies \widetilde{f} = f$.

Thus the real part of each function in H^{∞} equals its Berezin transform. This leads to: If u is a bounded harmonic function on \mathbb{D} , then $\widetilde{u} = u$. Is the converse true? If $u \in L^{\infty}(\mathbb{D})$ and $\widetilde{u} = u$, is u harmonic? Yes!

Engliš [8]

Suppose $u \in L^{\infty}(\mathbb{D})$. Then

u is harmonic on $\mathbb{D} \iff \widetilde{u} = u$.

Is the result above valid on the unit ball in \mathbb{C}^n , with harmonic replaced by \mathcal{M} -harmonic?

$$\widetilde{f}(z) = (1-|z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1-\overline{z}w|^4} \, dA(w)$$

Let H^{∞} = bounded analytic functions on \mathbb{D} . If $f \in H^{\infty}$ and $h \in L^2_a$, then

$$T_f h = f h.$$

If $f \in H^{\infty}$, then $\widetilde{f}(z) = \widetilde{T_f}(z)$ $= (1 - |z|^2)^2 \langle T_f k_z, k_z \rangle$ $= (1 - |z|^2)^2 \langle f k_z, k_z \rangle$ $= (1 - |z|^2)^2 f(z) k_z(z)$ = f(z).

Thus $f \in H^{\infty} \implies \widetilde{f} = f$.

Thus the real part of each function in H^{∞} equals its Berezin transform. This leads to: If u is a bounded harmonic function on \mathbb{D} , then $\widetilde{u} = u$. Is the converse true? If $u \in L^{\infty}(\mathbb{D})$ and $\widetilde{u} = u$, is u harmonic? Yes!

Engliš [8]

Suppose $u \in L^{\infty}(\mathbb{D})$. Then

u is harmonic on $\mathbb{D} \iff \widetilde{u} = u$.

Is the result above valid on the unit ball in \mathbb{C}^n , with harmonic replaced by \mathcal{M} -harmonic? Ahern, Flores, Rudin [1]: The Englis result above holds on the unit ball of \mathbb{C}^n if and only if $n \leq 11$.

For $f \in L^{\infty}(\mathbb{D})$, define the *Toeplitz* operator $T_f \colon L^2_a \to L^2_a$ by $T_f h = P(fh),$

where P is the orthogonal projection of $L^2(\mathbb{D})$ onto $L^2_a.$

$$(T_f h)(z) = \int_{\mathbb{D}} \frac{f(w)h(w)}{(1 - z\overline{w})^2} \, dA(w)$$

For $f \in L^{\infty}(\mathbb{D})$, $h \in L^2_a$, and $z \in \mathbb{D}$.

$$\begin{split} \widetilde{f}(z) &= \widetilde{T_f}(z) \\ &= (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w) \\ \text{for } f \in L^{\infty}(\mathbb{D}) \text{ and } z \in \mathbb{D}. \end{split}$$

For $f \in L^{\infty}(\mathbb{D})$, define the Toeplitz operator $T_f \colon L^2_a \to L^2_a$ by $T_f h = P(fh),$

where P is the orthogonal projection of $L^2(\mathbb{D})$ onto $L^2_a.$

$$(T_fh)(z) = \int_{\mathbb{D}} \frac{f(w)h(w)}{(1-z\overline{w})^2} \, dA(w)$$
 for $f \in L^{\infty}(\mathbb{D})$, $h \in L^2_a$, and $z \in \mathbb{D}$.

$$\widetilde{f}(z) = \widetilde{T_f}(z)$$

$$= (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w)$$
for $f \in L^{\infty}(\mathbb{D})$ and $z \in \mathbb{D}$

If S is a finite sum of finite products of Toeplitz operators then the following are equivalent:

$${f 0}\,\,S$$
 is compact.

2)
$$\widetilde{S}(z)
ightarrow 0$$
 as $|z| \uparrow 1$.

$$\|SK_z\|_2 \to 0 \text{ as } |z| \uparrow 1.$$

For $f \in L^{\infty}(\mathbb{D})$, define the Toeplitz operator $T_f \colon L^2_a \to L^2_a$ by $T_f h = P(fh),$

where P is the orthogonal projection of $L^2(\mathbb{D})$ onto $L^2_a.$

$$(T_f h)(z) = \int_{\mathbb{D}} \frac{f(w)h(w)}{(1-z\overline{w})^2} \, dA(w)$$

for $f \in L^{\infty}(\mathbb{D})$, $h \in L^2_a$, and $z \in \mathbb{D}$.

$$\begin{split} \widetilde{f}(z) &= \widetilde{T_f}(z) \\ &= (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w) \\ \text{for } f \in L^{\infty}(\mathbb{D}) \text{ and } z \in \mathbb{D}. \end{split}$$

If S is a finite sum of finite products of Toeplitz operators then the following are equivalent:

$${f 0}\,\,S$$
 is compact.

2
$$\widetilde{S}(z) \to 0$$
 as $|z| \uparrow 1$.

$$\|SK_z\|_2 \to 0 \text{ as } |z| \uparrow 1.$$

Previously known special cases of $\widetilde{f}(z) \to 0$ as $|z| \uparrow 1 \implies T_f$ is compact:

• f is a nonnegative function on \mathbb{D} . (Zhu [16])

For $f \in L^{\infty}(\mathbb{D})$, define the Toeplitz operator $T_f \colon L^2_a \to L^2_a$ by $T_f h = P(fh),$

where P is the orthogonal projection of $L^2(\mathbb{D})$ onto L^2_a .

$$(T_f h)(z) = \int_{\mathbb{D}} \frac{f(w)h(w)}{(1 - z\overline{w})^2} dA(w)$$

for $f\in L^\infty(\mathbb{D}),\;h\in L^2_a$, and $z\in\mathbb{D}.$

$$\begin{split} \widetilde{f}(z) &= \widetilde{T_f}(z) \\ &= (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w) \\ \text{for } f \in L^{\infty}(\mathbb{D}) \text{ and } z \in \mathbb{D}. \end{split}$$

If S is a finite sum of finite products of Toeplitz operators then the following are equivalent:

$$oldsymbol{0}$$
 S is compact.

$$\ \ \widetilde{S}(z) \to 0 \ \text{as} \ |z| \uparrow 1.$$

$$\|SK_z\|_2 \to 0 \text{ as } |z| \uparrow 1.$$

Previously known special cases of $\widetilde{f}(z) \to 0$ as $|z| \uparrow 1 \implies T_f$ is compact:

- f is a nonnegative function on \mathbb{D} . (Zhu [16])
- f is a radial function. (Korenblum and Zhu [9])

For $f \in L^{\infty}(\mathbb{D})$, define the Toeplitz operator $T_f \colon L^2_a \to L^2_a$ by

 $T_f h = P(fh),$

where P is the orthogonal projection of $L^2(\mathbb{D})$ onto $L^2_a.$

$$(T_f h)(z) = \int_{\mathbb{D}} \frac{f(w)h(w)}{(1 - z\overline{w})^2} dA(w)$$

for $f\in L^\infty(\mathbb{D}),\;h\in L^2_a$, and $z\in\mathbb{D}.$

$$\widetilde{f}(z) = \widetilde{T_f}(z)$$
$$= (1 - |z|^2)^2 \int_{\mathbb{D}} \frac{f(w)}{|1 - \overline{z}w|^4} \, dA(w)$$

for $f \in L^{\infty}(\mathbb{D})$ and $z \in \mathbb{D}$.

A., Zheng [4]

If S is a finite sum of finite products of Toeplitz operators then the following are equivalent:

$${f 0}\,\,S$$
 is compact.

$$\ \ \widetilde{S}(z) \to 0 \ \text{as} \ |z| \uparrow 1.$$

$$\|SK_z\|_2 \to 0 \text{ as } |z| \uparrow 1.$$

Previously known special cases of $\widetilde{f}(z) \to 0$ as $|z| \uparrow 1 \implies T_f$ is compact:

- f is a nonnegative function on \mathbb{D} . (Zhu [16])
- f is a radial function. (Korenblum and Zhu [9])
- *f* is uniformly continuous with respect to the hyperbolic metric. (Stroethoff [14])

Hankel operators

Recall that P denotes the orthogonal projection of $L^2(\mathbb{D})$ onto L^2_a . Thus I - P is the orthogonal projection of $L^2(\mathbb{D})$ onto $L^2(\mathbb{D}) \ominus L^2_a$, which is the orthogonal complement of L^2_a .

For $g \in L^{\infty}(\mathbb{D})$, the Hankel operator

$$H_g\colon L^2_a\to L^2(\mathbb{D})\ominus L^2_a$$

is defined by

$$H_gh = (I - P)(gh).$$

Suppose $g \in L^{\infty}(\mathbb{D})$. Then

$$g \in H^{\infty} \iff H_g = 0.$$

Hankel operators

Recall that P denotes the orthogonal projection of $L^2(\mathbb{D})$ onto L^2_a . Thus I - P is the orthogonal projection of $L^2(\mathbb{D})$ onto $L^2(\mathbb{D}) \ominus L^2_a$, which is the orthogonal complement of L^2_a .

For $g \in L^{\infty}(\mathbb{D})$, the Hankel operator

$$H_g \colon L^2_a \to L^2(\mathbb{D}) \ominus L^2_a$$

is defined by

$$H_gh = (I - P)(gh).$$

Suppose $g \in L^{\infty}(\mathbb{D})$. Then

$$g \in H^{\infty} \iff H_g = 0.$$

If
$$g \in L^{\infty}(\mathbb{D})$$
, $h \in L^2_a$, and $z \in \mathbb{D}$, then
 $(H_g h)(z) = g(z)h(z) - (P(gh))(z)$
 $= \int_{\mathbb{D}} \frac{(g(z) - g(w))h(w)}{(1 - z\overline{w})^2} dA(w).$

Hankel operators

lf

Recall that P denotes the orthogonal projection of $L^2(\mathbb{D})$ onto L^2_a . Thus I - P is the orthogonal projection of $L^2(\mathbb{D})$ onto $L^2(\mathbb{D}) \ominus L^2_a$, which is the orthogonal complement of L^2_a .

For $g\in L^\infty(\mathbb{D})$, the Hankel operator $H_g\colon L^2_a o L^2(\mathbb{D})\ominus L^2_a$

is defined by

$$H_gh = (I - P)(gh).$$

Suppose $g\in L^\infty(\mathbb{D}).$ Then

$$g \in H^{\infty} \iff H_g = 0.$$

$$g \in L^{\infty}(\mathbb{D}), h \in L^2_a$$
, and $z \in \mathbb{D}$, then
 $(H_g h)(z) = g(z)h(z) - (P(gh))(z)$
 $= \int_{\mathbb{D}} \frac{(g(z) - g(w))h(w)}{(1 - z\overline{w})^2} dA(w).$

For which $g \in L^{\infty}(\mathbb{D})$ is H_g compact? Note that H_g does not map L_a^2 into L_a^2 and thus it does not make sense to take the Berezin transform of H_g . However,

 H_g is compact $\iff H_g^*H_g \colon L^2_a \to L^2_a$ is compact.

If $f,g\in L^\infty(\mathbb{D}),$ then $H_{\overline{f}}{}^*H_g=T_{fg}-T_fT_g.$

A. [2]

Suppose $f \in H^{\infty}$. Then $H_{\overline{f}}$ is compact $\iff \lim_{|z|\uparrow 1} (1-|z|^2) f'(z) = 0.$

A. [2]

Suppose $f \in H^{\infty}$. Then $H_{\overline{f}}$ is compact $\iff \lim_{|z|\uparrow 1} (1-|z|^2)f'(z) = 0.$

Thus if $f \in H^{\infty} \cap (\text{Dirichlet space})$, then $H_{\overline{f}}$ is compact.

A. [2]

Suppose $f \in H^{\infty}$. Then $H_{\overline{f}}$ is compact $\iff \lim_{|z|\uparrow 1} (1-|z|^2) f'(z) = 0.$

Thus if $f \in H^{\infty} \cap (\text{Dirichlet space})$, then $H_{\overline{f}}$ is compact.

There exist Blaschke products f with infinitely many zeros such that $\lim_{|z|\uparrow 1}(1-|z|^2)f'(z)=0$ (see [12]). Thus there exist Blaschke products fwith infinitely many zeros such that $H_{\overline{f}}$ is compact.

A. [2]

Suppose $f \in H^{\infty}$. Then $H_{\overline{f}}$ is compact $\iff \lim_{|z|\uparrow 1}(1-|z|^2)f'(z)=0.$

Thus if $f \in H^{\infty} \cap$ (Dirichlet space), then $H_{\overline{f}}$ is compact.

There exist Blaschke products f with infinitely many zeros such that $\lim_{|z|\uparrow 1}(1-|z|^2)f'(z)=0$ (see [12]). Thus there exist Blaschke products f with infinitely many zeros such that $H_{\overline{f}}$ is compact.

Proof in one direction: $H_{\overline{f}}$ is compact $\iff H_{\overline{f}}^* H_{\overline{f}}$ is compact $\iff H_{\overline{f}}^* H_{\overline{f}}(z) \to 0 \text{ as } |z| \uparrow 1$ $\iff \langle H_{\overline{f}}^* H_{\overline{f}} K_z, K_z \rangle \to 0 \text{ as } |z| \uparrow 1$ $\iff \|H_{\overline{f}}K_z\|_2 \to 0 \text{ as } |z| \uparrow 1$ $\iff \|\overline{f}K_z - P(\overline{f}K_z)\|_2 \to 0 \text{ as } |z| \uparrow 1$ $\iff \|\overline{f}K_z - \overline{f(z)}K_z\|_2 \to 0 \text{ as } |z| \uparrow 1$ $\iff \| (f - f(z)) K_z \|_2 \to 0 \text{ as } |z| \uparrow 1.$

Suppose
$$g = \sum_{n=0}^{\infty} a_n z^n \in L_a^2$$
. Then
 $\|g - g(0)\|_2^2 = \sum_{n=1}^{\infty} \frac{|a_n|^2}{n+1} \ge \frac{|a_1|^2}{2} = \frac{|g'(0)|^2}{2}.$

Thus

(*) $|g'(0)| \le \sqrt{2} ||g - g(0)||_2.$

bound on $(1-|\boldsymbol{z}|^2)f'(\boldsymbol{z})$

Suppose
$$g = \sum_{n=0}^{\infty} a_n z^n \in L_a^2$$
. Then
 $\|g - g(0)\|_2^2 = \sum_{n=1}^{\infty} \frac{|a_n|^2}{n+1} \ge \frac{|a_1|^2}{2} = \frac{|g'(0)|^2}{2}.$

Thus

(*) $|g'(0)| \le \sqrt{2} ||g - g(0)||_2.$

For $z \in \mathbb{D}$, define $\varphi_z \colon \mathbb{D} \to \mathbb{D}$ by

$$\varphi_z(w) = \frac{z - w}{1 - \overline{z}w}.$$

Then

$$|\varphi_z'(w)| = \frac{1 - |z|^2}{|1 - \overline{z}w|^2}.$$

Suppose
$$g = \sum_{n=0}^{\infty} a_n z^n \in L^2_a$$
. Then
 $\|g - g(0)\|_2^2 = \sum_{n=1}^{\infty} \frac{|a_n|^2}{n+1} \ge \frac{|a_1|^2}{2} = \frac{|g'(0)|^2}{2}.$

Thus

(*) $|g'(0)| \le \sqrt{2} ||g - g(0)||_2.$

For $z \in \mathbb{D}$, define $\varphi_z \colon \mathbb{D} \to \mathbb{D}$ by

$$\varphi_z(w) = \frac{z - w}{1 - \overline{z}w}.$$

Then

$$|\varphi_z'(w)| = \frac{1 - |z|^2}{|1 - \overline{z}w|^2}.$$

For $f \in H^{\infty}$, the operator $H_{\overline{f}}$ is compact $\iff \|(f - f(z))K_z\|_2 \to 0 \text{ as } |z| \uparrow 1.$

Suppose
$$g = \sum_{n=0}^{\infty} a_n z^n \in L_a^2$$
. Then
 $\|g - g(0)\|_2^2 = \sum_{n=1}^{\infty} \frac{|a_n|^2}{n+1} \ge \frac{|a_1|^2}{2} = \frac{|g'(0)|^2}{2}$.

Thus

(*) $|g'(0)| \le \sqrt{2} ||g - g(0)||_2.$

For $z \in \mathbb{D}$, define $\varphi_z \colon \mathbb{D} \to \mathbb{D}$ by

$$\varphi_z(w) = \frac{z - w}{1 - \overline{z}w}.$$

Then

$$|\varphi_z'(w)| = \frac{1 - |z|^2}{|1 - \overline{z}w|^2}.$$

For $f \in H^{\infty}$, the operator $H_{\overline{f}}$ is compact $\iff \|(f - f(z))K_z\|_2 \to 0 \text{ as } |z| \uparrow 1.$

If
$$z \in \mathbb{D}$$
 and $f \in H^{\infty}$ then
 $|(f \circ \varphi_z)'(0)| = |f'(\varphi_z(0))\varphi_z'(0)|$
 $= (1 - |z|^2)|f'(z)|.$

Suppose
$$g = \sum_{n=0}^{\infty} a_n z^n \in L_a^2$$
. Then
 $\|g - g(0)\|_2^2 = \sum_{n=1}^{\infty} \frac{|a_n|^2}{n+1} \ge \frac{|a_1|^2}{2} = \frac{|g'(0)|^2}{2}.$

Thus

(*) $|g'(0)| \le \sqrt{2} ||g - g(0)||_2.$

For
$$z \in \mathbb{D}$$
, define $\varphi_z \colon \mathbb{D} \to \mathbb{D}$ by

$$\varphi_z(w) = \frac{z - w}{1 - \overline{z}w}.$$

Then

$$|\varphi_z'(w)| = \frac{1 - |z|^2}{|1 - \overline{z}w|^2}.$$

For $f \in H^{\infty}$, the operator $H_{\overline{f}}$ is compact $\iff \|(f - f(z))K_z\|_2 \to 0 \text{ as } |z| \uparrow 1.$

If
$$z \in \mathbb{D}$$
 and $f \in H^{\infty}$ then
 $|(f \circ \varphi_z)'(0)| = |f'(\varphi_z(0))\varphi_z'(0)|$
 $= (1 - |z|^2)|f'(z)|.$

Use (*) with
$$g = f \circ \varphi_z$$
, getting
 $(1 - |z|^2)|f'(z)| \le \sqrt{2} ||f \circ \varphi_z - f(z)||_2$

 $=\sqrt{2}\|(f-f(z))K_z\|_2.$

Thus if $f\in H^\infty$ and $H_{\overline{f}}$ is compact, then $\lim_{|z|\uparrow 1}(1-|z|^2)f'(z)=0.$

Bloch space and little Bloch space

Definition: **Bloch space**

```
The Bloch space \mathcal{B} is the set of analytic functions f on \mathbb{D} such that
```

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<\infty.$$

The little Bloch space \mathcal{B}_0 is the set of analytic functions f on \mathbb{D} such that $\lim_{|z|\uparrow 1} (1-|z|^2)f'(z) = 0.$

The Bloch space \mathcal{B} is a Banach space and \mathcal{B}_0 is a closed subspace with the norm

$$||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)|.$$

Bloch space and little Bloch space

Definition: Bloch space

The Bloch space \mathcal{B} is the set of analytic functions f on \mathbb{D} such that

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<\infty.$$

The little Bloch space \mathcal{B}_0 is the set of analytic functions f on \mathbb{D} such that $\lim_{|z| \uparrow 1} (1 - |z|^2) f'(z) = 0.$

The Bloch space \mathcal{B} is a Banach space and \mathcal{B}_0 is a closed subspace with the norm

$$||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)|.$$

For $g \in L^2(\mathbb{D})$, define the Hankel operator H_g from H^∞ (with the L^2_a -norm) to L^2_a by $H_g h = (I - P)(gh).$

A. [2]

Suppose $f \in L^2_a$. Then • $H_{\overline{t}}$ is bounded if and only if $f \in \mathcal{B}$.

•
$$H_{\overline{f}}$$
 is compact if and only if $f \in \mathcal{B}_0$.

Bloch space and little Bloch space

Definition: **Bloch space**

The Bloch space \mathcal{B} is the set of analytic functions f on \mathbb{D} such that

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<\infty.$$

The little Bloch space \mathcal{B}_0 is the set of analytic functions f on \mathbb{D} such that $\lim_{|z|\uparrow 1} (1-|z|^2)f'(z) = 0.$

The Bloch space \mathcal{B} is a Banach space and \mathcal{B}_0 is a closed subspace with the norm

$$||f||_{\mathcal{B}} = |f(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)|.$$

For $g \in L^2(\mathbb{D})$, define the Hankel operator H_g from H^∞ (with the L^2_a -norm) to L^2_a by $H_g h = (I - P)(gh).$

A. [2]

Suppose $f \in L^2_a$. Then

- $H_{\overline{f}}$ is bounded if and only if $f \in \mathcal{B}$.
- $H_{\overline{f}}$ is compact if and only if $f \in \mathcal{B}_0$.
- The Möbius invariant space generated by H^2 is BMOA.
- The Möbius invariant space generated by L^2_a is $\mathcal B.$

Coifman, Rochberg, and Weiss [7]

 $(L^1_a)^*\approx \mathcal{B}$, meaning the dual of L^1_a can be identified with $\mathcal{B}.$

Coifman, Rochberg, and Weiss [7]

 $(L_a^1)^* \approx \mathcal{B}$, meaning the dual of L_a^1 can be identified with \mathcal{B} . More precisely, if $f \in \mathcal{B}$ then

$$h\mapsto \lim_{r\uparrow 1}\int_{r\mathbb{D}}h(z)f(\overline{z})\,dA(z)$$

defines a bounded linear functional on L^1_a .

Coifman, Rochberg, and Weiss [7]

 $(L^1_a)^* \approx \mathcal{B}$, meaning the dual of L^1_a can be identified with \mathcal{B} . More precisely, if $f \in \mathcal{B}$ then

$$h\mapsto \lim_{r\uparrow 1}\int_{r\mathbb{D}}h(z)f(\overline{z})\,dA(z)$$

defines a bounded linear functional on L^1_a .

Furthermore, if $\varphi \colon L^1_a \to \mathbf{C}$ is a bounded linear functional, then \exists a unique $f \in \mathcal{B}$ such that

$$\varphi(h) = \lim_{r\uparrow 1} \int_{r\mathbb{D}} h(z) f(\overline{z}) \, dA(z)$$

for all $h \in L^1_a$.

Coifman, Rochberg, and Weiss [7]

 $(L^1_a)^* \approx \mathcal{B}$, meaning the dual of L^1_a can be identified with \mathcal{B} . More precisely, if $f \in \mathcal{B}$ then

$$h\mapsto \lim_{r\uparrow 1}\int_{r\mathbb{D}}h(z)f(\overline{z})\,dA(z)$$

defines a bounded linear functional on L^1_a .

Furthermore, if $\varphi \colon L^1_a \to \mathbf{C}$ is a bounded linear functional, then \exists a unique $f \in \mathcal{B}$ such that

$$\varphi(h) = \lim_{r\uparrow 1} \int_{r\mathbb{D}} h(z) f(\overline{z}) \, dA(z)$$

for all $h \in L^1_a$.

Also, $(\mathcal{B}_0)^* pprox L_a^1.$

Coifman, Rochberg, and Weiss [7]

 $(L^1_a)^* \approx \mathcal{B}$, meaning the dual of L^1_a can be identified with \mathcal{B} . More precisely, if $f \in \mathcal{B}$ then

$$h\mapsto \lim_{r\uparrow 1}\int_{r\mathbb{D}}h(z)f(\overline{z})\,dA(z)$$

defines a bounded linear functional on L^1_a .

Furthermore, if $\varphi \colon L^1_a \to \mathbf{C}$ is a bounded linear functional, then \exists a unique $f \in \mathcal{B}$ such that

$$\varphi(h) = \lim_{r\uparrow 1} \int_{r\mathbb{D}} h(z) f(\overline{z}) \, dA(z)$$

for all $h \in L^1_a$.

Also,
$$(\mathcal{B}_0)^* pprox L^1_a$$
.

Recall that

$$P\colon L^2(\mathbb{D})\to L^2_a$$

is orthogonal projection.

$$C(\overline{\mathbb{D}}) \subset L^{\infty}(\mathbb{D}) \subset L^{2}(\mathbb{D}).$$

Coifman, Rochberg, and Weiss [7]

 $(L^1_a)^* \approx \mathcal{B}$, meaning the dual of L^1_a can be identified with \mathcal{B} . More precisely, if $f \in \mathcal{B}$ then

$$h \mapsto \lim_{r \uparrow 1} \int_{r \mathbb{D}} h(z) f(\overline{z}) \, dA(z)$$

defines a bounded linear functional on L^1_a .

Furthermore, if $\varphi \colon L^1_a \to \mathbf{C}$ is a bounded linear functional, then \exists a unique $f \in \mathcal{B}$ such that

$$\varphi(h) = \lim_{r\uparrow 1} \int_{r\mathbb{D}} h(z) f(\overline{z}) \, dA(z)$$

for all $h \in L^1_a$.

Also, $(\mathcal{B}_0)^* pprox L^1_a.$

Recall that

$$P\colon L^2(\mathbb{D})\to L^2_a$$

is orthogonal projection. $C(\overline{\mathbb{D}}) \subset L^\infty(\mathbb{D}) \subset L^2(\mathbb{D}).$

 $P(L^{\infty}(\mathbb{D})) = \mathcal{B}.$

Also,

 $P(C(\overline{\mathbb{D}})) = \mathcal{B}_0.$

Littlewood on Bloch's theorem

Littlewood ([10], page 145):

"Bloch's theorem. One of the queerest things in mathematics, and one might iudge that only a madman could do it. He was aiming at an elementary proof of Picard's theorem, an impudently damn fool idea. With this as a start it is a just reasonable stroke of insight to conjecture Bloch's theorem. The result once conjectured (and being true), a proof was, of course, bound to emerge sooner or later. But, to keep up the air of farce to the end, the proof itself is crazy."

References

- Patrick Ahern, Manuel Flores, and Walter Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), 380-397.
- [2] Sheldon Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, *Duke Math. J.* 53 (1986), 315–332.
- [3] Sheldon Axler, Bergman spaces and their operators, pages 1-50 in Surveys of Some Recent Results in Operator Theory, volume I, edited by John B. Conway and Bernard B. Morrel, Pitman Research Notes in Mathematics, vol. 171, Longman Scientific & Technical, 1988.
- [4] Sheldon Axler and Dechao Zheng, Compact operators via the Berezin transform, *Indiana Univ. Math. J.* 47 (1998), 387–400.
- [5] Feliks Aleksandrovich Berezin, Covariant and contravariant symbols of operators, (Russian) *Izv. Akad. Nauk SSSR Ser. Mat.* 36 (1972), 1134–1167.

English translation: Math. USSR-Izv. 6 (1972), 1117-1151.

References (continued)

- [6] Lewis Coburn, Singular integral operators and Toeplitz operators on odd spheres, *Indiana Univ. Math. J.* 23 (1974), 433–439.
- [7] R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, *Ann. of Math.* 103 (1976), 611-635.
- [8] Miroslav Engliš, Functions invariant under the Berezin transform, *J. Funct. Anal.* 121 (1994), 233–254.
- [9] Boris Korenblum and Kehe Zhu, An application of Tauberian theorems to Toeplitz operators, *J. Operator Theory* 33 (1995), 353-361.
- [10] John E. Littlewood, *Littlewood's Miscellany*, revised edition, Cambridge University Press, 1986.
- [11] Richard M. Timoney and Lee A. Rubel, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), 45-49.

References (continued)

- [12] Donald Sarason, Blaschke products in β₀, pages 337–338 in *Linear and Complex Analysis Problem Book*, edited by V. P. Havin, S. V. Hruščëv, and N. K. Nikol'skii, Lecture Notes in Mathematics, vol. 1043, Springer, 1984.
- [13] Karel Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34 (1990), 159–174.
- [14] Karel Stroethoff, Compact Toeplitz operators on Bergman spaces, Math. Proc. Cambridge Philos. Soc. 124 (1998), 151–160.
- [15] Kehe Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. Amer. Math. Soc. 302 (1987), 617-646.
- [16] Kehe Zhu, Toeplitz operators on weighted Bergman spaces of bounded symmetric domains, J. Operator Theory 20 (1988), 329–357.
- [17] Kehe Zhu, *Operator Theory in Function Spaces*, second edition, American Mathematical Society, 2007.

THANK YOU!

