A decomposition of analytic function spaces, with applications

Jonathan R. Partington (Leeds, UK)
Fields Institute, July 2021

Joint work with Eva Gallardo-Gutiérrez with additional material from
Isabelle Chalendar and Daniel Seco

Hilbert function spaces on the disc

For $\alpha \in \mathbb{R}$, we write \mathcal{A}_{α} for the space of analytic functions in the unit disc \mathbb{D} of the form

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

with

$$
\|f\|^{2}=\sum_{n=0}^{\infty}(n+1)^{\alpha}\left|a_{n}\right|^{2}<\infty .
$$

So $\mathcal{A}_{0}=H^{2}$ (Hardy space), $\mathcal{A}_{1}=\mathcal{D}$ (Dirichlet space), and $\mathcal{A}_{-1}=A^{2}$ (Bergman space).

An integral representation

For non-negative integers $N>\alpha / 2, A_{\alpha}$ consists of all functions f such that

$$
\int_{\mathbb{D}}\left|f^{(N)}(z)\right|^{2}\left(1-|z|^{2}\right)^{2 N-\alpha-1} d A(z)<\infty
$$

the integral taken with respect to Lebesgue area measure.
So for the Dirichlet space we recover the familiar condition

$$
\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)<\infty
$$

Blaschke products and model spaces

Let $z_{1}, \ldots, z_{n} \in \mathbb{D}$ (not necessarily distinct). Then

$$
B(z):=\prod_{j=1}^{n} \frac{z-z_{j}}{1-\overline{z_{j} z}}
$$

is a finite Blaschke product. It maps \mathbb{D} to \mathbb{D} and $\left|B\left(e^{i t}\right)\right|=1$ for each $t \in \mathbb{R}$.
We write $K_{B}=H^{2} \ominus B H^{2}$, the model space, an n-dimensional space of rational functions which is invariant under the backward shift

$$
S^{*} f(z)=(f(z)-f(0)) / z
$$

A decomposition of H^{2}

It is well known, and easy to prove, that

$$
H^{2}=K_{B} \oplus B K_{B} \oplus B^{2} K_{B} \oplus \ldots
$$

as an orthogonal decomposition. Note that T_{B} (multiplication by B) is an isometry on H^{2}.
We may write each $f \in H^{2}$ as $f=\sum_{r=0}^{\infty} h_{r} B^{r}$ with $h_{r} \in K_{B}$ and

$$
\|f\|^{2}=\sum_{r=0}^{\infty}\left\|h_{r}\right\|^{2}
$$

For $B(z)=z, K_{B}=\mathbb{C}$, the h_{r} are constants and this is the usual power series for f.

A decomposition for \mathcal{A}_{α}

The analogous result is that in a precise sense

$$
\mathcal{A}_{\alpha}=K_{B} \oplus B K_{B} \oplus B^{2} K_{B} \oplus \ldots
$$

as before. This is NOT an orthogonal decomposition in general, but $f \in \mathcal{A}_{\alpha}$ if and only if

$$
f=\sum_{r=0}^{\infty} h_{r} B^{r}
$$

with $h_{r} \in K_{B}$ and $\sum_{r=0}^{\infty}(r+1)^{\alpha}\left\|h_{r}\right\|^{2}<\infty$.
Note that since $\operatorname{dim} K_{B}<\infty$ it doesn't matter which (fixed) norm on K_{B} we take, as all are equivalent.

More on the decomposition

We have $f \in \mathcal{A}_{\alpha}$ if and only if

$$
f=\sum_{r=0}^{\infty} h_{r} B^{r}
$$

with $h_{r} \in K_{B}$ and $\sum_{r=0}^{\infty}(r+1)^{\alpha}\left\|h_{r}\right\|^{2}<\infty$.
The result is obvious for $B(z)=z$, and in that special case the (power series) decompositions are orthogonal.
For any finite Blaschke product B we have a norm equivalence:

$$
\left\|\sum_{r=0}^{\infty} h_{r} B^{r}\right\|_{A_{\alpha}}^{2} \approx \sum_{r=0}^{\infty}(r+1)^{\alpha}\left\|h_{r}\right\|^{2}
$$

Some history and proofs

This was originally done in [CGP15] for Bergman and Dirichlet, then extended in [GPS20] to $\alpha \in[-1,1]$, and finally to all α in [GP21].
Two basic facts are used in the proof: 1. The composition operator $C_{B}: f \mapsto f \circ B$ is bounded on \mathcal{A}_{α}.
2. The Toeplitz (multiplication) operator $T_{B}: f \mapsto B f$ is bounded on \mathcal{A}_{α}.
These facts can be deduced fairly easily from the integral representation of \mathcal{A}_{α}.

Application 1: weighted composition

 operatorsLet $\varphi: \mathbb{D} \rightarrow \mathbb{D}$ holomorphic and $u \in \operatorname{Hol}(\mathbb{D})$. When is the weighted composition operator $W_{u, \varphi}: f \rightarrow u(f \circ \varphi)$ bounded on A_{α} ?
One way to analyse this is via multiplier spaces. Let
$\mathcal{M}_{\alpha}(\varphi)=\left\{u \in \operatorname{Hol}(\mathbb{D}): W_{u, \varphi}\right.$ is bounded on $\left.A_{\alpha}\right\}$.
For H^{2}, it is known that $M_{0}(\varphi)=H^{\infty}$ (as small as possible) if and only if φ is a finite Blaschke product (Contreras-Hernández-Díaz (2003) and others).

Weighted composition operators on \mathcal{D} : I

With the aid of the decomposition, a similar result can be proved for the Dirichlet space.
Let $\mathcal{M}(\mathcal{D})$ be the multiplier space of \mathcal{D}, i.e., all $u \in \operatorname{Hol}(\mathbb{D})$ such that $T_{u}: \mathcal{D} \rightarrow \mathcal{D}$ is bounded.
It is known that $\mathcal{M}(\mathcal{D}) \subseteq \mathcal{D} \cap H^{\infty}$. Clearly, $M_{1}(\varphi) \supseteq M(\mathcal{D})$ if C_{φ} is bounded on \mathbb{D}.
Theorem. Let φ be an inner function. Then $\mathcal{M}_{1}(\varphi)=\mathcal{M}(\mathcal{D})$ if and only if φ is a finite Blaschke product.
However, there are functions φ with $\|\varphi\|_{\infty}=1$ for which the multiplier space is larger.

Weighted composition operators on \mathcal{D} : II

At the other extreme we have the following result (which does not use the decomposition).
Theorem. Let φ be an analytic self-map of \mathbb{D}.
Then $\mathcal{M}_{1}(\varphi)=\mathcal{D}$ if and only if
(i) $\|\varphi\|_{\infty}<1$, and
(ii) $\varphi \in \mathcal{M}(\mathcal{D})$.

These ideas were also used to analyse spectral properties of weighted composition operators (more technical, and omitted here).

Application 2: wandering subspaces

 An operator T on a Hilbert space \mathcal{H} has the wandering subspace property if every closed invariant subspace \mathcal{M} is generated under T by $\mathcal{M} \ominus T \mathcal{M}$. We write this as$$
[\mathcal{M} \ominus T \mathcal{M}]_{T}=\mathcal{M}
$$

The Wold decomposition theorem for a shift (pure isometry)

$$
\mathcal{H}=\mathcal{K} \oplus T \mathcal{K} \oplus T^{2} \mathcal{K} \oplus \ldots
$$

shows that this holds for these operators.
It is still not known exactly which multiplication operators, even on H^{2}, have the property.

Wandering subspaces for non-isometries

When it comes to other \mathcal{A}_{α} the situation, even for multiplication by z^{k}, is much more complicated. Even a clear description of T_{z}-invariant subspaces isn't available.
Work of Aleman-Richter-Sundberg and Shimorin shows that for T_{z} we do have the wandering subspace property for $\alpha \in[-1,1]$.
Still unknown for $T_{z^{2}}$ in general. Moreover Seco has found α and k for which the wandering subspace property fails for z^{k} on \mathcal{A}_{α}. For example, $\alpha=-16$ and $k=6$.

Shimorin's theorem

Suppose that an operator T satisfies
$\bigcap_{n=1}^{\infty} T^{n} H=\{0\}$ and one of the following two conditions:
(i) $\left\|T^{2} x\right\|^{2}+\|x\|^{2} \leq 2\|T x\|^{2}$ for all x (concavity);
(ii) $\|x+T y\|^{2} \leq 2\left(\|T x\|^{2}+\|y\|^{2}\right)$ for all x and y.

Then T has the wandering subspace property.
In particular (i) gives the property for T_{z} on \mathcal{A}_{α} for $\alpha \in[0,1]$ (e.g. Dirichlet), and (ii) gives it for $\alpha \in[-1,0]$.

Equivalent norms

Theorem. Let $\alpha \in[-1,1]$ and B a finite Blaschke product. Then there exists an equivalent norm $\|\cdot\|_{B}$ under which T_{B} has the wandering subspace property in \mathcal{A}_{α}, that is, for any invariant subspace \mathcal{M} we have $\left[\mathcal{M} \ominus T_{B} \mathcal{M}\right]_{B}=\mathcal{M}$.
Moreover, for $B(z)=z^{k}$ and
$\alpha \in[0, \log (2) / \log (k+1)]$, the norm $\|\cdot\|_{B}$ coincides with the usual norm on \mathcal{A}_{α}.
Idea of proof. Use the decomposition given earlier to construct a norm under which T_{B} is unitarily equivalent to a shift acting on a vector-valued \mathcal{A}_{α}. Then use the theorem of Shimorin.

Application 3: commutants of

multiplication operators

Once again, a lot is known about Hardy spaces, and much less about other \mathcal{A}_{α}.
In the 1970s and 1980s, Cowen, Thomson, Deddens, Wong, Shields, Wallen, etc. gave fairly complete results on the commutant of a multiplier T_{g} on H^{2}, with $g \in H^{\infty}$.
Some results on the Bergman space are available, e.g. Douglas-Sun-Zheng, Cuckovic, and very recently Abkar-Cao-Zhu (2020), who looked at multiplication by z^{k}.
Once again, we can say a lot more using the decomposition given earlier.

Rewriting the decomposition theorem

Let B be a finite Blaschke product, and u_{1}, \ldots, u_{n} a basis for the model space K_{B}.
For $\alpha \in \mathbb{R}$ and $f \in \mathcal{A}_{\alpha}$ we have a unique decomposition

$$
f=\sum_{j=1}^{n} u_{j} f_{j}(B)
$$

with $f_{1}, \ldots, f_{n} \in \mathcal{A}_{\alpha}$. Moreover $\|f\|$ is equivalent to
$\left(\sum_{j=1}^{n}\left\|f_{j}\right\|^{2}\right)^{1 / 2}$.

The commutant theorem

With the notation as above, a bounded linear operator W on \mathcal{A}_{α} commutes with T_{B} if and only if

$$
W\left(\sum_{j=1}^{n} u_{j} f_{j}(B)\right)=\sum_{j=1}^{n} \varphi_{j} f_{j}(B)
$$

for some $\varphi_{1}, \ldots, \varphi_{n} \in \mathcal{M}\left(\mathcal{A}_{\alpha}\right)$ (multipliers of \mathcal{A}_{α}). For example, if $B(z)=z^{n}$, we can take $u_{j}=z^{j-1}$ for $j=1,2, \ldots, n$, and we have

$$
W\left(\sum_{k=0}^{n-1} z^{k} f_{k}\left(z^{n}\right)\right)=\sum_{k=0}^{n-1} \varphi_{k} f_{k}\left(z^{n}\right)
$$

which is basically the Abkar-Cao-Zhu result.

Reducing subspaces

Recall that a reducing subspace \mathcal{M} of an operator T is one that is invariant under T and T^{*}, or equivalently both \mathcal{M} and \mathcal{M}^{\perp} are invariant under T.

Another way of saying this is that the orthogonal projection $P_{\mathcal{M}}$ commutes with both T and its adjoint T^{*}.
There has been much work on this, especially for T_{B} on the Bergman space. We mention Douglas, Putinar, Sun, Wang and their co-authors.

Matrix notation: I

First, the commutant of T_{B} is isomorphic to the space of $n \times n$ matrices of multipliers of A_{α}. With

$$
W\left(\sum_{j=1}^{n} u_{j} f_{j}(B)\right)=\sum_{k=1}^{n} \varphi_{k} f_{k}(B)
$$

and since $\varphi_{k} \in \mathcal{A}_{\alpha}$, we may write

$$
\begin{gathered}
\varphi_{k}=\sum_{j=1}^{n} u_{j} \varphi_{j k}(B), \quad \text { so that } \\
W\left(\sum_{j=1}^{n} u_{j} f_{j}(B)\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \varphi_{j k}(B) f_{k}(B) .
\end{gathered}
$$

Matrix notation: II

Thus, identifying $\sum_{j=1}^{n} u_{j} f_{j}(B) \in \mathcal{A}_{\alpha}$ with the column vector $\left(f_{1}, \ldots, f_{n}\right)^{T}$ we have

$$
W:\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right) \mapsto \Phi\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right)
$$

where Φ is a matrix of multipliers of \mathcal{A}_{α}.
This makes it easy to find projections in the commutant of T_{B}, and further work is possible (we have mainly explored the Hardy and Bergman spaces).

Finally - an orthogonal decomposition

For B a degree- n Blaschke product we easily see that every $B^{k} \mathcal{D}(k \geq 1)$ is closed. We may therefore write

$$
\mathcal{D}=K_{0} \oplus K_{1} \oplus K_{2} \oplus \ldots
$$

where $X_{0}=\mathcal{D} \ominus B \mathcal{D}$, the Dirichlet "model space", and $X_{k}=B^{k} \mathcal{D} \ominus B^{k+1} \mathcal{D}$ for each $k \geq 1$.
With this decomposition, T_{B} is now lower triangular, and every self-adjoint W in its commutant is block diagonal.
Unfortunately, usable bases for the n-dim. subspaces $X_{k}, k \geq 1$, are unknown so far.

Some references

[CGP15] I. Chalendar, E.A. Gallardo-Gutiérrez and J.R. Partington, Weighted composition operators on the Dirichlet space: boundedness and spectral properties. Math. Annalen 363 (2015), 1265-1279. [GP21] E.A. Gallardo-Gutiérrez and J.R. Partington, Multiplication by a finite Blaschke product on weighted Bergman spaces: commutant and reducing subspaces. https://arxiv.org/abs/2105.07760.
[GPS20] E.A. Gallardo-Gutiérrez, J.R. Partington and D. Seco, On the wandering property in Dirichlet spaces. Integral Equations and Operator Theory 92 (2020), paper no. 16.

That's all. Thank you.

