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o If f(z) =2 )0 axz", then D(f) = > k>0 k|ag|?.
Consequently D C H?.

e D is a Hilbert space with respect to the norm || - ||p given by

115 == lI1I7 +D(F) = D> _(k+1)|ax|*.
k>0
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History and motivation

Very very brief history of D:
o Beurling (1930's-1940's)
o Carleson (1950's-1960's)

Some reasons for studying D:
o Potential theory, energy, capacity
o Geometric interpretation, Mobius invariance
@ Weighted shifts, invariant subspaces

@ Borderline case, still many open problems



What to study?

Some topics of interest:
Boundary behavior
Zeros

Multipliers
Reproducing kernel
Interpolation

Conformal invariance

Shift-invariant subspaces



Where to find out more about D7

Survey articles:

o W. Ross, The classical Dirichlet space, Recent advances in
operator-related function theory, 171-197, Contemp. Math., 393,
Amer. Math. Soc., Providence, RI, 2006.

@ N. Arcozzi, R. Rochberg, E. Sawyer, B. Wick, The Dirichlet space: a
survey, New York J. Math. 17A (2011), 45-86.

Monographs:
o O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford, A primer on the
Dirichlet space, Cambridge University Press, Cambridge, 2014

o N. Arcozzi, R. Rochberg, E. Sawyer, B. Wick, The Dirichlet space
and related function spaces, Amer. Math. Soc., Providence RI, 2019.
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Let u be a finite positive Borel measure on T.

Energy of i

2
= [ [ og 15 d() ()

e May have /(p) = 4o0.

e Formula for /() in terms of Fourier coefficients of u:

~C1[2
1) =30 POy og2.
k>1
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Capacity of compact sets

Capacity of compact F C T

c(F):=1/inf{l(p): wis a probability measure on F}.

Elementary properties:
o L C Fh=c(F)<c(F)
o Fol F=c(Fp) | c(F)
o c(FRUFR) <c(F)+c(F)

Examples:

c(F) <1/log(2/diam(F))

c(F) =0 if F is finite or countable

c(F) > 1/log(2me/|F|). In particular ¢(F) =0 = |F| = 0.
c(F) > 0if F is the (circular) middle-third Cantor set.



Capacity of general sets

Inner capacity of E C T

c(E) := sup{c(F) : compact F C E}

v

Outer capacity of EC T

c*(E) :=inf{c(U) : open U D E}

o c*(UnEp) <>, c*(Es)  (not true for c(-)).
e c*(E) = c(E) if E is Borel (Choquet’s capacitability theorem)
@ A property holds g.e. if it holds outside an E with ¢*(E) = 0.



Equilibrium measures

Let F be a compact subset of T. Recall that
c(F):=1/inf{l(p) : p is a probability measure on F}.
Measure g attaining the inf is called an equilibrium measure for F.

Proposition

If c(F) >0, then F admits a unique equilibrium measure.




Equilibrium measures

Let F be a compact subset of T. Recall that
c(F):=1/inf{l(p) : p is a probability measure on F}.
Measure g attaining the inf is called an equilibrium measure for F.

Proposition

If c(F) >0, then F admits a unique equilibrium measure.

Fundamental theorem of potential theory (Frostman, 1935)

Let pu be the equilibrium measure for F, and V,, be its potential, i.e.

Vi2) = [ log = d(O).

Then V,, <1/c(F) onT, and V,, =1/c(F) q.e. on F.
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o Every f € D has non-tangential limits a.e. on T (as f € H?).
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Preliminary remarks

o Every f € D has non-tangential limits a.e. on T (as f € H?).
@ There exists f € D such that lim,_,;— |[f(r)| = o0

Example: Consider

zklogk

k>2
Then

bif) = Zk(klogk Z k(Iogk

k>2 k>2
but

liminf f(r) > Z = 00.
r—1- s klogk



Beurling's theorem

Theorem (Beurling, 1940)
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Beurling's theorem

Theorem (Beurling, 1940)

If f € D then f has non-tangential limits q.e. on T.

Remarks:
o Beurling actually proved his result just for radial limits

@ Beurling's theorem is sharp in the following sense:

Theorem (Carleson, 1952)

Given compact E C T of capacity zero, there exists f € D such that
lim,_,1- |f(r¢)| = oo for all ¢ € E.




Capacitary weak-type and strong-type inequalities

Notation: Let f € D. For ( € T, we write f*(¢) := lim,_,;- f(r¢).
Also A, B denote absolute positive constants.

Weak-type inequality (Beurling, 1940)

c(|f*| > t) < Allf|p/t* (> 0).

Corollary

| A\

{IF*] > t}] < Ae B/ (¢ > o).




Capacitary weak-type and strong-type inequalities

Notation: Let f € D. For ( € T, we write f*(¢) := lim,_,;- f(r¢).
Also A, B denote absolute positive constants.

Weak-type inequality (Beurling, 1940)

c(If*| > t) < Allf|H/t* (> 0).

Corollary

| \

{IF*] > t}] < Ae B/ (¢ > o).

Strong-type inequality (Hansson, 1979)

(e o)
/ c(IF*] > t) tdt < Allf|R,
0




Douglas’ formula

Theorem (Douglas, 1931)

If f € H?, then

o= % [ |4

f‘*

P =P ) .




Douglas’ formula

Theorem (Douglas, 1931)

If f € H?, then

1
D(f)=-—
(V=72 ) |
If f € D, then f has oricyclic limits a.e. in T. I

£5(A) = () ]2
A——C) |dA|dC].

non-tangential approach region oricyclic approach region



Exponential approach region

Theorem (Nagel-Rudin—Shapiro, 1982)

If f € D then, for a.e. ( € D, we have f(z) — f*({) as z — ( in the
exponential approach region

[ErLE
|Z—<|</€(Og1_—|z|> .

Remarks:
o Approach region is ‘widest possible’.

e This is an a.e. result (not g.e.).



Carleson’s formula

Notation: Let f € H? with canonical factorization f = BSO.
Let (a,) be the zeros of B, and o be the singular measure of S.

Theorem (Carleson, 1960)

_ (F* NP = 1F*(Q)1P) (log |[£*(A)] = log [F*(C)]) [dA] |d¢]
f)_/T[E A — C|? 2 2w

v [ (Z 'j:}i vt W)iF R L.

n
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If f belongs to D then so does its outer factor. I




Carleson’s formula

Notation: Let f € H? with canonical factorization f = BSO.
Let (a,) be the zeros of B, and o be the singular measure of S.

Theorem (Carleson, 1960)

_ (F* NP = 1F*(Q)1P) (log |[£*(A)] = log [F*(C)]) [dA] |d¢]
f)_/T/T A — C|? 2 2w

If f belongs to D then so does its outer factor. l
The only inner functions in D are finite Blaschke products. l




Some further developments

o Chang—Marshall theorem (1985):

sup{Aexp(|f*(ef9)yz)d9 F(0)=0, D(f) < 1}< o

o Trade-off between approach regions and exceptional sets.
Borichev (1994), Twomey (2002)
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Preliminary remarks

A sequence (z,) in D (possibly with repetitions) is:
e a zero set for D if 3f € D vanishing on (z,) but f # 0;

@ a uniqueness set for D if it is not a zero set.

Proposition

If (zn) is a zero set for D, then 3f € D vanishing precisely on (z,).




Preliminary remarks

A sequence (z,) in D (possibly with repetitions) is:
e a zero set for D if 3f € D vanishing on (z,) but f # 0;
@ a uniqueness set for D if it is not a zero set.

Proposition

If (zn) is a zero set for D, then 3f € D vanishing precisely on (z,).

It is well known that (z,) is a zero set for the Hardy space H? iff

Z(l —|zs|) < 0.

n

What about the Dirichlet space?



The three cases

Case | (obvious)

> (1 —|z4]) =00 = (z,) is a uniqueness set for D.
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The three cases

Case | (obvious)

> (1 —|z4]) =00 = (z,) is a uniqueness set for D.

Case Il (Shapiro—Shields, 1962)
> 1/llog(l — |zp|)| < 00 = (z,) is a zero set for D.

Case Il (Nagel-Rudin—Shapiro, 1982)

If (z,) satisfies neither condition, then there exist a zero set (z],) and a
uniqueness set (z)) with |z,| = |z),| = |z}| for all n.

Thus, in Case Ill, the arguments of (z,) matter. Back to this later.



Boundary zero sets

Let E be a closed subset of T. It is called a Carleson set if
2
| — | |d .
/T Og(dist({, E)) ¢} < o0

Theorem (Carleson 1952)
If E is a Carleson set, then 3f € AY(D) with f~1(0) = E.
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Boundary zero sets

Let E be a closed subset of T. It is called a Carleson set if

AIOg(@) |d¢| < oo.

Theorem (Carleson 1952)
If E is a Carleson set, then 3f € AY(D) with f~1(0) = E.

Theorem (Carleson 1952, Brown—Cohn 1985)

If c(E) =0, then 3f € DN A(D) with f~1(0) = E.

@ Neither result implies the other.

o Clearly, if |[E| > 0, then E is a boundary uniqueness set for D. But
there also exist closed uniqueness sets E with |E| = 0.



Arguments of zero sets

We return to zero sets within ID, now considering their arguments.

Theorem (Caughran, 1970)

Let (') be a sequence in T. The following are equivalent:
o (rse'n) is a zero set for D whenever " (1 — r,) < co.

o E:={e :n>1} is a Carleson set.
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Arguments of zero sets

We return to zero sets within ID, now considering their arguments.

Theorem (Caughran, 1970)

Let (') be a sequence in T. The following are equivalent:
o (rse'n) is a zero set for D whenever " (1 — r,) < co.

o E:={e :n>1} is a Carleson set.

Example of a Blaschke sequence that is a uniqueness set for D

1

zp = (1 — m) el/logn

There is still no satisfactory complete characterization of zero sets.



Some further developments

@ Carleson sets as zero sets for A°(D)
Taylor-Williams (1970)
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Preliminary remarks

Proposition
D is not an algebra.

Proof: Suppose D is an algebra.

o By closed graph theorem, D isomorphic to a Banach algebra.
o f— f(z) is a character, so |f(z)| < spectral radius of f.
@ Therefore every f € D is bounded. Contradiction.
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A multiplier for D is a function ¢ such that ¢f € D for all f € D. The set
of multipliers is an algebra, denoted by M(D).
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Multipliers

Definition

A multiplier for D is a function ¢ such that ¢f € D for all f € D. The set
of multipliers is an algebra, denoted by M(D).

Remark: In the case of Hardy spaces, M(H?) = H*.

When is ¢ a multiplier of D?
o Necessary condition: ¢ € DN H*®
o Sufficient condition: ¢’ € H®

To completely characterize multipliers, we introduce a new notion.



Carleson measures

Definition

A measure p on D is a Carleson measure for D if 3C such that

/ fRdu < CIFI3 (f € D).
D
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Carleson measures

Definition

A measure p on D is a Carleson measure for D if 3C such that

/ fRdu < CIFI3 (f € D).
D

With this notion in hand, it is quite easy to characterize multipliers:
Proposition

¢ € M(D) iff both ¢ € H® and |¢/|? dA is a Carleson measure for D.

Begs a new question: how to characterize Carleson measures?



Characterization of Carleson measures

Let 4 be a finite positive measure on D.
S(y:={re?:1-|l|<r<1, e}
Carleson (1962): 1 is Carleson for H? iff ;u(S(1)) =
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The condition p(S(1)) = O(y(|1])) is:
@ necessary if (x) :=1/log(1/x);
o sufficient if 1(x) := 1/ log(1/x)(loglog(1/x))* with a > 1.




Characterization of Carleson measures

Let 4 be a finite positive measure on D.
S(y:={re?:1-|l|<r<1, e}
Carleson (1962): 1 is Carleson for H? iff ;u(S(1)) =

When is p a Carleson measure for D?

Theorem (Wynn, 2011)
The condition p(S(1)) = O(y(|1])) is:
@ necessary if (x) :=1/log(1/x);
o sufficient if 1(x) := 1/ log(1/x)(loglog(1/x))* with a > 1.

Theorem (Stegenga, 1980)

W is a Carleson measure for D iff there is a constant A such that, for every
finite set of disjoint closed subarcs I1, ..., 1, of T,

u(UaS(h)) < Ac(Upal).




Multipliers and reproducing kernels

If f € D and w € D, then f(w) = (f, ky)p, where

1
1—-—wz

kw(z) == % Iog< ) (w,z € D).

The function k,, is called the reproducing kernel for w.
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Multipliers and reproducing kernels

If f € D and w € D, then f(w) = (f, ky)p, where

1
1—-—wz

kw(z) == % Iog( ) (w,z € D).

The function k,, is called the reproducing kernel for w.

Proposition
Let $ € M(D) and define My : D — D by My(f) := ¢f. Then

M (kw) = (w)kw (w € D).

Proof: For all f € D, we have

(F, Mi(kw))D = (6, kw)p = d(wW)f (W) = d(w)(F, kn)D = (f, (W)kw)D.
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¢ € M(D) with |[My|| < 1 such that ¢(z;) = w; for all j?
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¢ exists iff the matrix (1 — W;w;)(kz;, kz;)p is positive semi-definite.




Pick interpolation

Problem: Given zi,...,z, €D and wy,...,w, € D, does there exist
¢ € M(D) with |[My|| < 1 such that ¢(z;) = w; for all j?

Theorem (Agler, 1988)

¢ exists iff the matrix (1 — W;w;)(kz;, kz;)p is positive semi-definite.

@ Necessity is a simple consequence of the preceding proposition. The
same argument works for any RKHS.

o Sufficiency is a property of the Dirichlet kernel (‘Pick property’).



Interpolating sequences

A sequence (z,)p>1 in D is an interpolating sequence for M(D) if

{(6(21), 8(22), 8(z3), ...) : 6 € M(D)} = 1.



Interpolating sequences

A sequence (z,)p>1 in D is an interpolating sequence for M(D) if

{(6(21), 8(22), 8(z3), ...) : 6 € M(D)} = 1.

Theorem (Marshall-Sundberg (1990's), Bishop (1990's), Bge (2005))

The following are equivalent:
® (zn)n>1 is an interpolating sequence for M(D);

1) C
° E ﬁ is @ D-Carleson measure and sup |(Kzu, kzw)D|
n n

— = < 1.
nm || ke, ||l kzn |2
n#m
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o f is cyclic for H? iff f is an outer function (Beurling).
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Factorization theorems

We say f is cyclic for D if M(D)f =D.
o Clearly f cyclic = f(z) # 0 for all z € D. The converse is false.

o f is cyclic for H? iff f is an outer function (Beurling).

‘Inner-outer’ factorization (Jury—Martin, 2019)
If f € D, then f = ¢g, where p € M(D) and g is cyclic in D.

Smirnov factorization (Aleman—Hartz—McCarthy—Richter, 2017)
If f € D, then f = ¢1/p2, where ¢1, 2 € M(D) and ¢, is cyclic in D.

Given f € D, there exists ¢ € M(D) with the same zero set.
Consequently, the union of two zero sets is again one.




Some further developments

@ Further characterizations of multipliers and Carleson measures for D
Arcozzi—-Rochberg—Sawyer (2002)

@ Reverse Carleson measures
Fricain—Hartmann—Ross (2017)

o Corona problem for M(D)
Tolokonnikov (1991), Xiao (1998), Trent (2004)
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Preliminary remarks

Let ¢ : D — C and f : (D) — C be holomorphic functions.
Write ng(w) for the number of solutions z of ¢(z) = w.
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Preliminary remarks

Let ¢ : D — C and f : (D) — C be holomorphic functions.
Write ng(w) for the number of solutions z of ¢(z) = w.

Change-of-variable formula

D(fog) =+ /¢ o [P Pre() dACw).

If ¢ is injective, then D(¢) = (area of (D)) /.

If f €D and ¢ € aut(D), then f o ¢ € D and D(f o ¢) = D(f).

This last property more-or-less characterizes D.



Characterization of D via Mobius invariance

Notation:
@ H := a vector space of holomorphic functions on D
o (-,-) := a semi-inner product on H and &(f) := (f,f).

Theorem (Arazy—Fisher 1985, slightly modified)

Assume:
o iff € H and ¢ € aut(D), then f o p € H and E(f o ¢) = E(f);
o ||f]|? := |£(0)|> + E(f) defines a Hilbert-space norm on H;
@ convergence in this norm implies pointwise convergence on ID;
@ H contains a non-constant function.

Then H =D and £(-) = aD(-) some constant a > 0.




Composition operators

Given holomorphic ¢ : D — D, define C : Hol(D) — Hol(DD) by
Co(f) i =foop.

If ¢ € aut(ID) then Cy : D — D. For which other ¢ is this true?
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Composition operators

Given holomorphic ¢ : D — D, define C : Hol(D) — Hol(DD) by

C¢(f) =fo ¢

If ¢ € aut(ID) then Cy : D — D. For which other ¢ is this true?
If p(z) 1= 3 4o1 2 ¥2*, then ¢ : D — D, but Cy(D) ¢ D as ¢ ¢ D.

Theorem (MacCluer-Shapiro, 1986)

C¢:D—>D<:>/ ng dA = O(|1?).
S(1)

Corollary (El-Fallah—Kellay-Shabankhah—Youssfi, 2011)

Conditions for Cy : D — D:
o necessary: D(¢*) = O(k) as k — oc.
o sufficient: D(¢¥) = O(1) as k — oc.




Weighted composition operators

Theorem (Mashreghi—J. Ransford—T. Ransford, 2018)

Let T : D — Hol(D) be a linear map. The following are equivalent:
o T maps nowhere-vanishing functions to nowhere-vanishing functions.
o 3 holomorphic functions ¢ : D — D and ¢ : D — C\ {0} such that

Tf=v¢.(fog) (f€D).




Some further developments

@ Compact composition operators on D
MacCluer, Shapiro (1986)

o Composition operators in Schatten classes
Lefevre, Li, Queffélec, Rodriguez-Piazza (2013)

o Geometry of ¢(ID) when C, is Hilbert-Schmidt
Gallardo-Gutiérrez, Gonzalez (2003)
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The D,, spaces

Definition
For —1 < a < 1, write D,, for the set of holomorphic f on D with

Dolf) =+ [ 1P~ |22)° dA(2) < o

Properties:
© Do(Xoy akzk) = 34 kM akf?
e Dy =D and D; = H?
o If 0 < a <1, then D, is ‘akin’ to D (using Riesz capacity ¢, ).
o If -1 < a <0, then D, is a subalgebra of the disk algebra.
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The D, spaces

Given a finite positive measure p on T, write Py for its Poisson integral:

Definition (Richter, 1991)
Given p, we denote by D, the set of holomorphic f on D such that

D,(f) == %/D|f'(z)]2Pp(z) dA(z) < oo

o If 4 =df#/2m, then D, = D, the classical Dirichlet space.
o If = d¢, then D, is the local Dirichlet space at ¢, denoted D¢.

Note: Can recover D,(f) from D¢(f) using Fubini's theorem:

/'Dc d,u
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Properties of D, (Richter-Sundberg, 1991)

® D, C H and is Hilbert space w.rt. ||f|[3, == [|f|[7 + Dyu(f).

@ Douglas formula: if f € D, then f* exists u-a.e. and

00— F(OF |
0= LR o

Special case: f € Dy <= f(z) = a+ (z — ()g(z) where g € H?,
and then D¢(f) = Hg||f_l2

o Carleson formula for D, (f).
@ Polynomials are dense in D,,.

e D,(f;) < 4D,(f) (where f,(z) := f(rz)).
Can replace 4 by 1 (Sarason 1997, using de Branges—Rovnyak spaces).



Some further developments

o Capacities for D,,.
Chacén (2011), Guillot (2012)

o Estimates for reproducing kernel and capacities in D,,.
El-Fallah, EImadani, Kellay (2019)

@ Superharmonic weights
Aleman (1993)

@ D, has the complete Pick property
Shimorin (2002)



Chapter 8
Shift-invariant subspaces
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Preliminary remarks

Notation:
o T a bounded operator on a Hilbert space H
o Lat(T,#) := the lattice of closed T-invariant subspaces of #.
@ M, := the shift operator (multiplication by z).

Theorem (Beurling, 1948)

If M € Lat(M,, H?)\ {0}, then M = OH? where 0 is inner.

Analogue for Lat(M,,D)?



The shift operator on D,

Write (T,H) := (M, D). Clearly:

(1) |IT2F||2 = 2||TF||2 + || f||> = 0 for all f € H.
(2) N0 T"(H) = {0}

(3) dim(H o T(H)) = 1.
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The shift operator on D,

Write (T,H) := (M, D). Clearly:

(1) |IT2F||2 = 2||TF||2 + || f||> = 0 for all f € H.
(2) N0 T"(H) = {0}

(3) dim(H o T(H)) = 1.

It turns out that the same properties hold if (T,H) := (M,,D,,).
Conversely:

Theorem (Richter, 1991)

Let T be an operator on a Hilbert space H satisfying (1),(2),(3). Then
there exists a unique finite measure y on T such that (T, H) is unitarily
equivalent to (M,,D,,).
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o Clearly (M., M) satisfies properties (1),(2).
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Invariant subspaces of (M., D)

Let M € Lat(M,, D).

o Clearly (M., M) satisfies properties (1),(2).
o If M # {0}, then (3) also holds (Richter—Shields 1988).

Leads to:

Theorem (Richter 1991, Richter-Sundberg 1992)

Let M € Lat(M,,D) and let p € M & M,(M) with ¢ # 0. Then:
e ¢ is a multiplier for D.
o M = ¢D, where du = |¢*|? db.

M is cyclic (i.e. singly generated as an invariant subspace). I
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Cyclic invariant subspaces

Problem: Given f € D, identify [f]p, the closed invariant subspace of D
generated by f.

Theorem (Richter-Sundberg 1992)

Let f € D have inner-outer factorization f = f;f,. Then

[flp = filfolp N D = [fo]lp N FiH2.

It remains to identify [f5]p. We might expect that [f,]p = D. However,
another phenomenon intervenes, that of boundary zeros.
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Notation: Given E C T, write Dg :={h€D: h*=0q.e. on E}.
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Cyclic invariant subspaces and boundary zeros

Notation: Given E C T, write Dg :={h€D: h*=0q.e. on E}.

Theorem (Carleson 1952)

Dk is closed in D. Hence Dg € Lat(M,, D).

Let f € D and let E := {f* =0}. Then [f]p C DEg. I

Open problem

Let f € D be outer and let E := {f* = 0}. Then do we have [f]p = Dg?
In particular, if c(E) =0, then do we have [f]p = D?

Special case where ¢(E) = 0 is a celebrated conjecture of Brown—Shields



Brown—Shields conjecture

f € D is cyclic for D if [f]p = D. Necessary conditions for cyclicity:
e f is outer;
o £ :={f* =0} is of capacity zero.

Conjecture (Brown—Shields, 1984)

These conditions are also sufficient.
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Brown—Shields conjecture

f € D is cyclic for D if [f]p = D. Necessary conditions for cyclicity:

e f is outer;
o £ :={f* =0} is of capacity zero.

Conjecture (Brown—Shields, 1984)

These conditions are also sufficient.

Partial results:
Theorem (Hedenmalm—-Shields, 1990)
If f € DN A(D) is outer and if E := {f = 0} is countable, then f is cyclic.

Theorem (El-Fallah—Kellay—Ransford, 2009)
If f € DN A(D) is outer and if E := {f = 0} satisfies, for some € > 0,

1
IEi| = O(t9) (¢t — 0+) and /dt/|Et|:oo,
0

then f is cyclic.




Some further developments

o Shift-invariant subspaces and cyclicity in D,,
Richter, Sundberg (1992)
Guillot (2012)
El-Fallah, EImadani, Kellay (2016)

o Optimal polynomial approximants
Catherine Bénéteau and co-authors (2015 onwards)

@ Cyclicity in Dirichlet spaces on the bi-disk
Knese—Kosirniski-Ransford—Sola (2019)
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