Mini-course on the Dirichlet space

Thomas Ransford

Université Laval, Québec

Focus Program on Analytic Functions Spaces and Applications Fields Institute, Toronto, July 2021 Chapter 1

Introduction

The Dirichlet space $\ensuremath{\mathcal{D}}$

 \mathcal{D} is the set of f holomorphic in \mathbb{D} whose Dirichlet integral is finite:

$$\mathcal{D}(f):=rac{1}{\pi}\int_{\mathbb{D}}|f'(z)|^2\,dA(z)<\infty.$$

The Dirichlet space $\ensuremath{\mathcal{D}}$

 \mathcal{D} is the set of f holomorphic in \mathbb{D} whose Dirichlet integral is finite:

$$\mathcal{D}(f):=rac{1}{\pi}\int_{\mathbb{D}}|f'(z)|^2\,d\mathsf{A}(z)<\infty.$$

• If $f(z) = \sum_{k \ge 0} a_k z^k$, then $\mathcal{D}(f) = \sum_{k \ge 0} k |a_k|^2$. Consequently $\mathcal{D} \subset H^2$.

• \mathcal{D} is a Hilbert space with respect to the norm $\|\cdot\|_{\mathcal{D}}$ given by

$$\|f\|_{\mathcal{D}}^2 := \|f\|_{H^2}^2 + \mathcal{D}(f) = \sum_{k \ge 0} (k+1)|a_k|^2.$$

- Beurling (1930's-1940's)
- Carleson (1950's-1960's)

- Beurling (1930's-1940's)
- Carleson (1950's-1960's)
- . . .

- Beurling (1930's-1940's)
- Carleson (1950's–1960's)

• . . .

Some reasons for studying \mathcal{D} :

- Potential theory, energy, capacity
- Geometric interpretation, Möbius invariance
- Weighted shifts, invariant subspaces
- Borderline case, still many open problems

Some topics of interest:

- Boundary behavior
- Zeros
- Multipliers
- Reproducing kernel
- Interpolation
- Conformal invariance
- Shift-invariant subspaces

Survey articles:

- W. Ross, *The classical Dirichlet space*, Recent advances in operator-related function theory, 171–197, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006.
- N. Arcozzi, R. Rochberg, E. Sawyer, B. Wick, *The Dirichlet space: a survey*, New York J. Math. 17A (2011), 45–86.

Monographs:

- O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford, *A primer on the Dirichlet space*, Cambridge University Press, Cambridge, 2014
- N. Arcozzi, R. Rochberg, E. Sawyer, B. Wick, *The Dirichlet space* and related function spaces, Amer. Math. Soc., Providence RI, 2019.

Chapter 2	
Capacity	

Let μ be a finite positive Borel measure on $\mathbb{T}.$

Energy of μ $I(\mu) := \int_{\mathbb{T}} \int_{\mathbb{T}} \log \frac{2}{|\lambda - \zeta|} \, d\mu(\lambda) \, d\mu(\zeta).$

- May have $I(\mu) = +\infty$.
- Formula for $I(\mu)$ in terms of Fourier coefficients of μ :

$$I(\mu) = \sum_{k\geq 1} \frac{|\widehat{\mu}(k)|^2}{k} + \mu(\mathbb{T})^2 \log 2.$$

Capacity of compact $F \subset \mathbb{T}$

$c(F) := 1/\inf\{I(\mu): \mu \text{ is a probability measure on } F\}.$

Capacity of compact $F \subset \mathbb{T}$

 $c(F) := 1/\inf\{I(\mu): \mu \text{ is a probability measure on } F\}.$

Elementary properties:

- $F_1 \subset F_2 \Rightarrow c(F_1) \leq c(F_2)$
- $F_n \downarrow F \Rightarrow c(F_n) \downarrow c(F)$
- $c(F_1 \cup F_2) \le c(F_1) + c(F_2)$

Capacity of compact $F \subset \mathbb{T}$

 $c(F) := 1/\inf\{I(\mu): \mu \text{ is a probability measure on } F\}.$

Elementary properties:

- $F_1 \subset F_2 \Rightarrow c(F_1) \leq c(F_2)$
- $F_n \downarrow F \Rightarrow c(F_n) \downarrow c(F)$
- $c(F_1 \cup F_2) \le c(F_1) + c(F_2)$

Examples:

- $c(F) \leq 1/\log(2/\operatorname{diam}(F))$
- c(F) = 0 if F is finite or countable
- $c(F) \ge 1/\log(2\pi e/|F|)$. In particular $c(F) = 0 \Rightarrow |F| = 0$.
- c(F) > 0 if F is the (circular) middle-third Cantor set.

Inner capacity of $E \subset \mathbb{T}$

$$c(E) := \sup\{c(F) : \text{compact } F \subset E\}$$

Outer capacity of $E \subset \mathbb{T}$

$$c^*(E) := \inf\{c(U) : \text{open } U \supset E\}$$

- $c^*(\cup_n E_n) \leq \sum_n c^*(E_n)$ (not true for $c(\cdot)$).
- $c^*(E) = c(E)$ if E is Borel (Choquet's capacitability theorem)
- A property holds q.e. if it holds outside an E with $c^*(E) = 0$.

Let F be a compact subset of \mathbb{T} . Recall that

 $c(F) := 1/\inf\{I(\mu): \mu \text{ is a probability measure on } F\}.$

Measure μ attaining the inf is called an *equilibrium measure* for *F*.

Proposition

If c(F) > 0, then F admits a unique equilibrium measure.

Let F be a compact subset of \mathbb{T} . Recall that

 $c(F) := 1/\inf\{I(\mu): \mu \text{ is a probability measure on } F\}.$

Measure μ attaining the inf is called an *equilibrium measure* for *F*.

Proposition

If c(F) > 0, then F admits a unique equilibrium measure.

Fundamental theorem of potential theory (Frostman, 1935)

Let μ be the equilibrium measure for F, and V $_{\mu}$ be its potential, i.e.

$$V_\mu(z):=\int_{\mathbb{T}}\lograc{2}{|z-\zeta|}\,d\mu(\zeta).$$

Then $V_{\mu} \leq 1/c(F)$ on \mathbb{T} , and $V_{\mu} = 1/c(F)$ q.e. on F.

Chapter 3

Boundary behavior

Preliminary remarks

- Every $f \in D$ has non-tangential limits a.e. on \mathbb{T} (as $f \in H^2$).
- There exists $f \in \mathcal{D}$ such that $\lim_{r \to 1^-} |f(r)| = \infty$.

Preliminary remarks

• Every $f \in \mathcal{D}$ has non-tangential limits a.e. on \mathbb{T} (as $f \in H^2$).

• There exists $f \in \mathcal{D}$ such that $\lim_{r \to 1^-} |f(r)| = \infty$.

Example: Consider

$$f(z) := \sum_{k \ge 2} \frac{z^k}{k \log k}.$$

Then

$$\mathcal{D}(f) = \sum_{k\geq 2} k \frac{1}{(k\log k)^2} = \sum_{k\geq 2} \frac{1}{k(\log k)^2} < \infty,$$

but

$$\liminf_{r\to 1^-} f(r) \ge \sum_{k\ge 2} \frac{1}{k\log k} = \infty.$$

Theorem (Beurling, 1940)

If $f \in \mathcal{D}$ then f has non-tangential limits q.e. on \mathbb{T} .

Theorem (Beurling, 1940)

If $f \in \mathcal{D}$ then f has non-tangential limits q.e. on \mathbb{T} .

Remarks:

- Beurling actually proved his result just for radial limits
- Beurling's theorem is sharp in the following sense:

Theorem (Carleson, 1952)

Given compact $E \subset \mathbb{T}$ of capacity zero, there exists $f \in \mathcal{D}$ such that $\lim_{r \to 1^{-}} |f(r\zeta)| = \infty$ for all $\zeta \in E$.

Capacitary weak-type and strong-type inequalities

Notation: Let $f \in \mathcal{D}$. For $\zeta \in \mathbb{T}$, we write $f^*(\zeta) := \lim_{r \to 1^-} f(r\zeta)$. Also A, B denote absolute positive constants.

Weak-type inequality (Beurling, 1940)

$$c(|f^*| > t) \le A \|f\|_{\mathcal{D}}^2/t^2 \quad (t > 0).$$

Corollary

$$|\{|f^*| > t\}| \le Ae^{-Bt^2/\|f\|_{\mathcal{D}}^2}$$
 $(t > 0).$

Capacitary weak-type and strong-type inequalities

Notation: Let $f \in \mathcal{D}$. For $\zeta \in \mathbb{T}$, we write $f^*(\zeta) := \lim_{r \to 1^-} f(r\zeta)$. Also A, B denote absolute positive constants.

Weak-type inequality (Beurling, 1940)

$$c(|f^*| > t) \le A \|f\|_{\mathcal{D}}^2/t^2 \quad (t > 0).$$

Corollary

$$|\{|f^*| > t\}| \le Ae^{-Bt^2/\|f\|_{\mathcal{D}}^2}$$
 $(t > 0).$

Strong-type inequality (Hansson, 1979)

$$\int_0^\infty c(|f^*|>t)\,t\,dt\leq A\|f\|_{\mathcal{D}}^2.$$

Douglas' formula

Theorem (Douglas, 1931)

If $f \in H^2$, then

$$\mathcal{D}(f) = rac{1}{4\pi^2} \int_{\mathbb{T}} \int_{\mathbb{T}} \Bigl| rac{f^*(\lambda) - f^*(\zeta)}{\lambda - \zeta} \Bigr|^2 \, |d\lambda| \, |d\zeta|.$$

Douglas' formula

Theorem (Douglas, 1931)

If $f \in H^2$, then

$$\mathcal{D}(f) = rac{1}{4\pi^2} \int_{\mathbb{T}} \int_{\mathbb{T}} \Big| rac{f^*(\lambda) - f^*(\zeta)}{\lambda - \zeta} \Big|^2 \, |d\lambda| \, |d\zeta|.$$

Corollary

If $f \in \mathcal{D}$, then f has oricyclic limits a.e. in \mathbb{T} .

non-tangential approach region

oricyclic approach region

Theorem (Nagel–Rudin–Shapiro, 1982)

If $f \in D$ then, for a.e. $\zeta \in \mathbb{D}$, we have $f(z) \to f^*(\zeta)$ as $z \to \zeta$ in the exponential approach region

$$|z-\zeta| < \kappa \Big(\log \frac{1}{1-|z|}\Big)^{-1}.$$

Remarks:

- Approach region is 'widest possible'.
- This is an a.e. result (not q.e.).

Carleson's formula

Notation: Let $f \in H^2$ with canonical factorization f = BSO. Let (a_n) be the zeros of B, and σ be the singular measure of S.

Theorem (Carleson, 1960)

$$\mathcal{D}(f) = \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{(|f^*(\lambda)|^2 - |f^*(\zeta)|^2)(\log|f^*(\lambda)| - \log|f^*(\zeta)|)}{|\lambda - \zeta|^2} \frac{|d\lambda|}{2\pi} \frac{|d\zeta|}{2\pi} + \int_{\mathbb{T}} \left(\sum_n \frac{1 - |a_n|^2}{|\zeta - a_n|^2} + \int_{\mathbb{T}} \frac{2}{|\lambda - \zeta|^2} d\sigma(\lambda) \right) |f^*(\zeta)|^2 \frac{|d\zeta|}{2\pi}.$$

Carleson's formula

Notation: Let $f \in H^2$ with canonical factorization f = BSO. Let (a_n) be the zeros of B, and σ be the singular measure of S.

Theorem (Carleson, 1960)

$$\begin{aligned} \mathcal{D}(f) &= \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{(|f^*(\lambda)|^2 - |f^*(\zeta)|^2)(\log|f^*(\lambda)| - \log|f^*(\zeta)|)}{|\lambda - \zeta|^2} \frac{|d\lambda|}{2\pi} \frac{|d\zeta|}{2\pi} \\ &+ \int_{\mathbb{T}} \left(\sum_n \frac{1 - |a_n|^2}{|\zeta - a_n|^2} + \int_{\mathbb{T}} \frac{2}{|\lambda - \zeta|^2} d\sigma(\lambda) \right) |f^*(\zeta)|^2 \frac{|d\zeta|}{2\pi}. \end{aligned}$$

Corollary 1

If f belongs to \mathcal{D} then so does its outer factor.

Carleson's formula

Notation: Let $f \in H^2$ with canonical factorization f = BSO. Let (a_n) be the zeros of B, and σ be the singular measure of S.

Theorem (Carleson, 1960)

$$\begin{aligned} \mathcal{D}(f) &= \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{(|f^*(\lambda)|^2 - |f^*(\zeta)|^2)(\log|f^*(\lambda)| - \log|f^*(\zeta)|)}{|\lambda - \zeta|^2} \frac{|d\lambda|}{2\pi} \frac{|d\zeta|}{2\pi} \\ &+ \int_{\mathbb{T}} \left(\sum_n \frac{1 - |a_n|^2}{|\zeta - a_n|^2} + \int_{\mathbb{T}} \frac{2}{|\lambda - \zeta|^2} d\sigma(\lambda) \right) |f^*(\zeta)|^2 \frac{|d\zeta|}{2\pi}. \end{aligned}$$

Corollary 1

If f belongs to \mathcal{D} then so does its outer factor.

Corollary 2

The only inner functions in \mathcal{D} are finite Blaschke products.

• Chang–Marshall theorem (1985):

$$\sup\Bigl\{\int_{\mathbb{T}}\exp(|f^*(e^{i\theta})|^2)\,d\theta:f(0)=0,\,\,\mathcal{D}(f)\leq 1\Bigr\}<\infty.$$

• Trade-off between approach regions and exceptional sets. Borichev (1994), Twomey (2002)

Chapter 4	
Zeros	

A sequence (z_n) in \mathbb{D} (possibly with repetitions) is:

- a zero set for \mathcal{D} if $\exists f \in \mathcal{D}$ vanishing on (z_n) but $f \neq 0$;
- a *uniqueness set* for \mathcal{D} if it is not a zero set.

Proposition

If (z_n) is a zero set for \mathcal{D} , then $\exists f \in \mathcal{D}$ vanishing precisely on (z_n) .

A sequence (z_n) in \mathbb{D} (possibly with repetitions) is:

- a zero set for \mathcal{D} if $\exists f \in \mathcal{D}$ vanishing on (z_n) but $f \neq 0$;
- a *uniqueness set* for \mathcal{D} if it is not a zero set.

Proposition

If (z_n) is a zero set for \mathcal{D} , then $\exists f \in \mathcal{D}$ vanishing precisely on (z_n) .

It is well known that (z_n) is a zero set for the Hardy space H^2 iff

$$\sum_n (1-|z_n|) < \infty.$$

What about the Dirichlet space?

$\sum_n (1 - |z_n|) = \infty \implies (z_n)$ is a uniqueness set for \mathcal{D} .
$$\sum_n (1 - |z_n|) = \infty \implies (z_n)$$
 is a uniqueness set for \mathcal{D} .

Case II (Shapiro–Shields, 1962)

$$\sum_n 1/|\log(1-|z_n|)| < \infty \ \Rightarrow \ (z_n)$$
 is a zero set for \mathcal{D} .

$$\sum_n (1 - |z_n|) = \infty \implies (z_n)$$
 is a uniqueness set for \mathcal{D} .

Case II (Shapiro-Shields, 1962)

$$\sum_n 1/|\log(1-|z_n|)| < \infty \ \Rightarrow \ (z_n)$$
 is a zero set for \mathcal{D} .

Case III (Nagel–Rudin–Shapiro, 1982)

If (z_n) satisfies neither condition, then there exist a zero set (z'_n) and a uniqueness set (z''_n) with $|z_n| = |z'_n| = |z''_n|$ for all n.

Thus, in Case III, the arguments of (z_n) matter. Back to this later.

Let *E* be a closed subset of \mathbb{T} . It is called a *Carleson set* if

$$\int_{\mathbb{T}} \log \Bigl(\frac{2}{\mathsf{dist}(\zeta, E)} \Bigr) \, |d\zeta| < \infty.$$

Theorem (Carleson 1952)

If E is a Carleson set, then $\exists f \in A^1(\mathbb{D})$ with $f^{-1}(0) = E$.

Let *E* be a closed subset of \mathbb{T} . It is called a *Carleson set* if

$$\int_{\mathbb{T}} \log \Bigl(\frac{2}{\mathsf{dist}(\zeta, E)} \Bigr) \, |d\zeta| < \infty.$$

Theorem (Carleson 1952)

If E is a Carleson set, then $\exists f \in A^1(\mathbb{D})$ with $f^{-1}(0) = E$.

Theorem (Carleson 1952, Brown–Cohn 1985)

If c(E) = 0, then $\exists f \in \mathcal{D} \cap A(\mathbb{D})$ with $f^{-1}(0) = E$.

Let *E* be a closed subset of \mathbb{T} . It is called a *Carleson set* if

$$\int_{\mathbb{T}} \log \Bigl(\frac{2}{\mathsf{dist}(\zeta, E)} \Bigr) \, |d\zeta| < \infty.$$

Theorem (Carleson 1952)

If E is a Carleson set, then
$$\exists f \in A^1(\mathbb{D})$$
 with $f^{-1}(0) = E$.

Theorem (Carleson 1952, Brown–Cohn 1985)

If c(E) = 0, then $\exists f \in \mathcal{D} \cap A(\mathbb{D})$ with $f^{-1}(0) = E$.

• Neither result implies the other.

Let *E* be a closed subset of \mathbb{T} . It is called a *Carleson set* if

$$\int_{\mathbb{T}} \log \Bigl(\frac{2}{\mathsf{dist}(\zeta, E)} \Bigr) \, |d\zeta| < \infty.$$

Theorem (Carleson 1952)

If E is a Carleson set, then
$$\exists f \in A^1(\mathbb{D})$$
 with $f^{-1}(0) = E$.

Theorem (Carleson 1952, Brown–Cohn 1985)

If c(E) = 0, then $\exists f \in \mathcal{D} \cap A(\mathbb{D})$ with $f^{-1}(0) = E$.

- Neither result implies the other.
- Clearly, if |E| > 0, then E is a boundary uniqueness set for D. But there also exist closed uniqueness sets E with |E| = 0.

We return to zero sets within $\mathbb D,$ now considering their arguments.

Theorem (Caughran, 1970)

Let $(e^{i\theta_n})$ be a sequence in \mathbb{T} . The following are equivalent:

- $(r_n e^{i\theta_n})$ is a zero set for \mathcal{D} whenever $\sum_n (1 r_n) < \infty$.
- $E := \overline{\{e^{i\theta_n} : n \ge 1\}}$ is a Carleson set.

We return to zero sets within $\mathbb D,$ now considering their arguments.

Theorem (Caughran, 1970)

Let $(e^{i\theta_n})$ be a sequence in \mathbb{T} . The following are equivalent:

- $(r_n e^{i\theta_n})$ is a zero set for \mathcal{D} whenever $\sum_n (1 r_n) < \infty$.
- $E := \{e^{i\theta_n} : n \ge 1\}$ is a Carleson set.

Example of a Blaschke sequence that is a uniqueness set for $\ensuremath{\mathcal{D}}$

$$z_n := \left(1 - \frac{1}{n(\log n)^2}\right) e^{i/\log n}$$

We return to zero sets within $\mathbb D,$ now considering their arguments.

Theorem (Caughran, 1970)

Let $(e^{i\theta_n})$ be a sequence in \mathbb{T} . The following are equivalent:

- $(r_n e^{i\theta_n})$ is a zero set for \mathcal{D} whenever $\sum_n (1 r_n) < \infty$.
- $E := \overline{\{e^{i\theta_n} : n \ge 1\}}$ is a Carleson set.

Example of a Blaschke sequence that is a uniqueness set for ${\cal D}$

$$z_n := \left(1 - \frac{1}{n(\log n)^2}\right) e^{i/\log n}$$

There is still no satisfactory complete characterization of zero sets.

 Carleson sets as zero sets for A[∞](D) Taylor–Williams (1970) Chapter 5

Multipliers

 ${\mathcal D}$ is not an algebra.

 \mathcal{D} is not an algebra.

Proof: Suppose \mathcal{D} is an algebra.

 ${\mathcal D}$ is not an algebra.

Proof: Suppose \mathcal{D} is an algebra.

 \bullet By closed graph theorem, ${\cal D}$ isomorphic to a Banach algebra.

 ${\mathcal D}$ is not an algebra.

Proof: Suppose \mathcal{D} is an algebra.

- By closed graph theorem, $\mathcal D$ isomorphic to a Banach algebra.
- $f \mapsto f(z)$ is a character, so $|f(z)| \leq$ spectral radius of f.

 ${\mathcal D}$ is not an algebra.

Proof: Suppose \mathcal{D} is an algebra.

- \bullet By closed graph theorem, ${\cal D}$ isomorphic to a Banach algebra.
- $f \mapsto f(z)$ is a character, so $|f(z)| \leq$ spectral radius of f.
- Therefore every $f \in \mathcal{D}$ is bounded. Contradiction.

A multiplier for \mathcal{D} is a function ϕ such that $\phi f \in \mathcal{D}$ for all $f \in \mathcal{D}$. The set of multipliers is an algebra, denoted by $\mathcal{M}(\mathcal{D})$.

A multiplier for \mathcal{D} is a function ϕ such that $\phi f \in \mathcal{D}$ for all $f \in \mathcal{D}$. The set of multipliers is an algebra, denoted by $\mathcal{M}(\mathcal{D})$.

Remark: In the case of Hardy spaces, $\mathcal{M}(H^2) = H^{\infty}$.

A multiplier for \mathcal{D} is a function ϕ such that $\phi f \in \mathcal{D}$ for all $f \in \mathcal{D}$. The set of multipliers is an algebra, denoted by $\mathcal{M}(\mathcal{D})$.

Remark: In the case of Hardy spaces, $\mathcal{M}(H^2) = H^{\infty}$.

When is ϕ a multiplier of \mathcal{D} ?

A multiplier for \mathcal{D} is a function ϕ such that $\phi f \in \mathcal{D}$ for all $f \in \mathcal{D}$. The set of multipliers is an algebra, denoted by $\mathcal{M}(\mathcal{D})$.

Remark: In the case of Hardy spaces, $\mathcal{M}(H^2) = H^{\infty}$.

When is ϕ a multiplier of \mathcal{D} ?

- Necessary condition: $\phi \in \mathcal{D} \cap H^{\infty}$
- Sufficient condition: $\phi' \in H^{\infty}$

To completely characterize multipliers, we introduce a new notion.

A measure μ on \mathbb{D} is a *Carleson measure* for \mathcal{D} if $\exists C$ such that

$$\int_{\mathbb{D}} |f|^2 \, d\mu \leq C \|f\|_{\mathcal{D}}^2 \quad (f \in \mathcal{D}).$$

A measure μ on \mathbb{D} is a *Carleson measure* for \mathcal{D} if $\exists C$ such that

$$\int_{\mathbb{D}} |f|^2 d\mu \leq C \|f\|_{\mathcal{D}}^2 \quad (f \in \mathcal{D}).$$

With this notion in hand, it is quite easy to characterize multipliers:

Proposition

 $\phi \in \mathcal{M}(\mathcal{D})$ iff both $\phi \in H^{\infty}$ and $|\phi'|^2 dA$ is a Carleson measure for \mathcal{D} .

A measure μ on \mathbb{D} is a *Carleson measure* for \mathcal{D} if $\exists C$ such that

$$\int_{\mathbb{D}} |f|^2 \, d\mu \leq C \|f\|_{\mathcal{D}}^2 \quad (f \in \mathcal{D}).$$

With this notion in hand, it is quite easy to characterize multipliers:

Proposition

 $\phi \in \mathcal{M}(\mathcal{D})$ iff both $\phi \in H^{\infty}$ and $|\phi'|^2 dA$ is a Carleson measure for \mathcal{D} .

Begs a new question: how to characterize Carleson measures?

Characterization of Carleson measures

Let μ be a finite positive measure on \mathbb{D} . $S(I) := \{re^{i\theta} : 1 - |I| < r < 1, e^{i\theta} \in I\}.$ Carleson (1962): μ is Carleson for H^2 iff $\mu(S(I)) = O(|I|).$

When is μ a Carleson measure for \mathcal{D} ?

Characterization of Carleson measures

Let μ be a finite positive measure on \mathbb{D} . $S(I) := \{re^{i\theta} : 1 - |I| < r < 1, e^{i\theta} \in I\}.$ Carleson (1962): μ is Carleson for H^2 iff $\mu(S(I)) = O(|I|).$

When is μ a Carleson measure for \mathcal{D} ?

Theorem (Wynn, 2011)

The condition $\mu(S(I)) = O(\psi(|I|))$ is:

- necessary if $\psi(x) := 1/\log(1/x)$;
- sufficient if $\psi(x) := 1/\log(1/x)(\log\log(1/x))^{\alpha}$ with $\alpha > 1$.

Characterization of Carleson measures

Let μ be a finite positive measure on \mathbb{D} . $S(I) := \{re^{i\theta} : 1 - |I| < r < 1, e^{i\theta} \in I\}.$ Carleson (1962): μ is Carleson for H^2 iff $\mu(S(I)) = O(|I|).$

When is μ a Carleson measure for \mathcal{D} ?

Theorem (Wynn, 2011)

The condition $\mu(S(I)) = O(\psi(|I|))$ is:

- necessary if $\psi(x) := 1/\log(1/x)$;
- sufficient if $\psi(x) := 1/\log(1/x)(\log\log(1/x))^{\alpha}$ with $\alpha > 1$.

Theorem (Stegenga, 1980)

 μ is a Carleson measure for \mathcal{D} iff there is a constant A such that, for every finite set of disjoint closed subarcs I_1, \ldots, I_n of \mathbb{T} ,

$$\mu\Big(\cup_{j=1}^n S(I_j)\Big) \leq Ac\Big(\cup_{j=1}^n I_j\Big).$$

Multipliers and reproducing kernels

If $f \in \mathcal{D}$ and $w \in \mathbb{D}$, then $f(w) = \langle f, k_w
angle_{\mathcal{D}}$, where

$$k_w(z) := rac{1}{\overline{w}z} \log \Bigl(rac{1}{1-\overline{w}z} \Bigr) \quad (w,z\in\mathbb{D}).$$

The function k_w is called the *reproducing kernel* for w.

Multipliers and reproducing kernels

If $f \in \mathcal{D}$ and $w \in \mathbb{D}$, then $f(w) = \langle f, k_w \rangle_{\mathcal{D}}$, where

$$k_w(z) := rac{1}{\overline{w}z} \log \Bigl(rac{1}{1-\overline{w}z} \Bigr) \quad (w,z\in\mathbb{D}).$$

The function k_w is called the *reproducing kernel* for w.

Proposition

Let $\phi \in \mathcal{M}(\mathcal{D})$ and define $M_{\phi} : \mathcal{D} \to \mathcal{D}$ by $M_{\phi}(f) := \phi f$. Then

$$M^*_\phi(k_w)=\overline{\phi(w)}k_w \quad (w\in\mathbb{D}).$$

Multipliers and reproducing kernels

If $f \in \mathcal{D}$ and $w \in \mathbb{D}$, then $f(w) = \langle f, k_w \rangle_{\mathcal{D}}$, where

$$k_w(z) := rac{1}{\overline{w}z} \log \Bigl(rac{1}{1-\overline{w}z} \Bigr) \quad (w,z\in\mathbb{D}).$$

The function k_w is called the *reproducing kernel* for w.

Proposition

Let
$$\phi \in \mathcal{M}(\mathcal{D})$$
 and define $M_{\phi} : \mathcal{D} \to \mathcal{D}$ by $M_{\phi}(f) := \phi f$. Then

$$M^*_{\phi}(k_w) = \overline{\phi(w)}k_w \quad (w \in \mathbb{D}).$$

Proof: For all $f \in \mathcal{D}$, we have

$$\langle f, M_{\phi}^*(k_w) \rangle_{\mathcal{D}} = \langle \phi f, k_w \rangle_{\mathcal{D}} = \phi(w) f(w) = \phi(w) \langle f, k_w \rangle_{\mathcal{D}} = \langle f, \overline{\phi(w)} k_w \rangle_{\mathcal{D}}.$$

Problem: Given $z_1, \ldots, z_n \in \mathbb{D}$ and $w_1, \ldots, w_n \in \overline{\mathbb{D}}$, does there exist $\phi \in \mathcal{M}(\mathcal{D})$ with $||M_{\phi}|| \leq 1$ such that $\phi(z_j) = w_j$ for all j?

Problem: Given $z_1, \ldots, z_n \in \mathbb{D}$ and $w_1, \ldots, w_n \in \overline{\mathbb{D}}$, does there exist $\phi \in \mathcal{M}(\mathcal{D})$ with $||M_{\phi}|| \leq 1$ such that $\phi(z_j) = w_j$ for all j?

Theorem (Agler, 1988)

 ϕ exists iff the matrix $(1 - \overline{w}_i w_j) \langle k_{z_i}, k_{z_i} \rangle_{\mathcal{D}}$ is positive semi-definite.

Problem: Given $z_1, \ldots, z_n \in \mathbb{D}$ and $w_1, \ldots, w_n \in \overline{\mathbb{D}}$, does there exist $\phi \in \mathcal{M}(\mathcal{D})$ with $||M_{\phi}|| \leq 1$ such that $\phi(z_j) = w_j$ for all j?

Theorem (Agler, 1988)

 ϕ exists iff the matrix $(1 - \overline{w}_i w_j) \langle k_{z_i}, k_{z_j} \rangle_D$ is positive semi-definite.

- Necessity is a simple consequence of the preceding proposition. The same argument works for any RKHS.
- Sufficiency is a property of the Dirichlet kernel ('Pick property').

A sequence $(z_n)_{n\geq 1}$ in $\mathbb D$ is an *interpolating sequence* for $\mathcal M(\mathcal D)$ if

$$\Big\{(\phi(z_1),\phi(z_2),\phi(z_3),\dots):\phi\in\mathcal{M}(\mathcal{D})\Big\}=\ell^\infty.$$

A sequence $(z_n)_{n\geq 1}$ in $\mathbb D$ is an *interpolating sequence* for $\mathcal M(\mathcal D)$ if

$$\Big\{(\phi(z_1),\phi(z_2),\phi(z_3),\dots):\phi\in\mathcal{M}(\mathcal{D})\Big\}=\ell^\infty.$$

Theorem (Marshall–Sundberg (1990's), Bishop (1990's), Bøe (2005))

The following are equivalent:

•
$$(z_n)_{n\geq 1}$$
 is an interpolating sequence for $\mathcal{M}(\mathcal{D})$;
• $\sum_{n} \frac{\delta_{z_n}}{\|k_{z_n}\|^2}$ is a \mathcal{D} -Carleson measure and $\sup_{\substack{n,m\\n\neq m}} \frac{|\langle k_{z_n}, k_{z_m} \rangle_{\mathcal{D}}|}{\|k_{z_n}\|_{\mathcal{D}}\|k_{z_m}\|_{\mathcal{D}}} < 1.$

Factorization theorems

We say f is cyclic for \mathcal{D} if $\overline{\mathcal{M}(\mathcal{D})f} = \mathcal{D}$.

• Clearly f cyclic $\Rightarrow f(z) \neq 0$ for all $z \in \mathbb{D}$. The converse is false.

• f is cyclic for H^2 iff f is an outer function (Beurling).

Factorization theorems

We say f is cyclic for \mathcal{D} if $\overline{\mathcal{M}(\mathcal{D})f} = \mathcal{D}$.

• Clearly f cyclic $\Rightarrow f(z) \neq 0$ for all $z \in \mathbb{D}$. The converse is false.

• f is cyclic for H^2 iff f is an outer function (Beurling).

'Inner-outer' factorization (Jury-Martin, 2019)

If $f \in D$, then $f = \phi g$, where $\phi \in \mathcal{M}(D)$ and g is cyclic in D.
Factorization theorems

We say f is cyclic for \mathcal{D} if $\overline{\mathcal{M}(\mathcal{D})f} = \mathcal{D}$.

• Clearly f cyclic $\Rightarrow f(z) \neq 0$ for all $z \in \mathbb{D}$. The converse is false.

• f is cyclic for H^2 iff f is an outer function (Beurling).

'Inner-outer' factorization (Jury-Martin, 2019)

If $f \in D$, then $f = \phi g$, where $\phi \in \mathcal{M}(D)$ and g is cyclic in D.

Smirnov factorization (Aleman–Hartz–McCarthy–Richter, 2017)

If $f \in \mathcal{D}$, then $f = \phi_1/\phi_2$, where $\phi_1, \phi_2 \in \mathcal{M}(\mathcal{D})$ and ϕ_2 is cyclic in \mathcal{D} .

Factorization theorems

We say f is cyclic for \mathcal{D} if $\overline{\mathcal{M}(\mathcal{D})f} = \mathcal{D}$.

- Clearly f cyclic $\Rightarrow f(z) \neq 0$ for all $z \in \mathbb{D}$. The converse is false.
- f is cyclic for H^2 iff f is an outer function (Beurling).

'Inner-outer' factorization (Jury-Martin, 2019)

If $f \in D$, then $f = \phi g$, where $\phi \in \mathcal{M}(D)$ and g is cyclic in D.

Smirnov factorization (Aleman–Hartz–McCarthy–Richter, 2017)

If $f \in \mathcal{D}$, then $f = \phi_1/\phi_2$, where $\phi_1, \phi_2 \in \mathcal{M}(\mathcal{D})$ and ϕ_2 is cyclic in \mathcal{D} .

Corollary

Given $f \in D$, there exists $\phi \in \mathcal{M}(D)$ with the same zero set. Consequently, the union of two zero sets is again one.

- Further characterizations of multipliers and Carleson measures for \mathcal{D} Arcozzi–Rochberg–Sawyer (2002)
- Reverse Carleson measures
 Fricain–Hartmann–Ross (2017)
- Corona problem for *M(D)* Tolokonnikov (1991), Xiao (1998), Trent (2004)

Chapter 6

Conformal invariance

Preliminary remarks

Let $\phi : \mathbb{D} \to \mathbb{C}$ and $f : \phi(\mathbb{D}) \to \mathbb{C}$ be holomorphic functions. Write $n_{\phi}(w)$ for the number of solutions z of $\phi(z) = w$.

Change-of-variable formula

$$\mathcal{D}(f \circ \phi) = rac{1}{\pi} \int_{\phi(\mathbb{D})} |f'(w)|^2 n_{\phi}(w) \, dA(w).$$

Preliminary remarks

Let $\phi : \mathbb{D} \to \mathbb{C}$ and $f : \phi(\mathbb{D}) \to \mathbb{C}$ be holomorphic functions. Write $n_{\phi}(w)$ for the number of solutions z of $\phi(z) = w$.

Change-of-variable formula

$$\mathcal{D}(f \circ \phi) = rac{1}{\pi} \int_{\phi(\mathbb{D})} |f'(w)|^2 n_{\phi}(w) \, dA(w).$$

Corollary 1

If ϕ is injective, then $\mathcal{D}(\phi) = (\text{area of } \phi(\mathbb{D}))/\pi$.

Preliminary remarks

Let $\phi : \mathbb{D} \to \mathbb{C}$ and $f : \phi(\mathbb{D}) \to \mathbb{C}$ be holomorphic functions. Write $n_{\phi}(w)$ for the number of solutions z of $\phi(z) = w$.

Change-of-variable formula

$$\mathcal{D}(f \circ \phi) = rac{1}{\pi} \int_{\phi(\mathbb{D})} |f'(w)|^2 n_{\phi}(w) \, dA(w).$$

Corollary 1

If
$$\phi$$
 is injective, then $\mathcal{D}(\phi) = (\text{area of } \phi(\mathbb{D}))/\pi$.

Corollary 2

If $f \in \mathcal{D}$ and $\phi \in \operatorname{aut}(\mathbb{D})$, then $f \circ \phi \in \mathcal{D}$ and $\mathcal{D}(f \circ \phi) = \mathcal{D}(f)$.

This last property more-or-less characterizes \mathcal{D} .

- $\bullet \ \mathcal{H}:= \mathsf{a}$ vector space of holomorphic functions on $\mathbb D$
- $\langle \cdot, \cdot \rangle :=$ a semi-inner product on \mathcal{H} and $\mathcal{E}(f) := \langle f, f \rangle$.

Theorem (Arazy–Fisher 1985, slightly modified)

Assume:

- if $f \in \mathcal{H}$ and $\phi \in \operatorname{aut}(\mathbb{D})$, then $f \circ \phi \in \mathcal{H}$ and $\mathcal{E}(f \circ \phi) = \mathcal{E}(f)$;
- $||f||^2 := |f(0)|^2 + \mathcal{E}(f)$ defines a Hilbert-space norm on \mathcal{H} ;
- convergence in this norm implies pointwise convergence on D;
- H contains a non-constant function.

Then $\mathcal{H} = \mathcal{D}$ and $\mathcal{E}(\cdot) \equiv a\mathcal{D}(\cdot)$ some constant a > 0.

Given holomorphic $\phi : \mathbb{D} \to \mathbb{D}$, define $C_{\phi} : Hol(\mathbb{D}) \to Hol(\mathbb{D})$ by

 $C_{\phi}(f) := f \circ \phi.$

If $\phi \in \operatorname{aut}(\mathbb{D})$ then $C_{\phi} : \mathcal{D} \to \mathcal{D}$. For which other ϕ is this true?

Given holomorphic $\phi : \mathbb{D} \to \mathbb{D}$, define $C_{\phi} : Hol(\mathbb{D}) \to Hol(\mathbb{D})$ by

 $C_{\phi}(f) := f \circ \phi.$

If $\phi \in \operatorname{aut}(\mathbb{D})$ then $C_{\phi} : \mathcal{D} \to \mathcal{D}$. For which other ϕ is this true? If $\phi(z) := \sum_{k \ge 1} 2^{-k} z^{4^k}$, then $\phi : \mathbb{D} \to \mathbb{D}$, but $C_{\phi}(\mathcal{D}) \not\subset \mathcal{D}$ as $\phi \notin \mathcal{D}$.

Given holomorphic $\phi : \mathbb{D} \to \mathbb{D}$, define $C_{\phi} : Hol(\mathbb{D}) \to Hol(\mathbb{D})$ by

 $C_{\phi}(f) := f \circ \phi.$

If $\phi \in \operatorname{aut}(\mathbb{D})$ then $C_{\phi} : \mathcal{D} \to \mathcal{D}$. For which other ϕ is this true? If $\phi(z) := \sum_{k \ge 1} 2^{-k} z^{4^k}$, then $\phi : \mathbb{D} \to \mathbb{D}$, but $C_{\phi}(\mathcal{D}) \not\subset \mathcal{D}$ as $\phi \notin \mathcal{D}$.

Theorem (MacCluer–Shapiro, 1986)

$$C_{\phi}: \mathcal{D} \to \mathcal{D} \iff \int_{\mathcal{S}(I)} n_{\phi} \, dA = O(|I|^2).$$

Given holomorphic $\phi : \mathbb{D} \to \mathbb{D}$, define $C_{\phi} : Hol(\mathbb{D}) \to Hol(\mathbb{D})$ by

 $C_{\phi}(f) := f \circ \phi.$

If $\phi \in \operatorname{aut}(\mathbb{D})$ then $C_{\phi} : \mathcal{D} \to \mathcal{D}$. For which other ϕ is this true? If $\phi(z) := \sum_{k \ge 1} 2^{-k} z^{4^k}$, then $\phi : \mathbb{D} \to \mathbb{D}$, but $C_{\phi}(\mathcal{D}) \not\subset \mathcal{D}$ as $\phi \notin \mathcal{D}$.

Theorem (MacCluer–Shapiro, 1986)

$$C_{\phi}: \mathcal{D} \to \mathcal{D} \iff \int_{\mathcal{S}(I)} n_{\phi} \, dA = O(|I|^2).$$

Corollary (El-Fallah–Kellay–Shabankhah–Youssfi, 2011)

Conditions for $C_{\phi} : \mathcal{D} \to \mathcal{D}$:

• necessary:
$$\mathcal{D}(\phi^k) = O(k)$$
 as $k o \infty.$

• sufficient:
$$\mathcal{D}(\phi^k) = O(1)$$
 as $k \to \infty$.

Theorem (Mashreghi–J. Ransford–T. Ransford, 2018)

Let $T : \mathcal{D} \to Hol(\mathbb{D})$ be a linear map. The following are equivalent:

- T maps nowhere-vanishing functions to nowhere-vanishing functions.
- \exists holomorphic functions $\phi : \mathbb{D} \to \mathbb{D}$ and $\psi : \mathbb{D} \to \mathbb{C} \setminus \{0\}$ such that

$$Tf = \psi.(f \circ \phi) \quad (f \in \mathcal{D}).$$

- Compact composition operators on \mathcal{D} MacCluer, Shapiro (1986)
- Composition operators in Schatten classes
 Lefèvre, Li, Queffélec, Rodríguez-Piazza (2013)
- Geometry of φ(D) when C_φ is Hilbert–Schmidt Gallardo-Gutiérrez, Gonzalez (2003)

Chapter 7

Weighted Dirichlet spaces

Definition

For $-1 < \alpha \leq 1$, write \mathcal{D}_{α} for the set of holomorphic f on \mathbb{D} with

$$\mathcal{D}_lpha(f):=rac{1}{\pi}\int_{\mathbb{D}}|f'(z)|^2(1-|z|^2)^lpha\, dA(z)<\infty.$$

Definition

For $-1 < \alpha \leq 1$, write \mathcal{D}_{α} for the set of holomorphic f on \mathbb{D} with

$$\mathcal{D}_lpha(f):=rac{1}{\pi}\int_\mathbb{D}|f'(z)|^2(1-|z|^2)^lpha\, dA(z)<\infty.$$

Properties:

•
$$\mathcal{D}_{lpha}(\sum_k a_k z^k) \asymp \sum_k k^{1-lpha} |a_k|^2$$

- $\mathcal{D}_0 = \mathcal{D}$ and $\mathcal{D}_1 \cong H^2$
- If $0 < \alpha < 1$, then \mathcal{D}_{α} is 'akin' to \mathcal{D} (using Riesz capacity c_{α}).
- If $-1 < \alpha < 0$, then \mathcal{D}_{α} is a subalgebra of the disk algebra.

Given a finite positive measure μ on \mathbb{T} , write $P\mu$ for its Poisson integral:

$$P\mu(z):=\int_{\mathbb{T}}rac{1-|z|^2}{|\zeta-z|^2}\,d\mu(\zeta)\quad(z\in\mathbb{D}).$$

Given a finite positive measure μ on \mathbb{T} , write $P\mu$ for its Poisson integral:

$$P\mu(z):=\int_{\mathbb{T}}rac{1-|z|^2}{|\zeta-z|^2}\,d\mu(\zeta)\quad(z\in\mathbb{D}).$$

Definition (Richter, 1991)

Given $\mu,$ we denote by \mathcal{D}_{μ} the set of holomorphic f on $\mathbb D$ such that

$$\mathcal{D}_{\mu}(f):=rac{1}{\pi}\int_{\mathbb{D}}|f'(z)|^2 P\mu(z)\,dA(z)<\infty.$$

Given a finite positive measure μ on \mathbb{T} , write $P\mu$ for its Poisson integral:

$$P\mu(z):=\int_{\mathbb{T}}rac{1-|z|^2}{|\zeta-z|^2}\,d\mu(\zeta)\quad(z\in\mathbb{D}).$$

Definition (Richter, 1991)

Given μ , we denote by \mathcal{D}_{μ} the set of holomorphic f on $\mathbb D$ such that

$$\mathcal{D}_{\mu}(f) := rac{1}{\pi} \int_{\mathbb{D}} |f'(z)|^2 \mathcal{P}\mu(z) \, d\mathcal{A}(z) < \infty.$$

• If $\mu = d heta/2\pi$, then $\mathcal{D}_{\mu} = \mathcal{D}$, the classical Dirichlet space.

• If $\mu = \delta_{\zeta}$, then \mathcal{D}_{μ} is the *local Dirichlet space* at ζ , denoted \mathcal{D}_{ζ} .

Given a finite positive measure μ on \mathbb{T} , write $P\mu$ for its Poisson integral:

$$P\mu(z):=\int_{\mathbb{T}}rac{1-|z|^2}{|\zeta-z|^2}\,d\mu(\zeta)\quad(z\in\mathbb{D}).$$

Definition (Richter, 1991)

Given μ , we denote by \mathcal{D}_{μ} the set of holomorphic f on $\mathbb D$ such that

$$\mathcal{D}_{\mu}(f):=rac{1}{\pi}\int_{\mathbb{D}}|f'(z)|^2 \mathcal{P}\mu(z)\,d\mathcal{A}(z)<\infty.$$

If μ = dθ/2π, then D_μ = D, the classical Dirichlet space.
If μ = δ_ζ, then D_μ is the *local Dirichlet space* at ζ, denoted D_ζ.

Note: Can recover $\mathcal{D}_{\mu}(f)$ from $\mathcal{D}_{\zeta}(f)$ using Fubini's theorem:

$$\mathcal{D}_{\mu}(f) = \int_{\mathbb{T}} \mathcal{D}_{\zeta}(f) \, d\mu(\zeta).$$

• $\mathcal{D}_{\mu} \subset H^2$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^2 := \|f\|_{H^2}^2 + \mathcal{D}_{\mu}(f)$.

- $\mathcal{D}_{\mu} \subset H^2$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^2 := \|f\|_{H^2}^2 + \mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^* exists μ -a.e. and

$$\mathcal{D}_{\mu}(f) = \int_{\mathbb{T}} \int_{\mathbb{T}} rac{|f^*(\lambda) - f^*(\zeta)|^2}{|\lambda - \zeta|^2} \, rac{|d\lambda|}{2\pi} \, d\mu(\zeta).$$

- $\mathcal{D}_{\mu} \subset H^2$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^2 := \|f\|_{H^2}^2 + \mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^* exists μ -a.e. and

$$\mathcal{D}_{\mu}(f) = \int_{\mathbb{T}} \int_{\mathbb{T}} rac{|f^*(\lambda) - f^*(\zeta)|^2}{|\lambda - \zeta|^2} \, rac{|d\lambda|}{2\pi} \, d\mu(\zeta).$$

Special case: $f \in D_{\zeta} \iff f(z) = a + (z - \zeta)g(z)$ where $g \in H^2$, and then $D_{\zeta}(f) = \|g\|_{H^2}^2$.

- $\mathcal{D}_{\mu} \subset H^2$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^2 := \|f\|_{H^2}^2 + \mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^* exists μ -a.e. and

$$\mathcal{D}_{\mu}(f) = \int_{\mathbb{T}} \int_{\mathbb{T}} rac{|f^*(\lambda) - f^*(\zeta)|^2}{|\lambda - \zeta|^2} \, rac{|d\lambda|}{2\pi} \, d\mu(\zeta).$$

Special case: $f \in D_{\zeta} \iff f(z) = a + (z - \zeta)g(z)$ where $g \in H^2$, and then $D_{\zeta}(f) = \|g\|_{H^2}^2$.

• Carleson formula for $\mathcal{D}_{\mu}(f)$.

- $\mathcal{D}_{\mu} \subset H^2$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^2 := \|f\|_{H^2}^2 + \mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^* exists μ -a.e. and

$$\mathcal{D}_{\mu}(f) = \int_{\mathbb{T}} \int_{\mathbb{T}} rac{|f^*(\lambda) - f^*(\zeta)|^2}{|\lambda - \zeta|^2} \, rac{|d\lambda|}{2\pi} \, d\mu(\zeta).$$

Special case: $f \in D_{\zeta} \iff f(z) = a + (z - \zeta)g(z)$ where $g \in H^2$, and then $D_{\zeta}(f) = \|g\|_{H^2}^2$.

- Carleson formula for $\mathcal{D}_{\mu}(f)$.
- Polynomials are dense in \mathcal{D}_{μ} .

- $\mathcal{D}_{\mu} \subset H^2$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^2 := \|f\|_{H^2}^2 + \mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^* exists μ -a.e. and

$$\mathcal{D}_{\mu}(f) = \int_{\mathbb{T}} \int_{\mathbb{T}} rac{|f^*(\lambda) - f^*(\zeta)|^2}{|\lambda - \zeta|^2} \, rac{|d\lambda|}{2\pi} \, d\mu(\zeta).$$

Special case: $f \in D_{\zeta} \iff f(z) = a + (z - \zeta)g(z)$ where $g \in H^2$, and then $D_{\zeta}(f) = \|g\|_{H^2}^2$.

- Carleson formula for $\mathcal{D}_{\mu}(f)$.
- Polynomials are dense in \mathcal{D}_{μ} .
- D_µ(f_r) ≤ 4D_µ(f) (where f_r(z) := f(rz)).
 Can replace 4 by 1 (Sarason 1997, using de Branges-Rovnyak spaces).

- Capacities for D_μ.
 Chacón (2011), Guillot (2012)
- Estimates for reproducing kernel and capacities in \mathcal{D}_{μ} . El-Fallah, Elmadani, Kellay (2019)
- Superharmonic weights Aleman (1993)
- \mathcal{D}_{μ} has the complete Pick property Shimorin (2002)

Chapter 8

Shift-invariant subspaces

- T a bounded operator on a Hilbert space $\mathcal H$
- Lat(T, H) := the lattice of closed T-invariant subspaces of H.
- $M_z :=$ the shift operator (multiplication by z).

- T a bounded operator on a Hilbert space \mathcal{H}
- Lat(T, H) := the lattice of closed T-invariant subspaces of H.
- M_z := the shift operator (multiplication by z).

Theorem (Beurling, 1948)

If $\mathcal{M} \in Lat(M_z, H^2) \setminus \{0\}$, then $\mathcal{M} = \theta H^2$ where θ is inner.

- T a bounded operator on a Hilbert space \mathcal{H}
- Lat(T, H) := the lattice of closed T-invariant subspaces of H.
- M_z := the shift operator (multiplication by z).

Theorem (Beurling, 1948)

If $\mathcal{M} \in Lat(M_z, H^2) \setminus \{0\}$, then $\mathcal{M} = \theta H^2$ where θ is inner.

Analogue for Lat (M_z, \mathcal{D}) ?

The shift operator on \mathcal{D}_{μ}

Write
$$(T, \mathcal{H}) := (M_z, \mathcal{D})$$
. Clearly:
(1) $||T^2 f||^2 - 2||Tf||^2 + ||f||^2 = 0$ for all $f \in \mathcal{H}$.
(2) $\cap_{n \ge 0} T^n(\mathcal{H}) = \{0\}$.
(3) $\dim(\mathcal{H} \ominus T(\mathcal{H})) = 1$.

The shift operator on \mathcal{D}_{μ}

Write
$$(T, \mathcal{H}) := (M_z, \mathcal{D})$$
. Clearly:
(1) $||T^2 f||^2 - 2||Tf||^2 + ||f||^2 = 0$ for all $f \in \mathcal{H}$.
(2) $\bigcap_{n \ge 0} T^n(\mathcal{H}) = \{0\}$.
(3) $\dim(\mathcal{H} \ominus T(\mathcal{H})) = 1$.

It turns out that the same properties hold if $(T, H) := (M_z, D_\mu)$. Conversely:

The shift operator on \mathcal{D}_{μ}

Write
$$(T, \mathcal{H}) := (M_z, \mathcal{D})$$
. Clearly:
(1) $||T^2f||^2 - 2||Tf||^2 + ||f||^2 = 0$ for all $f \in \mathcal{H}$.
(2) $\cap_{n \ge 0} T^n(\mathcal{H}) = \{0\}$.
(3) $\dim(\mathcal{H} \ominus T(\mathcal{H})) = 1$.

It turns out that the same properties hold if $(T, H) := (M_z, D_\mu)$. Conversely:

Theorem (Richter, 1991)

Let T be an operator on a Hilbert space \mathcal{H} satisfying (1),(2),(3). Then there exists a unique finite measure μ on \mathbb{T} such that (T, \mathcal{H}) is unitarily equivalent to (M_z, \mathcal{D}_{μ}) . Let $\mathcal{M} \in Lat(M_z, \mathcal{D})$.

- Clearly (M_z, \mathcal{M}) satisfies properties (1),(2).
- If $\mathcal{M} \neq \{0\}$, then (3) also holds (Richter–Shields 1988).

Leads to:
Let $\mathcal{M} \in Lat(M_z, \mathcal{D})$.

- Clearly (M_z, \mathcal{M}) satisfies properties (1),(2).
- If $\mathcal{M} \neq \{0\}$, then (3) also holds (Richter–Shields 1988).

Leads to:

Theorem (Richter 1991, Richter–Sundberg 1992)

Let $\mathcal{M} \in Lat(M_z, \mathcal{D})$ and let $\phi \in \mathcal{M} \ominus M_z(\mathcal{M})$ with $\phi \not\equiv 0$. Then:

- ϕ is a multiplier for \mathcal{D} .
- $\mathcal{M} = \phi \mathcal{D}_{\mu}$ where $d\mu := |\phi^*|^2 d\theta$.

Let $\mathcal{M} \in Lat(M_z, \mathcal{D})$.

- Clearly (M_z, \mathcal{M}) satisfies properties (1),(2).
- If $\mathcal{M} \neq \{0\}$, then (3) also holds (Richter–Shields 1988).

Leads to:

Theorem (Richter 1991, Richter-Sundberg 1992)

Let $\mathcal{M} \in Lat(M_z, \mathcal{D})$ and let $\phi \in \mathcal{M} \ominus M_z(\mathcal{M})$ with $\phi \not\equiv 0$. Then:

- ϕ is a multiplier for \mathcal{D} .
- $\mathcal{M} = \phi \mathcal{D}_{\mu}$ where $d\mu := |\phi^*|^2 d\theta$.

Corollary

 \mathcal{M} is cyclic (i.e. singly generated as an invariant subspace).

Problem: Given $f \in D$, identify $[f]_D$, the closed invariant subspace of D generated by f.

Problem: Given $f \in D$, identify $[f]_D$, the closed invariant subspace of D generated by f.

Theorem (Richter–Sundberg 1992)

Let $f \in \mathcal{D}$ have inner-outer factorization $f = f_i f_o$. Then

$$[f]_{\mathcal{D}} = f_i[f_o]_{\mathcal{D}} \cap \mathcal{D} = [f_o]_{\mathcal{D}} \cap f_i H^2.$$

Problem: Given $f \in D$, identify $[f]_D$, the closed invariant subspace of D generated by f.

Theorem (Richter-Sundberg 1992)

Let $f \in \mathcal{D}$ have inner-outer factorization $f = f_i f_o$. Then

$$[f]_{\mathcal{D}} = f_i[f_o]_{\mathcal{D}} \cap \mathcal{D} = [f_o]_{\mathcal{D}} \cap f_i H^2.$$

It remains to identify $[f_o]_{\mathcal{D}}$. We might expect that $[f_o]_{\mathcal{D}} = \mathcal{D}$. However, another phenomenon intervenes, that of boundary zeros.

Notation: Given $E \subset \mathbb{T}$, write $\mathcal{D}_E := \{h \in \mathcal{D} : h^* = 0 \text{ q.e. on } E\}$.

Notation: Given $E \subset \mathbb{T}$, write $\mathcal{D}_E := \{h \in \mathcal{D} : h^* = 0 \text{ q.e. on } E\}$.

Theorem (Carleson 1952)

 \mathcal{D}_E is closed in \mathcal{D} . Hence $\mathcal{D}_E \in Lat(M_z, \mathcal{D})$.

Notation: Given $E \subset \mathbb{T}$, write $\mathcal{D}_E := \{h \in \mathcal{D} : h^* = 0 \text{ q.e. on } E\}$.

Theorem (Carleson 1952)

 \mathcal{D}_E is closed in \mathcal{D} . Hence $\mathcal{D}_E \in Lat(M_z, \mathcal{D})$.

Corollary

Let $f \in \mathcal{D}$ and let $E := \{f^* = 0\}$. Then $[f]_{\mathcal{D}} \subset \mathcal{D}_E$.

Notation: Given $E \subset \mathbb{T}$, write $\mathcal{D}_E := \{h \in \mathcal{D} : h^* = 0 \text{ q.e. on } E\}$.

Theorem (Carleson 1952)

 \mathcal{D}_E is closed in \mathcal{D} . Hence $\mathcal{D}_E \in Lat(M_z, \mathcal{D})$.

Corollary

Let
$$f \in \mathcal{D}$$
 and let $E := \{f^* = 0\}$. Then $[f]_{\mathcal{D}} \subset \mathcal{D}_E$.

Open problem

Let $f \in D$ be outer and let $E := \{f^* = 0\}$. Then do we have $[f]_D = D_E$? In particular, if c(E) = 0, then do we have $[f]_D = D$?

Special case where c(E) = 0 is a celebrated conjecture of Brown–Shields

Brown–Shields conjecture

 $f \in \mathcal{D}$ is cyclic for \mathcal{D} if $[f]_{\mathcal{D}} = \mathcal{D}$. Necessary conditions for cyclicity:

- f is outer;
- $E := \{f^* = 0\}$ is of capacity zero.

Conjecture (Brown-Shields, 1984)

These conditions are also sufficient.

Brown–Shields conjecture

 $f \in \mathcal{D}$ is cyclic for \mathcal{D} if $[f]_{\mathcal{D}} = \mathcal{D}$. Necessary conditions for cyclicity:

- f is outer;
- $E := \{f^* = 0\}$ is of capacity zero.

Conjecture (Brown-Shields, 1984)

These conditions are also sufficient.

Partial results:

Theorem (Hedenmalm-Shields, 1990)

If $f \in \mathcal{D} \cap A(\mathbb{D})$ is outer and if $E := \{f = 0\}$ is countable, then f is cyclic.

Brown–Shields conjecture

 $f \in \mathcal{D}$ is cyclic for \mathcal{D} if $[f]_{\mathcal{D}} = \mathcal{D}$. Necessary conditions for cyclicity:

f is outer;

•
$$E := \{f^* = 0\}$$
 is of capacity zero.

Conjecture (Brown-Shields, 1984)

These conditions are also sufficient.

Partial results:

Theorem (Hedenmalm-Shields, 1990)

If $f \in \mathcal{D} \cap A(\mathbb{D})$ is outer and if $E := \{f = 0\}$ is countable, then f is cyclic.

Theorem (El-Fallah–Kellay–Ransford, 2009)

If
$$f \in \mathcal{D} \cap A(\mathbb{D})$$
 is outer and if $E := \{f = 0\}$ satisfies, for some $\epsilon > 0$,
 $|E_t| = O(t^{\epsilon}) (t \to 0^+) \text{ and } \int_0^1 dt/|E_t| = \infty$,
then f is cyclic

- Shift-invariant subspaces and cyclicity in D_μ Richter, Sundberg (1992)
 Guillot (2012)
 El-Fallah, Elmadani, Kellay (2016)
- Optimal polynomial approximants Catherine Bénéteau and co-authors (2015 onwards)
- Cyclicity in Dirichlet spaces on the bi-disk Knese-Kosiński-Ransford-Sola (2019)

CAMBRIDGE TRACTS IN MATHEMATICS

203

A PRIMER ON THE DIRICHLET SPACE

OMAR EL-FALLAH, KARIM KELLAY, JAVAD MASHREGHI AND THOMAS RANSFORD

CAMBRIDGE UNIVERSITY PRESS