Mini-course on the Dirichlet space

Thomas Ransford

Université Laval, Québec
Focus Program on Analytic Functions Spaces and Applications
Fields Institute, Toronto, July 2021

Chapter 1
Introduction

What is the Dirichlet space?

The Dirichlet space \mathcal{D}
\mathcal{D} is the set of f holomorphic in \mathbb{D} whose Dirichlet integral is finite:

$$
\mathcal{D}(f):=\frac{1}{\pi} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)<\infty
$$

What is the Dirichlet space?

The Dirichlet space \mathcal{D}

\mathcal{D} is the set of f holomorphic in \mathbb{D} whose Dirichlet integral is finite:

$$
\mathcal{D}(f):=\frac{1}{\pi} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)<\infty
$$

- If $f(z)=\sum_{k \geq 0} a_{k} z^{k}$, then $\mathcal{D}(f)=\sum_{k \geq 0} k\left|a_{k}\right|^{2}$.

Consequently $\mathcal{D} \subset H^{2}$.

- \mathcal{D} is a Hilbert space with respect to the norm $\|\cdot\|_{\mathcal{D}}$ given by

$$
\|f\|_{\mathcal{D}}^{2}:=\|f\|_{H^{2}}^{2}+\mathcal{D}(f)=\sum_{k \geq 0}(k+1)\left|a_{k}\right|^{2}
$$

History and motivation

Very very brief history of \mathcal{D} :

History and motivation

Very very brief history of \mathcal{D} :

- Beurling (1930's-1940's)
- Carleson (1950's-1960's)

History and motivation

Very very brief history of \mathcal{D} :

- Beurling (1930's-1940's)
- Carleson (1950's-1960's)
- ...

History and motivation

Very very brief history of \mathcal{D} :

- Beurling (1930's-1940's)
- Carleson (1950's-1960's)
- ...

Some reasons for studying \mathcal{D} :

- Potential theory, energy, capacity
- Geometric interpretation, Möbius invariance
- Weighted shifts, invariant subspaces
- Borderline case, still many open problems

What to study?

Some topics of interest:

- Boundary behavior
- Zeros
- Multipliers
- Reproducing kernel
- Interpolation
- Conformal invariance
- Shift-invariant subspaces

Where to find out more about \mathcal{D} ?

Survey articles:

- W. Ross, The classical Dirichlet space, Recent advances in operator-related function theory, 171-197, Contemp. Math., 393, Amer. Math. Soc., Providence, RI, 2006.
- N. Arcozzi, R. Rochberg, E. Sawyer, B. Wick, The Dirichlet space: a survey, New York J. Math. 17A (2011), 45-86.

Monographs:

- O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford, A primer on the Dirichlet space, Cambridge University Press, Cambridge, 2014
- N. Arcozzi, R. Rochberg, E. Sawyer, B. Wick, The Dirichlet space and related function spaces, Amer. Math. Soc., Providence RI, 2019.

Chapter 2
Capacity

Energy

Let μ be a finite positive Borel measure on \mathbb{T}.

Energy of μ

$$
I(\mu):=\int_{\mathbb{T}} \int_{\mathbb{T}} \log \frac{2}{|\lambda-\zeta|} d \mu(\lambda) d \mu(\zeta)
$$

- May have $I(\mu)=+\infty$.
- Formula for $I(\mu)$ in terms of Fourier coefficients of μ :

$$
I(\mu)=\sum_{k \geq 1} \frac{|\widehat{\mu}(k)|^{2}}{k}+\mu(\mathbb{T})^{2} \log 2
$$

Capacity of compact sets

Capacity of compact $F \subset \mathbb{T}$

$$
c(F):=1 / \inf \{I(\mu): \mu \text { is a probability measure on } F\} .
$$

Capacity of compact sets

Capacity of compact $F \subset \mathbb{T}$

$$
c(F):=1 / \inf \{I(\mu): \mu \text { is a probability measure on } F\}
$$

Elementary properties:

- $F_{1} \subset F_{2} \Rightarrow c\left(F_{1}\right) \leq c\left(F_{2}\right)$
- $F_{n} \downarrow F \Rightarrow c\left(F_{n}\right) \downarrow c(F)$
- $c\left(F_{1} \cup F_{2}\right) \leq c\left(F_{1}\right)+c\left(F_{2}\right)$

Capacity of compact sets

Capacity of compact $F \subset \mathbb{T}$

$$
c(F):=1 / \inf \{I(\mu): \mu \text { is a probability measure on } F\} .
$$

Elementary properties:

- $F_{1} \subset F_{2} \Rightarrow c\left(F_{1}\right) \leq c\left(F_{2}\right)$
- $F_{n} \downarrow F \Rightarrow c\left(F_{n}\right) \downarrow c(F)$
- $c\left(F_{1} \cup F_{2}\right) \leq c\left(F_{1}\right)+c\left(F_{2}\right)$

Examples:

- $c(F) \leq 1 / \log (2 / \operatorname{diam}(F))$
- $c(F)=0$ if F is finite or countable
- $c(F) \geq 1 / \log (2 \pi e /|F|)$. In particular $c(F)=0 \Rightarrow|F|=0$.
- $c(F)>0$ if F is the (circular) middle-third Cantor set.

Capacity of general sets

Inner capacity of $E \subset \mathbb{T}$

$$
c(E):=\sup \{c(F): \text { compact } F \subset E\}
$$

Outer capacity of $E \subset \mathbb{T}$

$$
c^{*}(E):=\inf \{c(U): \text { open } U \supset E\}
$$

- $c^{*}\left(\cup_{n} E_{n}\right) \leq \sum_{n} c^{*}\left(E_{n}\right) \quad$ (not true for $\left.c(\cdot)\right)$.
- $c^{*}(E)=c(E)$ if E is Borel (Choquet's capacitability theorem)
- A property holds q.e. if it holds outside an E with $c^{*}(E)=0$.

Equilibrium measures

Let F be a compact subset of \mathbb{T}. Recall that $c(F):=1 / \inf \{I(\mu): \mu$ is a probability measure on $F\}$.

Measure μ attaining the inf is called an equilibrium measure for F.

Proposition

If $c(F)>0$, then F admits a unique equilibrium measure.

Equilibrium measures

Let F be a compact subset of \mathbb{T}. Recall that

$$
c(F):=1 / \inf \{I(\mu): \mu \text { is a probability measure on } F\} .
$$

Measure μ attaining the inf is called an equilibrium measure for F.

Proposition

If $c(F)>0$, then F admits a unique equilibrium measure.

Fundamental theorem of potential theory (Frostman, 1935)

Let μ be the equilibrium measure for F, and V_{μ} be its potential, i.e.

$$
V_{\mu}(z):=\int_{\mathbb{T}} \log \frac{2}{|z-\zeta|} d \mu(\zeta)
$$

Then $V_{\mu} \leq 1 / c(F)$ on \mathbb{T}, and $V_{\mu}=1 / c(F)$ q.e. on F.

Chapter 3

Boundary behavior

Preliminary remarks

- Every $f \in \mathcal{D}$ has non-tangential limits a.e. on \mathbb{T} (as $f \in H^{2}$).
- There exists $f \in \mathcal{D}$ such that $\lim _{r \rightarrow 1^{-}}|f(r)|=\infty$.

Preliminary remarks

- Every $f \in \mathcal{D}$ has non-tangential limits a.e. on \mathbb{T} (as $f \in H^{2}$).
- There exists $f \in \mathcal{D}$ such that $\lim _{r \rightarrow 1^{-}}|f(r)|=\infty$.

Example: Consider

$$
f(z):=\sum_{k \geq 2} \frac{z^{k}}{k \log k}
$$

Then

$$
\mathcal{D}(f)=\sum_{k \geq 2} k \frac{1}{(k \log k)^{2}}=\sum_{k \geq 2} \frac{1}{k(\log k)^{2}}<\infty
$$

but

$$
\liminf _{r \rightarrow 1^{-}} f(r) \geq \sum_{k \geq 2} \frac{1}{k \log k}=\infty
$$

Beurling's theorem

Theorem (Beurling, 1940)
If $f \in \mathcal{D}$ then f has non-tangential limits q.e. on \mathbb{T}.

Beurling's theorem

```
Theorem (Beurling, 1940)
If f}\in\mathcal{D}\mathrm{ then }f\mathrm{ has non-tangential limits q.e. on }\mathbb{T}\mathrm{ .
```


Remarks:

- Beurling actually proved his result just for radial limits
- Beurling's theorem is sharp in the following sense:

Theorem (Carleson, 1952)

Given compact $E \subset \mathbb{T}$ of capacity zero, there exists $f \in \mathcal{D}$ such that $\lim _{r \rightarrow 1^{-}}|f(r \zeta)|=\infty$ for all $\zeta \in E$.

Capacitary weak-type and strong-type inequalities

Notation: Let $f \in \mathcal{D}$. For $\zeta \in \mathbb{T}$, we write $f^{*}(\zeta):=\lim _{r \rightarrow 1^{-}} f(r \zeta)$. Also A, B denote absolute positive constants.

Weak-type inequality (Beurling, 1940)

$$
c\left(\left|f^{*}\right|>t\right) \leq A\|f\|_{\mathcal{D}}^{2} / t^{2} \quad(t>0) .
$$

Corollary

$$
\left|\left\{\left|f^{*}\right|>t\right\}\right| \leq A e^{-B t^{2} /\|f\|_{\mathcal{D}}^{2}} \quad(t>0) .
$$

Capacitary weak-type and strong-type inequalities

Notation: Let $f \in \mathcal{D}$. For $\zeta \in \mathbb{T}$, we write $f^{*}(\zeta):=\lim _{r \rightarrow 1^{-}} f(r \zeta)$. Also A, B denote absolute positive constants.

Weak-type inequality (Beurling, 1940)

$$
c\left(\left|f^{*}\right|>t\right) \leq A\|f\|_{\mathcal{D}}^{2} / t^{2} \quad(t>0) .
$$

Corollary

$$
\left|\left\{\left|f^{*}\right|>t\right\}\right| \leq A e^{-B t^{2} /\|f\|_{\mathcal{D}}^{2}} \quad(t>0)
$$

Strong-type inequality (Hansson, 1979)

$$
\int_{0}^{\infty} c\left(\left|f^{*}\right|>t\right) t d t \leq A\|f\|_{\mathcal{D}}^{2}
$$

Douglas' formula

Theorem (Douglas, 1931)
If $f \in H^{2}$, then

$$
\mathcal{D}(f)=\frac{1}{4 \pi^{2}} \int_{\mathbb{T}} \int_{\mathbb{T}}\left|\frac{f^{*}(\lambda)-f^{*}(\zeta)}{\lambda-\zeta}\right|^{2}|d \lambda||d \zeta| .
$$

Douglas' formula

Theorem (Douglas, 1931)

If $f \in H^{2}$, then

$$
\mathcal{D}(f)=\frac{1}{4 \pi^{2}} \int_{\mathbb{T}} \int_{\mathbb{T}}\left|\frac{f^{*}(\lambda)-f^{*}(\zeta)}{\lambda-\zeta}\right|^{2}|d \lambda||d \zeta| .
$$

Corollary

If $f \in \mathcal{D}$, then f has oricyclic limits a.e. in \mathbb{T}.

non-tangential approach region

oricyclic approach region

Exponential approach region

Theorem (Nagel-Rudin-Shapiro, 1982)

If $f \in \mathcal{D}$ then, for a.e. $\zeta \in \mathbb{D}$, we have $f(z) \rightarrow f^{*}(\zeta)$ as $z \rightarrow \zeta$ in the exponential approach region

$$
|z-\zeta|<\kappa\left(\log \frac{1}{1-|z|}\right)^{-1}
$$

Remarks:

- Approach region is 'widest possible'.
- This is an a.e. result (not q.e.).

Carleson's formula

Notation: Let $f \in H^{2}$ with canonical factorization $f=B S O$. Let $\left(a_{n}\right)$ be the zeros of B, and σ be the singular measure of S.

Theorem (Carleson, 1960)

$$
\begin{aligned}
\mathcal{D}(f)= & \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left(\left|f^{*}(\lambda)\right|^{2}-\left|f^{*}(\zeta)\right|^{2}\right)\left(\log \left|f^{*}(\lambda)\right|-\log \left|f^{*}(\zeta)\right|\right)}{|\lambda-\zeta|^{2}} \frac{|d \lambda|}{2 \pi} \frac{|d \zeta|}{2 \pi} \\
& +\int_{\mathbb{T}}\left(\sum_{n} \frac{1-\left|a_{n}\right|^{2}}{\left|\zeta-a_{n}\right|^{2}}+\int_{\mathbb{T}} \frac{2}{|\lambda-\zeta|^{2}} d \sigma(\lambda)\right)\left|f^{*}(\zeta)\right|^{2} \frac{|d \zeta|}{2 \pi} .
\end{aligned}
$$

Carleson's formula

Notation: Let $f \in H^{2}$ with canonical factorization $f=B S O$. Let $\left(a_{n}\right)$ be the zeros of B, and σ be the singular measure of S.

Theorem (Carleson, 1960)

$$
\begin{aligned}
\mathcal{D}(f)= & \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left(\left|f^{*}(\lambda)\right|^{2}-\left|f^{*}(\zeta)\right|^{2}\right)\left(\log \left|f^{*}(\lambda)\right|-\log \left|f^{*}(\zeta)\right|\right)}{|\lambda-\zeta|^{2}} \frac{|d \lambda|}{2 \pi} \frac{|d \zeta|}{2 \pi} \\
& +\int_{\mathbb{T}}\left(\sum_{n} \frac{1-\left|a_{n}\right|^{2}}{\left|\zeta-a_{n}\right|^{2}}+\int_{\mathbb{T}} \frac{2}{|\lambda-\zeta|^{2}} d \sigma(\lambda)\right)\left|f^{*}(\zeta)\right|^{2} \frac{|d \zeta|}{2 \pi} .
\end{aligned}
$$

Corollary 1

If f belongs to \mathcal{D} then so does its outer factor.

Carleson's formula

Notation: Let $f \in H^{2}$ with canonical factorization $f=B S O$. Let $\left(a_{n}\right)$ be the zeros of B, and σ be the singular measure of S.

Theorem (Carleson, 1960)

$$
\begin{aligned}
\mathcal{D}(f)= & \int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left(\left|f^{*}(\lambda)\right|^{2}-\left|f^{*}(\zeta)\right|^{2}\right)\left(\log \left|f^{*}(\lambda)\right|-\log \left|f^{*}(\zeta)\right|\right)}{|\lambda-\zeta|^{2}} \frac{|d \lambda|}{2 \pi} \frac{|d \zeta|}{2 \pi} \\
& +\int_{\mathbb{T}}\left(\sum_{n} \frac{1-\left|a_{n}\right|^{2}}{\left|\zeta-a_{n}\right|^{2}}+\int_{\mathbb{T}} \frac{2}{|\lambda-\zeta|^{2}} d \sigma(\lambda)\right)\left|f^{*}(\zeta)\right|^{2} \frac{|d \zeta|}{2 \pi} .
\end{aligned}
$$

Corollary 1

If f belongs to \mathcal{D} then so does its outer factor.

Corollary 2

The only inner functions in \mathcal{D} are finite Blaschke products.

Some further developments

- Chang-Marshall theorem (1985):

$$
\sup \left\{\int_{\mathbb{T}} \exp \left(\left|f^{*}\left(e^{i \theta}\right)\right|^{2}\right) d \theta: f(0)=0, \mathcal{D}(f) \leq 1\right\}<\infty
$$

- Trade-off between approach regions and exceptional sets. Borichev (1994), Twomey (2002)

Chapter 4
Zeros

Preliminary remarks

A sequence $\left(z_{n}\right)$ in \mathbb{D} (possibly with repetitions) is:

- a zero set for \mathcal{D} if $\exists f \in \mathcal{D}$ vanishing on $\left(z_{n}\right)$ but $f \not \equiv 0$;
- a uniqueness set for \mathcal{D} if it is not a zero set.

Proposition

If $\left(z_{n}\right)$ is a zero set for \mathcal{D}, then $\exists f \in \mathcal{D}$ vanishing precisely on $\left(z_{n}\right)$.

Preliminary remarks

A sequence $\left(z_{n}\right)$ in \mathbb{D} (possibly with repetitions) is:

- a zero set for \mathcal{D} if $\exists f \in \mathcal{D}$ vanishing on $\left(z_{n}\right)$ but $f \not \equiv 0$;
- a uniqueness set for \mathcal{D} if it is not a zero set.

Proposition

If $\left(z_{n}\right)$ is a zero set for \mathcal{D}, then $\exists f \in \mathcal{D}$ vanishing precisely on $\left(z_{n}\right)$.

It is well known that $\left(z_{n}\right)$ is a zero set for the Hardy space H^{2} iff

$$
\sum_{n}\left(1-\left|z_{n}\right|\right)<\infty .
$$

What about the Dirichlet space?

The three cases

Case I (obvious)

$\sum_{n}\left(1-\left|z_{n}\right|\right)=\infty \Rightarrow\left(z_{n}\right)$ is a uniqueness set for \mathcal{D}.

The three cases

Case I (obvious)

$\sum_{n}\left(1-\left|z_{n}\right|\right)=\infty \Rightarrow\left(z_{n}\right)$ is a uniqueness set for \mathcal{D}.

Case II (Shapiro-Shields, 1962)

$\sum_{n} 1 /\left|\log \left(1-\left|z_{n}\right|\right)\right|<\infty \Rightarrow\left(z_{n}\right)$ is a zero set for \mathcal{D}.

The three cases

Case I (obvious)

$\sum_{n}\left(1-\left|z_{n}\right|\right)=\infty \Rightarrow\left(z_{n}\right)$ is a uniqueness set for \mathcal{D}.

Case II (Shapiro-Shields, 1962)

$\sum_{n} 1 /\left|\log \left(1-\left|z_{n}\right|\right)\right|<\infty \Rightarrow\left(z_{n}\right)$ is a zero set for \mathcal{D}.

Case III (Nagel-Rudin-Shapiro, 1982)

If $\left(z_{n}\right)$ satisfies neither condition, then there exist a zero set $\left(z_{n}^{\prime}\right)$ and a uniqueness set $\left(z_{n}^{\prime \prime}\right)$ with $\left|z_{n}\right|=\left|z_{n}^{\prime}\right|=\left|z_{n}^{\prime \prime}\right|$ for all n.

Thus, in Case III, the arguments of $\left(z_{n}\right)$ matter. Back to this later.

Boundary zero sets

Let E be a closed subset of \mathbb{T}. It is called a Carleson set if

$$
\int_{\mathbb{T}} \log \left(\frac{2}{\operatorname{dist}(\zeta, E)}\right)|d \zeta|<\infty
$$

Theorem (Carleson 1952)

If E is a Carleson set, then $\exists f \in A^{1}(\mathbb{D})$ with $f^{-1}(0)=E$.

Boundary zero sets

Let E be a closed subset of \mathbb{T}. It is called a Carleson set if

$$
\int_{\mathbb{T}} \log \left(\frac{2}{\operatorname{dist}(\zeta, E)}\right)|d \zeta|<\infty
$$

```
Theorem (Carleson 1952)
If E is a Carleson set, then \existsf\in\mp@subsup{A}{}{1}(\mathbb{D})\mathrm{ with }\mp@subsup{f}{}{-1}(0)=E\mathrm{ .}
```

$$
\begin{aligned}
& \text { Theorem (Carleson 1952, Brown-Cohn 1985) } \\
& \text { If } c(E)=0 \text {, then } \exists f \in \mathcal{D} \cap A(\mathbb{D}) \text { with } f^{-1}(0)=E \text {. }
\end{aligned}
$$

Boundary zero sets

Let E be a closed subset of \mathbb{T}. It is called a Carleson set if

$$
\int_{\mathbb{T}} \log \left(\frac{2}{\operatorname{dist}(\zeta, E)}\right)|d \zeta|<\infty
$$

```
Theorem (Carleson 1952)
If E is a Carleson set, then \existsf\in\mp@subsup{A}{}{1}(\mathbb{D})\mathrm{ with }\mp@subsup{f}{}{-1}(0)=E\mathrm{ .}
```

$$
\begin{aligned}
& \text { Theorem (Carleson 1952, Brown-Cohn 1985) } \\
& \text { If } c(E)=0 \text {, then } \exists f \in \mathcal{D} \cap A(\mathbb{D}) \text { with } f^{-1}(0)=E
\end{aligned}
$$

- Neither result implies the other.

Boundary zero sets

Let E be a closed subset of \mathbb{T}. It is called a Carleson set if

$$
\int_{\mathbb{T}} \log \left(\frac{2}{\operatorname{dist}(\zeta, E)}\right)|d \zeta|<\infty
$$

Theorem (Carleson 1952)

If E is a Carleson set, then $\exists f \in A^{1}(\mathbb{D})$ with $f^{-1}(0)=E$.

$$
\begin{aligned}
& \text { Theorem (Carleson 1952, Brown-Cohn 1985) } \\
& \text { If } c(E)=0 \text {, then } \exists f \in \mathcal{D} \cap A(\mathbb{D}) \text { with } f^{-1}(0)=E
\end{aligned}
$$

- Neither result implies the other.
- Clearly, if $|E|>0$, then E is a boundary uniqueness set for \mathcal{D}. But there also exist closed uniqueness sets E with $|E|=0$.

Arguments of zero sets

We return to zero sets within \mathbb{D}, now considering their arguments.

Theorem (Caughran, 1970)

Let $\left(e^{i \theta_{n}}\right)$ be a sequence in \mathbb{T}. The following are equivalent:

- $\left(r_{n} e^{i \theta_{n}}\right)$ is a zero set for \mathcal{D} whenever $\sum_{n}\left(1-r_{n}\right)<\infty$.
- $E:=\overline{\left\{e^{i \theta_{n}}: n \geq 1\right\}}$ is a Carleson set.

Arguments of zero sets

We return to zero sets within \mathbb{D}, now considering their arguments.

Theorem (Caughran, 1970)

Let $\left(e^{i \theta_{n}}\right)$ be a sequence in \mathbb{T}. The following are equivalent:

- $\left(r_{n} e^{i \theta_{n}}\right)$ is a zero set for \mathcal{D} whenever $\sum_{n}\left(1-r_{n}\right)<\infty$.
- $E:=\overline{\left\{e^{i \theta_{n}}: n \geq 1\right\}}$ is a Carleson set.

Example of a Blaschke sequence that is a uniqueness set for \mathcal{D}

$$
z_{n}:=\left(1-\frac{1}{n(\log n)^{2}}\right) e^{i / \log n}
$$

Arguments of zero sets

We return to zero sets within \mathbb{D}, now considering their arguments.

Theorem (Caughran, 1970)

Let $\left(e^{i \theta_{n}}\right)$ be a sequence in \mathbb{T}. The following are equivalent:

- $\left(r_{n} e^{i \theta_{n}}\right)$ is a zero set for \mathcal{D} whenever $\sum_{n}\left(1-r_{n}\right)<\infty$.
- $E:=\overline{\left\{e^{i \theta_{n}}: n \geq 1\right\}}$ is a Carleson set.

Example of a Blaschke sequence that is a uniqueness set for \mathcal{D}

$$
z_{n}:=\left(1-\frac{1}{n(\log n)^{2}}\right) e^{i / \log n}
$$

There is still no satisfactory complete characterization of zero sets.

Some further developments

- Carleson sets as zero sets for $A^{\infty}(\mathbb{D})$ Taylor-Williams (1970)

Chapter 5

Multipliers

Preliminary remarks

Proposition

\mathcal{D} is not an algebra.

Preliminary remarks

Proposition

\mathcal{D} is not an algebra.

Proof: Suppose \mathcal{D} is an algebra.

Preliminary remarks

Proposition

\mathcal{D} is not an algebra.

Proof: Suppose \mathcal{D} is an algebra.

- By closed graph theorem, \mathcal{D} isomorphic to a Banach algebra.

Preliminary remarks

Proposition

\mathcal{D} is not an algebra.

Proof: Suppose \mathcal{D} is an algebra.

- By closed graph theorem, \mathcal{D} isomorphic to a Banach algebra.
- $f \mapsto f(z)$ is a character, so $|f(z)| \leq$ spectral radius of f.

Preliminary remarks

Proposition

\mathcal{D} is not an algebra.

Proof: Suppose \mathcal{D} is an algebra.

- By closed graph theorem, \mathcal{D} isomorphic to a Banach algebra.
- $f \mapsto f(z)$ is a character, so $|f(z)| \leq$ spectral radius of f.
- Therefore every $f \in \mathcal{D}$ is bounded. Contradiction.

Multipliers

Definition

A multiplier for \mathcal{D} is a function ϕ such that $\phi f \in \mathcal{D}$ for all $f \in \mathcal{D}$. The set of multipliers is an algebra, denoted by $\mathcal{M}(\mathcal{D})$.

Multipliers

Definition

A multiplier for \mathcal{D} is a function ϕ such that $\phi f \in \mathcal{D}$ for all $f \in \mathcal{D}$. The set of multipliers is an algebra, denoted by $\mathcal{M}(\mathcal{D})$.

Remark: In the case of Hardy spaces, $\mathcal{M}\left(H^{2}\right)=H^{\infty}$.

Multipliers

Definition

A multiplier for \mathcal{D} is a function ϕ such that $\phi f \in \mathcal{D}$ for all $f \in \mathcal{D}$. The set of multipliers is an algebra, denoted by $\mathcal{M}(\mathcal{D})$.

Remark: In the case of Hardy spaces, $\mathcal{M}\left(H^{2}\right)=H^{\infty}$.
When is ϕ a multiplier of \mathcal{D} ?

Multipliers

Definition

A multiplier for \mathcal{D} is a function ϕ such that $\phi f \in \mathcal{D}$ for all $f \in \mathcal{D}$. The set of multipliers is an algebra, denoted by $\mathcal{M}(\mathcal{D})$.

Remark: In the case of Hardy spaces, $\mathcal{M}\left(H^{2}\right)=H^{\infty}$.
When is ϕ a multiplier of \mathcal{D} ?

- Necessary condition: $\phi \in \mathcal{D} \cap H^{\infty}$
- Sufficient condition: $\phi^{\prime} \in H^{\infty}$

To completely characterize multipliers, we introduce a new notion.

Carleson measures

Definition

A measure μ on \mathbb{D} is a Carleson measure for \mathcal{D} if $\exists C$ such that

$$
\int_{\mathbb{D}}|f|^{2} d \mu \leq C\|f\|_{\mathcal{D}}^{2} \quad(f \in \mathcal{D})
$$

Carleson measures

Definition

A measure μ on \mathbb{D} is a Carleson measure for \mathcal{D} if $\exists C$ such that

$$
\int_{\mathbb{D}}|f|^{2} d \mu \leq C\|f\|_{\mathcal{D}}^{2} \quad(f \in \mathcal{D}) .
$$

With this notion in hand, it is quite easy to characterize multipliers:

Proposition

$\phi \in \mathcal{M}(\mathcal{D})$ iff both $\phi \in H^{\infty}$ and $\left|\phi^{\prime}\right|^{2} d A$ is a Carleson measure for \mathcal{D}.

Carleson measures

Definition

A measure μ on \mathbb{D} is a Carleson measure for \mathcal{D} if $\exists C$ such that

$$
\int_{\mathbb{D}}|f|^{2} d \mu \leq C\|f\|_{\mathcal{D}}^{2} \quad(f \in \mathcal{D}) .
$$

With this notion in hand, it is quite easy to characterize multipliers:

Proposition

$\phi \in \mathcal{M}(\mathcal{D})$ iff both $\phi \in H^{\infty}$ and $\left|\phi^{\prime}\right|^{2} d A$ is a Carleson measure for \mathcal{D}.

Begs a new question: how to characterize Carleson measures?

Characterization of Carleson measures

Let μ be a finite positive measure on \mathbb{D}.
$S(I):=\left\{r e^{i \theta}: 1-|I|<r<1, e^{i \theta} \in I\right\}$.
Carleson (1962): μ is Carleson for H^{2} iff $\mu(S(I))=O(|I|)$.
When is μ a Carleson measure for \mathcal{D} ?

Characterization of Carleson measures

Let μ be a finite positive measure on \mathbb{D}.
$S(I):=\left\{r e^{i \theta}: 1-|I|<r<1, e^{i \theta} \in I\right\}$.
Carleson (1962): μ is Carleson for H^{2} iff $\mu(S(I))=O(|I|)$.
When is μ a Carleson measure for \mathcal{D} ?

Theorem (Wynn, 2011)

The condition $\mu(S(I))=O(\psi(|I|))$ is:

- necessary if $\psi(x):=1 / \log (1 / x)$;
- sufficient if $\psi(x):=1 / \log (1 / x)(\log \log (1 / x))^{\alpha}$ with $\alpha>1$.

Characterization of Carleson measures

Let μ be a finite positive measure on \mathbb{D}.
$S(I):=\left\{r e^{i \theta}: 1-|I|<r<1, e^{i \theta} \in I\right\}$.
Carleson (1962): μ is Carleson for H^{2} iff $\mu(S(I))=O(|I|)$.
When is μ a Carleson measure for \mathcal{D} ?

Theorem (Wynn, 2011)

The condition $\mu(S(I))=O(\psi(|I|))$ is:

- necessary if $\psi(x):=1 / \log (1 / x)$;
- sufficient if $\psi(x):=1 / \log (1 / x)(\log \log (1 / x))^{\alpha}$ with $\alpha>1$.

Theorem (Stegenga, 1980)

μ is a Carleson measure for \mathcal{D} iff there is a constant A such that, for every finite set of disjoint closed subarcs I_{1}, \ldots, I_{n} of \mathbb{T},

$$
\mu\left(\cup_{j=1}^{n} S\left(l_{j}\right)\right) \leq A c\left(\cup_{j=1}^{n} l_{j}\right) .
$$

Multipliers and reproducing kernels

If $f \in \mathcal{D}$ and $w \in \mathbb{D}$, then $f(w)=\left\langle f, k_{w}\right\rangle_{\mathcal{D}}$, where

$$
k_{w}(z):=\frac{1}{\bar{w} z} \log \left(\frac{1}{1-\bar{w} z}\right) \quad(w, z \in \mathbb{D}) .
$$

The function k_{w} is called the reproducing kernel for w.

Multipliers and reproducing kernels

If $f \in \mathcal{D}$ and $w \in \mathbb{D}$, then $f(w)=\left\langle f, k_{w}\right\rangle_{\mathcal{D}}$, where

$$
k_{w}(z):=\frac{1}{\bar{w} z} \log \left(\frac{1}{1-\bar{w} z}\right) \quad(w, z \in \mathbb{D}) .
$$

The function k_{w} is called the reproducing kernel for w.

Proposition

Let $\phi \in \mathcal{M}(\mathcal{D})$ and define $M_{\phi}: \mathcal{D} \rightarrow \mathcal{D}$ by $M_{\phi}(f):=\phi f$. Then

$$
M_{\phi}^{*}\left(k_{w}\right)=\overline{\phi(w)} k_{w} \quad(w \in \mathbb{D})
$$

Multipliers and reproducing kernels

If $f \in \mathcal{D}$ and $w \in \mathbb{D}$, then $f(w)=\left\langle f, k_{w}\right\rangle_{\mathcal{D}}$, where

$$
k_{w}(z):=\frac{1}{\bar{w} z} \log \left(\frac{1}{1-\bar{w} z}\right) \quad(w, z \in \mathbb{D})
$$

The function k_{w} is called the reproducing kernel for w.

Proposition

Let $\phi \in \mathcal{M}(\mathcal{D})$ and define $M_{\phi}: \mathcal{D} \rightarrow \mathcal{D}$ by $M_{\phi}(f):=\phi f$. Then

$$
M_{\phi}^{*}\left(k_{w}\right)=\overline{\phi(w)} k_{w} \quad(w \in \mathbb{D})
$$

Proof: For all $f \in \mathcal{D}$, we have

$$
\left\langle f, M_{\phi}^{*}\left(k_{w}\right)\right\rangle_{\mathcal{D}}=\left\langle\phi f, k_{w}\right\rangle_{\mathcal{D}}=\phi(w) f(w)=\phi(w)\left\langle f, k_{w}\right\rangle_{\mathcal{D}}=\left\langle f, \overline{\phi(w)} k_{w}\right\rangle_{\mathcal{D}}
$$

Pick interpolation

Problem: Given $z_{1}, \ldots, z_{n} \in \mathbb{D}$ and $w_{1}, \ldots, w_{n} \in \overline{\mathbb{D}}$, does there exist $\phi \in \mathcal{M}(\mathcal{D})$ with $\left\|M_{\phi}\right\| \leq 1$ such that $\phi\left(z_{j}\right)=w_{j}$ for all j ?

Pick interpolation

Problem: Given $z_{1}, \ldots, z_{n} \in \mathbb{D}$ and $w_{1}, \ldots, w_{n} \in \overline{\mathbb{D}}$, does there exist $\phi \in \mathcal{M}(\mathcal{D})$ with $\left\|M_{\phi}\right\| \leq 1$ such that $\phi\left(z_{j}\right)=w_{j}$ for all j ?

Theorem (Agler, 1988)
ϕ exists iff the matrix $\left(1-\bar{w}_{i} w_{j}\right)\left\langle k_{z_{i}}, k_{z_{j}}\right\rangle_{\mathcal{D}}$ is positive semi-definite.

Pick interpolation

Problem: Given $z_{1}, \ldots, z_{n} \in \mathbb{D}$ and $w_{1}, \ldots, w_{n} \in \overline{\mathbb{D}}$, does there exist $\phi \in \mathcal{M}(\mathcal{D})$ with $\left\|M_{\phi}\right\| \leq 1$ such that $\phi\left(z_{j}\right)=w_{j}$ for all j ?

Theorem (Agler, 1988)

ϕ exists iff the matrix $\left(1-\bar{w}_{i} w_{j}\right)\left\langle k_{z_{i}}, k_{z_{j}}\right\rangle_{\mathcal{D}}$ is positive semi-definite.

- Necessity is a simple consequence of the preceding proposition. The same argument works for any RKHS.
- Sufficiency is a property of the Dirichlet kernel ('Pick property').

Interpolating sequences

A sequence $\left(z_{n}\right)_{n \geq 1}$ in \mathbb{D} is an interpolating sequence for $\mathcal{M}(\mathcal{D})$ if

$$
\left\{\left(\phi\left(z_{1}\right), \phi\left(z_{2}\right), \phi\left(z_{3}\right), \ldots\right): \phi \in \mathcal{M}(\mathcal{D})\right\}=\ell^{\infty}
$$

Interpolating sequences

A sequence $\left(z_{n}\right)_{n \geq 1}$ in \mathbb{D} is an interpolating sequence for $\mathcal{M}(\mathcal{D})$ if

$$
\left\{\left(\phi\left(z_{1}\right), \phi\left(z_{2}\right), \phi\left(z_{3}\right), \ldots\right): \phi \in \mathcal{M}(\mathcal{D})\right\}=\ell^{\infty}
$$

Theorem (Marshall-Sundberg (1990's), Bishop (1990's), Bøe (2005))

The following are equivalent:

- $\left(z_{n}\right)_{n \geq 1}$ is an interpolating sequence for $\mathcal{M}(\mathcal{D})$;
- $\sum_{n} \frac{\delta_{z_{n}}}{\left\|k_{z_{n}}\right\|^{2}}$ is a \mathcal{D}-Carleson measure and $\sup _{\substack{n, m \\ n \neq m}} \frac{\left|\left\langle k_{z_{n}}, k_{z_{m}}\right\rangle_{\mathcal{D}}\right|}{\left\|k_{z_{n}}\right\|_{\mathcal{D}}\left\|k_{z_{m}}\right\|_{\mathcal{D}}}<1$.

Factorization theorems

We say f is cyclic for \mathcal{D} if $\overline{\mathcal{M}(\mathcal{D}) f}=\mathcal{D}$.

- Clearly f cyclic $\Rightarrow f(z) \neq 0$ for all $z \in \mathbb{D}$. The converse is false.
- f is cyclic for H^{2} iff f is an outer function (Beurling).

Factorization theorems

We say f is cyclic for \mathcal{D} if $\overline{\mathcal{M}(\mathcal{D}) f}=\mathcal{D}$.

- Clearly f cyclic $\Rightarrow f(z) \neq 0$ for all $z \in \mathbb{D}$. The converse is false.
- f is cyclic for H^{2} iff f is an outer function (Beurling).

'Inner-outer' factorization (Jury-Martin, 2019)

If $f \in \mathcal{D}$, then $f=\phi g$, where $\phi \in \mathcal{M}(\mathcal{D})$ and g is cyclic in \mathcal{D}.

Factorization theorems

We say f is cyclic for \mathcal{D} if $\overline{\mathcal{M}(\mathcal{D}) f}=\mathcal{D}$.

- Clearly f cyclic $\Rightarrow f(z) \neq 0$ for all $z \in \mathbb{D}$. The converse is false.
- f is cyclic for H^{2} iff f is an outer function (Beurling).

Abstract

'Inner-outer' factorization (Jury-Martin, 2019) If $f \in \mathcal{D}$, then $f=\phi g$, where $\phi \in \mathcal{M}(\mathcal{D})$ and g is cyclic in \mathcal{D}.

Smirnov factorization (Aleman-Hartz-McCarthy-Richter, 2017)

If $f \in \mathcal{D}$, then $f=\phi_{1} / \phi_{2}$, where $\phi_{1}, \phi_{2} \in \mathcal{M}(\mathcal{D})$ and ϕ_{2} is cyclic in \mathcal{D}.

Factorization theorems

We say f is cyclic for \mathcal{D} if $\overline{\mathcal{M}(\mathcal{D}) f}=\mathcal{D}$.

- Clearly f cyclic $\Rightarrow f(z) \neq 0$ for all $z \in \mathbb{D}$. The converse is false.
- f is cyclic for H^{2} iff f is an outer function (Beurling).

> 'Inner-outer' factorization (Jury-Martin, 2019)
> If $f \in \mathcal{D}$, then $f=\phi g$, where $\phi \in \mathcal{M}(\mathcal{D})$ and g is cyclic in \mathcal{D}.

Smirnov factorization (Aleman-Hartz-McCarthy-Richter, 2017)

If $f \in \mathcal{D}$, then $f=\phi_{1} / \phi_{2}$, where $\phi_{1}, \phi_{2} \in \mathcal{M}(\mathcal{D})$ and ϕ_{2} is cyclic in \mathcal{D}.

Corollary

Given $f \in \mathcal{D}$, there exists $\phi \in \mathcal{M}(\mathcal{D})$ with the same zero set. Consequently, the union of two zero sets is again one.

Some further developments

- Further characterizations of multipliers and Carleson measures for \mathcal{D} Arcozzi-Rochberg-Sawyer (2002)
- Reverse Carleson measures Fricain-Hartmann-Ross (2017)
- Corona problem for $\mathcal{M}(\mathcal{D})$ Tolokonnikov (1991), Xiao (1998), Trent (2004)

Chapter 6

Conformal invariance

Preliminary remarks

Let $\phi: \mathbb{D} \rightarrow \mathbb{C}$ and $f: \phi(\mathbb{D}) \rightarrow \mathbb{C}$ be holomorphic functions.
Write $n_{\phi}(w)$ for the number of solutions z of $\phi(z)=w$.
Change-of-variable formula

$$
\mathcal{D}(f \circ \phi)=\frac{1}{\pi} \int_{\phi(\mathbb{D})}\left|f^{\prime}(w)\right|^{2} n_{\phi}(w) d A(w)
$$

Preliminary remarks

Let $\phi: \mathbb{D} \rightarrow \mathbb{C}$ and $f: \phi(\mathbb{D}) \rightarrow \mathbb{C}$ be holomorphic functions.
Write $n_{\phi}(w)$ for the number of solutions z of $\phi(z)=w$.

Change-of-variable formula

$$
\mathcal{D}(f \circ \phi)=\frac{1}{\pi} \int_{\phi(\mathbb{D})}\left|f^{\prime}(w)\right|^{2} n_{\phi}(w) d A(w)
$$

Corollary 1

If ϕ is injective, then $\mathcal{D}(\phi)=($ area of $\phi(\mathbb{D})) / \pi$.

Preliminary remarks

Let $\phi: \mathbb{D} \rightarrow \mathbb{C}$ and $f: \phi(\mathbb{D}) \rightarrow \mathbb{C}$ be holomorphic functions.
Write $n_{\phi}(w)$ for the number of solutions z of $\phi(z)=w$.
Change-of-variable formula

$$
\mathcal{D}(f \circ \phi)=\frac{1}{\pi} \int_{\phi(\mathbb{D})}\left|f^{\prime}(w)\right|^{2} n_{\phi}(w) d A(w)
$$

Corollary 1

If ϕ is injective, then $\mathcal{D}(\phi)=($ area of $\phi(\mathbb{D})) / \pi$.

Corollary 2

If $f \in \mathcal{D}$ and $\phi \in \operatorname{aut}(\mathbb{D})$, then $f \circ \phi \in \mathcal{D}$ and $\mathcal{D}(f \circ \phi)=\mathcal{D}(f)$.
This last property more-or-less characterizes \mathcal{D}.

Characterization of \mathcal{D} via Möbius invariance

Notation:

- $\mathcal{H}:=$ a vector space of holomorphic functions on \mathbb{D}
- $\langle\cdot, \cdot\rangle:=$ a semi-inner product on \mathcal{H} and $\mathcal{E}(f):=\langle f, f\rangle$.

Theorem (Arazy-Fisher 1985, slightly modified)

Assume:

- if $f \in \mathcal{H}$ and $\phi \in \operatorname{aut}(\mathbb{D})$, then $f \circ \phi \in \mathcal{H}$ and $\mathcal{E}(f \circ \phi)=\mathcal{E}(f)$;
- $\|f\|^{2}:=|f(0)|^{2}+\mathcal{E}(f)$ defines a Hilbert-space norm on \mathcal{H};
- convergence in this norm implies pointwise convergence on \mathbb{D};
- \mathcal{H} contains a non-constant function.

Then $\mathcal{H}=\mathcal{D}$ and $\mathcal{E}(\cdot) \equiv a \mathcal{D}(\cdot)$ some constant $a>0$.

Composition operators

Given holomorphic $\phi: \mathbb{D} \rightarrow \mathbb{D}$, define $C_{\phi}: \operatorname{Hol}(\mathbb{D}) \rightarrow \operatorname{Hol}(\mathbb{D})$ by

$$
C_{\phi}(f):=f \circ \phi .
$$

If $\phi \in \operatorname{aut}(\mathbb{D})$ then $C_{\phi}: \mathcal{D} \rightarrow \mathcal{D}$. For which other ϕ is this true?

Composition operators

Given holomorphic $\phi: \mathbb{D} \rightarrow \mathbb{D}$, define $C_{\phi}: \operatorname{Hol}(\mathbb{D}) \rightarrow \operatorname{Hol}(\mathbb{D})$ by

$$
C_{\phi}(f):=f \circ \phi .
$$

If $\phi \in \operatorname{aut}(\mathbb{D})$ then $C_{\phi}: \mathcal{D} \rightarrow \mathcal{D}$. For which other ϕ is this true? If $\phi(z):=\sum_{k \geq 1} 2^{-k} z^{4^{k}}$, then $\phi: \mathbb{D} \rightarrow \mathbb{D}$, but $C_{\phi}(\mathcal{D}) \not \subset \mathcal{D}$ as $\phi \notin \mathcal{D}$.

Composition operators

Given holomorphic $\phi: \mathbb{D} \rightarrow \mathbb{D}$, define $C_{\phi}: \operatorname{Hol}(\mathbb{D}) \rightarrow \operatorname{Hol}(\mathbb{D})$ by

$$
C_{\phi}(f):=f \circ \phi
$$

If $\phi \in \operatorname{aut}(\mathbb{D})$ then $C_{\phi}: \mathcal{D} \rightarrow \mathcal{D}$. For which other ϕ is this true? If $\phi(z):=\sum_{k \geq 1} 2^{-k} z^{4^{k}}$, then $\phi: \mathbb{D} \rightarrow \mathbb{D}$, but $C_{\phi}(\mathcal{D}) \not \subset \mathcal{D}$ as $\phi \notin \mathcal{D}$.

Theorem (MacCluer-Shapiro, 1986)

$$
C_{\phi}: \mathcal{D} \rightarrow \mathcal{D} \Longleftrightarrow \int_{S(I)} n_{\phi} d A=O\left(|I|^{2}\right)
$$

Composition operators

Given holomorphic $\phi: \mathbb{D} \rightarrow \mathbb{D}$, define $C_{\phi}: \operatorname{Hol}(\mathbb{D}) \rightarrow \operatorname{Hol}(\mathbb{D})$ by

$$
C_{\phi}(f):=f \circ \phi .
$$

If $\phi \in \operatorname{aut}(\mathbb{D})$ then $C_{\phi}: \mathcal{D} \rightarrow \mathcal{D}$. For which other ϕ is this true? If $\phi(z):=\sum_{k \geq 1} 2^{-k} z^{4^{k}}$, then $\phi: \mathbb{D} \rightarrow \mathbb{D}$, but $C_{\phi}(\mathcal{D}) \not \subset \mathcal{D}$ as $\phi \notin \mathcal{D}$.

Theorem (MacCluer-Shapiro, 1986)

$$
C_{\phi}: \mathcal{D} \rightarrow \mathcal{D} \Longleftrightarrow \int_{S(I)} n_{\phi} d A=O\left(|I|^{2}\right)
$$

Corollary (El-Fallah-Kellay-Shabankhah-Youssfi, 2011)

Conditions for $C_{\phi}: \mathcal{D} \rightarrow \mathcal{D}$:

- necessary: $\mathcal{D}\left(\phi^{k}\right)=O(k)$ as $k \rightarrow \infty$.
- sufficient: $\mathcal{D}\left(\phi^{k}\right)=O(1)$ as $k \rightarrow \infty$.

Weighted composition operators

Theorem (Mashreghi-J. Ransford-T. Ransford, 2018)

Let $T: \mathcal{D} \rightarrow \operatorname{Hol}(\mathbb{D})$ be a linear map. The following are equivalent:

- T maps nowhere-vanishing functions to nowhere-vanishing functions.
- \exists holomorphic functions $\phi: \mathbb{D} \rightarrow \mathbb{D}$ and $\psi: \mathbb{D} \rightarrow \mathbb{C} \backslash\{0\}$ such that

$$
T f=\psi \cdot(f \circ \phi) \quad(f \in \mathcal{D})
$$

Some further developments

- Compact composition operators on \mathcal{D} MacCluer, Shapiro (1986)
- Composition operators in Schatten classes Lefèvre, Li, Queffélec, Rodríguez-Piazza (2013)
- Geometry of $\phi(\mathbb{D})$ when C_{ϕ} is Hilbert-Schmidt Gallardo-Gutiérrez, Gonzalez (2003)

Chapter 7
Weighted Dirichlet spaces

The \mathcal{D}_{α} spaces

Definition

For $-1<\alpha \leq 1$, write \mathcal{D}_{α} for the set of holomorphic f on \mathbb{D} with

$$
\mathcal{D}_{\alpha}(f):=\frac{1}{\pi} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\alpha} d A(z)<\infty
$$

The \mathcal{D}_{α} spaces

Definition

For $-1<\alpha \leq 1$, write \mathcal{D}_{α} for the set of holomorphic f on \mathbb{D} with

$$
\mathcal{D}_{\alpha}(f):=\frac{1}{\pi} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{\alpha} d A(z)<\infty
$$

Properties:

- $\mathcal{D}_{\alpha}\left(\sum_{k} a_{k} z^{k}\right) \asymp \sum_{k} k^{1-\alpha}\left|a_{k}\right|^{2}$
- $\mathcal{D}_{0}=\mathcal{D}$ and $\mathcal{D}_{1} \cong H^{2}$
- If $0<\alpha<1$, then \mathcal{D}_{α} is 'akin' to \mathcal{D} (using Riesz capacity c_{α}).
- If $-1<\alpha<0$, then \mathcal{D}_{α} is a subalgebra of the disk algebra.

The \mathcal{D}_{μ} spaces

Given a finite positive measure μ on \mathbb{T}, write $P \mu$ for its Poisson integral:

$$
P \mu(z):=\int_{\mathbb{T}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} d \mu(\zeta) \quad(z \in \mathbb{D})
$$

The \mathcal{D}_{μ} spaces

Given a finite positive measure μ on \mathbb{T}, write $P \mu$ for its Poisson integral:

$$
P \mu(z):=\int_{\mathbb{T}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} d \mu(\zeta) \quad(z \in \mathbb{D})
$$

Definition (Richter, 1991)

Given μ, we denote by \mathcal{D}_{μ} the set of holomorphic f on \mathbb{D} such that

$$
\mathcal{D}_{\mu}(f):=\frac{1}{\pi} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} P \mu(z) d A(z)<\infty
$$

The \mathcal{D}_{μ} spaces

Given a finite positive measure μ on \mathbb{T}, write $P \mu$ for its Poisson integral:

$$
P \mu(z):=\int_{\mathbb{T}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} d \mu(\zeta) \quad(z \in \mathbb{D})
$$

Definition (Richter, 1991)

Given μ, we denote by \mathcal{D}_{μ} the set of holomorphic f on \mathbb{D} such that

$$
\mathcal{D}_{\mu}(f):=\frac{1}{\pi} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} P \mu(z) d A(z)<\infty
$$

- If $\mu=d \theta / 2 \pi$, then $\mathcal{D}_{\mu}=\mathcal{D}$, the classical Dirichlet space.
- If $\mu=\delta_{\zeta}$, then \mathcal{D}_{μ} is the local Dirichlet space at ζ, denoted \mathcal{D}_{ζ}.

The \mathcal{D}_{μ} spaces

Given a finite positive measure μ on \mathbb{T}, write $P \mu$ for its Poisson integral:

$$
P \mu(z):=\int_{\mathbb{T}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} d \mu(\zeta) \quad(z \in \mathbb{D})
$$

Definition (Richter, 1991)

Given μ, we denote by \mathcal{D}_{μ} the set of holomorphic f on \mathbb{D} such that

$$
\mathcal{D}_{\mu}(f):=\frac{1}{\pi} \int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} P \mu(z) d A(z)<\infty .
$$

- If $\mu=d \theta / 2 \pi$, then $\mathcal{D}_{\mu}=\mathcal{D}$, the classical Dirichlet space.
- If $\mu=\delta_{\zeta}$, then \mathcal{D}_{μ} is the local Dirichlet space at ζ, denoted \mathcal{D}_{ζ}.

Note: Can recover $\mathcal{D}_{\mu}(f)$ from $\mathcal{D}_{\zeta}(f)$ using Fubini's theorem:

$$
\mathcal{D}_{\mu}(f)=\int_{\mathbb{T}} \mathcal{D}_{\zeta}(f) d \mu(\zeta)
$$

Properties of \mathcal{D}_{μ} (Richter-Sundberg, 1991)

- $\mathcal{D}_{\mu} \subset H^{2}$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^{2}:=\|f\|_{H^{2}}^{2}+\mathcal{D}_{\mu}(f)$.

Properties of \mathcal{D}_{μ} (Richter-Sundberg, 1991)

- $\mathcal{D}_{\mu} \subset H^{2}$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^{2}:=\|f\|_{H^{2}}^{2}+\mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^{*} exists μ-a.e. and

$$
\mathcal{D}_{\mu}(f)=\int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left|f^{*}(\lambda)-f^{*}(\zeta)\right|^{2}}{|\lambda-\zeta|^{2}} \frac{|d \lambda|}{2 \pi} d \mu(\zeta) .
$$

Properties of \mathcal{D}_{μ} (Richter-Sundberg, 1991)

- $\mathcal{D}_{\mu} \subset H^{2}$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^{2}:=\|f\|_{H^{2}}^{2}+\mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^{*} exists μ-a.e. and

$$
\mathcal{D}_{\mu}(f)=\int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left|f^{*}(\lambda)-f^{*}(\zeta)\right|^{2}}{|\lambda-\zeta|^{2}} \frac{|d \lambda|}{2 \pi} d \mu(\zeta)
$$

Special case: $f \in \mathcal{D}_{\zeta} \Longleftrightarrow f(z)=a+(z-\zeta) g(z)$ where $g \in H^{2}$, and then $\mathcal{D}_{\zeta}(f)=\|g\|_{H^{2}}^{2}$.

Properties of \mathcal{D}_{μ} (Richter-Sundberg, 1991)

- $\mathcal{D}_{\mu} \subset H^{2}$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^{2}:=\|f\|_{H^{2}}^{2}+\mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^{*} exists μ-a.e. and

$$
\mathcal{D}_{\mu}(f)=\int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left|f^{*}(\lambda)-f^{*}(\zeta)\right|^{2}}{|\lambda-\zeta|^{2}} \frac{|d \lambda|}{2 \pi} d \mu(\zeta)
$$

Special case: $f \in \mathcal{D}_{\zeta} \Longleftrightarrow f(z)=a+(z-\zeta) g(z)$ where $g \in H^{2}$, and then $\mathcal{D}_{\zeta}(f)=\|g\|_{H^{2}}^{2}$.

- Carleson formula for $\mathcal{D}_{\mu}(f)$.

Properties of \mathcal{D}_{μ} (Richter-Sundberg, 1991)

- $\mathcal{D}_{\mu} \subset H^{2}$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^{2}:=\|f\|_{H^{2}}^{2}+\mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^{*} exists μ-a.e. and

$$
\mathcal{D}_{\mu}(f)=\int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left|f^{*}(\lambda)-f^{*}(\zeta)\right|^{2}}{|\lambda-\zeta|^{2}} \frac{|d \lambda|}{2 \pi} d \mu(\zeta)
$$

Special case: $f \in \mathcal{D}_{\zeta} \Longleftrightarrow f(z)=a+(z-\zeta) g(z)$ where $g \in H^{2}$, and then $\mathcal{D}_{\zeta}(f)=\|g\|_{H^{2}}^{2}$.

- Carleson formula for $\mathcal{D}_{\mu}(f)$.
- Polynomials are dense in \mathcal{D}_{μ}.

Properties of \mathcal{D}_{μ} (Richter-Sundberg, 1991)

- $\mathcal{D}_{\mu} \subset H^{2}$ and is Hilbert space w.r.t. $\|f\|_{\mathcal{D}_{\mu}}^{2}:=\|f\|_{H^{2}}^{2}+\mathcal{D}_{\mu}(f)$.
- Douglas formula: if $f \in \mathcal{D}_{\mu}$, then f^{*} exists μ-a.e. and

$$
\mathcal{D}_{\mu}(f)=\int_{\mathbb{T}} \int_{\mathbb{T}} \frac{\left|f^{*}(\lambda)-f^{*}(\zeta)\right|^{2}}{|\lambda-\zeta|^{2}} \frac{|d \lambda|}{2 \pi} d \mu(\zeta)
$$

Special case: $f \in \mathcal{D}_{\zeta} \Longleftrightarrow f(z)=a+(z-\zeta) g(z)$ where $g \in H^{2}$, and then $\mathcal{D}_{\zeta}(f)=\|g\|_{H^{2}}^{2}$.

- Carleson formula for $\mathcal{D}_{\mu}(f)$.
- Polynomials are dense in \mathcal{D}_{μ}.
- $\mathcal{D}_{\mu}\left(f_{r}\right) \leq 4 \mathcal{D}_{\mu}(f)$ (where $f_{r}(z):=f(r z)$).

Can replace 4 by 1 (Sarason 1997, using de Branges-Rovnyak spaces).

Some further developments

- Capacities for \mathcal{D}_{μ}. Chacón (2011), Guillot (2012)
- Estimates for reproducing kernel and capacities in \mathcal{D}_{μ}. El-Fallah, Elmadani, Kellay (2019)
- Superharmonic weights

Aleman (1993)

- \mathcal{D}_{μ} has the complete Pick property Shimorin (2002)

Chapter 8

Shift-invariant subspaces

Preliminary remarks

Notation:

- T a bounded operator on a Hilbert space \mathcal{H}
- Lat $(T, \mathcal{H}):=$ the lattice of closed T-invariant subspaces of \mathcal{H}.
- $M_{z}:=$ the shift operator (multiplication by z).

Preliminary remarks

Notation:

- T a bounded operator on a Hilbert space \mathcal{H}
- Lat $(T, \mathcal{H}):=$ the lattice of closed T-invariant subspaces of \mathcal{H}.
- $M_{z}:=$ the shift operator (multiplication by z).

Theorem (Beurling, 1948)

If $\mathcal{M} \in \operatorname{Lat}\left(M_{z}, H^{2}\right) \backslash\{0\}$, then $\mathcal{M}=\theta H^{2}$ where θ is inner.

Preliminary remarks

Notation:

- T a bounded operator on a Hilbert space \mathcal{H}
- Lat $(T, \mathcal{H}):=$ the lattice of closed T-invariant subspaces of \mathcal{H}.
- $M_{z}:=$ the shift operator (multiplication by z).

```
Theorem (Beurling, 1948)
If \mathcal{M}\in\operatorname{Lat}(\mp@subsup{M}{z}{},\mp@subsup{H}{}{2})\{0}, then }\mathcal{M}=0\mp@subsup{H}{}{2}\mathrm{ where }0\mathrm{ is inner.
```

Analogue for $\operatorname{Lat}\left(M_{z}, \mathcal{D}\right)$?

The shift operator on \mathcal{D}_{μ}

Write $(T, \mathcal{H}):=\left(M_{z}, \mathcal{D}\right)$. Clearly:
(1) $\left\|T^{2} f\right\|^{2}-2\|T f\|^{2}+\|f\|^{2}=0$ for all $f \in \mathcal{H}$.
(2) $\cap_{n \geq 0} T^{n}(\mathcal{H})=\{0\}$.
(3) $\operatorname{dim}(\mathcal{H} \ominus T(\mathcal{H}))=1$.

The shift operator on \mathcal{D}_{μ}

Write $(T, \mathcal{H}):=\left(M_{z}, \mathcal{D}\right)$. Clearly:
(1) $\left\|T^{2} f\right\|^{2}-2\|T f\|^{2}+\|f\|^{2}=0$ for all $f \in \mathcal{H}$.
(2) $\cap_{n \geq 0} T^{n}(\mathcal{H})=\{0\}$.
(3) $\operatorname{dim}(\mathcal{H} \ominus T(\mathcal{H}))=1$.

It turns out that the same properties hold if $(T, \mathcal{H}):=\left(M_{z}, \mathcal{D}_{\mu}\right)$. Conversely:

The shift operator on \mathcal{D}_{μ}

Write $(T, \mathcal{H}):=\left(M_{z}, \mathcal{D}\right)$. Clearly:
(1) $\left\|T^{2} f\right\|^{2}-2\|T f\|^{2}+\|f\|^{2}=0$ for all $f \in \mathcal{H}$.
(2) $\cap_{n \geq 0} T^{n}(\mathcal{H})=\{0\}$.
(3) $\operatorname{dim}(\mathcal{H} \ominus T(\mathcal{H}))=1$.

It turns out that the same properties hold if $(T, \mathcal{H}):=\left(M_{z}, \mathcal{D}_{\mu}\right)$.
Conversely:

Theorem (Richter, 1991)

Let T be an operator on a Hilbert space \mathcal{H} satisfying (1),(2),(3). Then there exists a unique finite measure μ on \mathbb{T} such that (T, \mathcal{H}) is unitarily equivalent to $\left(M_{z}, \mathcal{D}_{\mu}\right)$.

Invariant subspaces of $\left(M_{z}, \mathcal{D}\right)$

Let $\mathcal{M} \in \operatorname{Lat}\left(M_{z}, \mathcal{D}\right)$.

- Clearly $\left(M_{z}, \mathcal{M}\right)$ satisfies properties (1),(2).
- If $\mathcal{M} \neq\{0\}$, then (3) also holds (Richter-Shields 1988).

Leads to:

Invariant subspaces of $\left(M_{z}, \mathcal{D}\right)$

Let $\mathcal{M} \in \operatorname{Lat}\left(M_{z}, \mathcal{D}\right)$.

- Clearly $\left(M_{z}, \mathcal{M}\right)$ satisfies properties (1),(2).
- If $\mathcal{M} \neq\{0\}$, then (3) also holds (Richter-Shields 1988).

Leads to:

Theorem (Richter 1991, Richter-Sundberg 1992)
Let $\mathcal{M} \in \operatorname{Lat}\left(M_{z}, \mathcal{D}\right)$ and let $\phi \in \mathcal{M} \ominus M_{z}(\mathcal{M})$ with $\phi \not \equiv 0$. Then:

- ϕ is a multiplier for \mathcal{D}.
- $\mathcal{M}=\phi \mathcal{D}_{\mu}$ where $d \mu:=\left|\phi^{*}\right|^{2} d \theta$.

Invariant subspaces of $\left(M_{z}, \mathcal{D}\right)$

Let $\mathcal{M} \in \operatorname{Lat}\left(M_{z}, \mathcal{D}\right)$.

- Clearly $\left(M_{z}, \mathcal{M}\right)$ satisfies properties (1),(2).
- If $\mathcal{M} \neq\{0\}$, then (3) also holds (Richter-Shields 1988).

Leads to:

Theorem (Richter 1991, Richter-Sundberg 1992)
Let $\mathcal{M} \in \operatorname{Lat}\left(M_{z}, \mathcal{D}\right)$ and let $\phi \in \mathcal{M} \ominus M_{z}(\mathcal{M})$ with $\phi \not \equiv 0$. Then:

- ϕ is a multiplier for \mathcal{D}.
- $\mathcal{M}=\phi \mathcal{D}_{\mu}$ where $d \mu:=\left|\phi^{*}\right|^{2} d \theta$.

Corollary

\mathcal{M} is cyclic (i.e. singly generated as an invariant subspace).

Cyclic invariant subspaces

Problem: Given $f \in \mathcal{D}$, identify $[f]_{\mathcal{D}}$, the closed invariant subspace of \mathcal{D} generated by f.

Cyclic invariant subspaces

Problem: Given $f \in \mathcal{D}$, identify $[f]_{\mathcal{D}}$, the closed invariant subspace of \mathcal{D} generated by f.

Theorem (Richter-Sundberg 1992)
Let $f \in \mathcal{D}$ have inner-outer factorization $f=f_{i} f_{o}$. Then

$$
[f]_{\mathcal{D}}=f_{i}\left[f_{0}\right]_{\mathcal{D}} \cap \mathcal{D}=\left[f_{o}\right]_{\mathcal{D}} \cap f_{i} H^{2} .
$$

Cyclic invariant subspaces

Problem: Given $f \in \mathcal{D}$, identify $[f]_{\mathcal{D}}$, the closed invariant subspace of \mathcal{D} generated by f.

Theorem (Richter-Sundberg 1992)
Let $f \in \mathcal{D}$ have inner-outer factorization $f=f_{i} f_{o}$. Then

$$
[f]_{\mathcal{D}}=f_{i}\left[f_{o}\right]_{\mathcal{D}} \cap \mathcal{D}=\left[f_{o}\right]_{\mathcal{D}} \cap f_{i} H^{2}
$$

It remains to identify $\left[f_{o}\right]_{\mathcal{D}}$. We might expect that $\left[f_{o}\right]_{\mathcal{D}}=\mathcal{D}$. However, another phenomenon intervenes, that of boundary zeros.

Cyclic invariant subspaces and boundary zeros

Notation: Given $E \subset \mathbb{T}$, write $\mathcal{D}_{E}:=\left\{h \in \mathcal{D}: h^{*}=0\right.$ q.e. on $\left.E\right\}$.

Cyclic invariant subspaces and boundary zeros

Notation: Given $E \subset \mathbb{T}$, write $\mathcal{D}_{E}:=\left\{h \in \mathcal{D}: h^{*}=0\right.$ q.e. on $\left.E\right\}$.
Theorem (Carleson 1952)
\mathcal{D}_{E} is closed in \mathcal{D}. Hence $\mathcal{D}_{E} \in \operatorname{Lat}\left(M_{z}, \mathcal{D}\right)$.

Cyclic invariant subspaces and boundary zeros

Notation: Given $E \subset \mathbb{T}$, write $\mathcal{D}_{E}:=\left\{h \in \mathcal{D}: h^{*}=0\right.$ q.e. on $\left.E\right\}$.
Theorem (Carleson 1952)
\mathcal{D}_{E} is closed in \mathcal{D}. Hence $\mathcal{D}_{E} \in \operatorname{Lat}\left(M_{z}, \mathcal{D}\right)$.

Corollary
Let $f \in \mathcal{D}$ and let $E:=\left\{f^{*}=0\right\}$. Then $[f]_{\mathcal{D}} \subset \mathcal{D}_{E}$.

Cyclic invariant subspaces and boundary zeros

Notation: Given $E \subset \mathbb{T}$, write $\mathcal{D}_{E}:=\left\{h \in \mathcal{D}: h^{*}=0\right.$ q.e. on $\left.E\right\}$.

Theorem (Carleson 1952)

\mathcal{D}_{E} is closed in \mathcal{D}. Hence $\mathcal{D}_{E} \in \operatorname{Lat}\left(M_{z}, \mathcal{D}\right)$.

Corollary

Let $f \in \mathcal{D}$ and let $E:=\left\{f^{*}=0\right\}$. Then $[f]_{\mathcal{D}} \subset \mathcal{D}_{E}$.

Open problem
Let $f \in \mathcal{D}$ be outer and let $E:=\left\{f^{*}=0\right\}$. Then do we have $[f]_{\mathcal{D}}=\mathcal{D}_{E}$? In particular, if $c(E)=0$, then do we have $[f]_{\mathcal{D}}=\mathcal{D}$?

Special case where $c(E)=0$ is a celebrated conjecture of Brown-Shields

Brown-Shields conjecture

$f \in \mathcal{D}$ is cyclic for \mathcal{D} if $[f]_{\mathcal{D}}=\mathcal{D}$. Necessary conditions for cyclicity:

- f is outer;
- $E:=\left\{f^{*}=0\right\}$ is of capacity zero.

Conjecture (Brown-Shields, 1984)

These conditions are also sufficient.

Brown-Shields conjecture

$f \in \mathcal{D}$ is cyclic for \mathcal{D} if $[f]_{\mathcal{D}}=\mathcal{D}$. Necessary conditions for cyclicity:

- f is outer;
- $E:=\left\{f^{*}=0\right\}$ is of capacity zero.

Conjecture (Brown-Shields, 1984)

These conditions are also sufficient.
Partial results:
Theorem (Hedenmalm-Shields, 1990)
If $f \in \mathcal{D} \cap A(\mathbb{D})$ is outer and if $E:=\{f=0\}$ is countable, then f is cyclic.

Brown-Shields conjecture

$f \in \mathcal{D}$ is cyclic for \mathcal{D} if $[f]_{\mathcal{D}}=\mathcal{D}$. Necessary conditions for cyclicity:

- f is outer;
- $E:=\left\{f^{*}=0\right\}$ is of capacity zero.

Conjecture (Brown-Shields, 1984)

These conditions are also sufficient.
Partial results:
Theorem (Hedenmalm-Shields, 1990)
If $f \in \mathcal{D} \cap A(\mathbb{D})$ is outer and if $E:=\{f=0\}$ is countable, then f is cyclic.

Theorem (El-Fallah-Kellay-Ransford, 2009)

If $f \in \mathcal{D} \cap A(\mathbb{D})$ is outer and if $E:=\{f=0\}$ satisfies, for some $\epsilon>0$,

$$
\left|E_{t}\right|=O\left(t^{\epsilon}\right)\left(t \rightarrow 0^{+}\right) \quad \text { and } \quad \int_{0}^{1} d t /\left|E_{t}\right|=\infty
$$

then f is cyclic.

Some further developments

- Shift-invariant subspaces and cyclicity in \mathcal{D}_{μ} Richter, Sundberg (1992)
Guillot (2012)
El-Fallah, Elmadani, Kellay (2016)
- Optimal polynomial approximants Catherine Bénéteau and co-authors (2015 onwards)
- Cyclicity in Dirichlet spaces on the bi-disk Knese-Kosiński-Ransford-Sola (2019)

Conclusion: a shameless advertisement

