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Chapter 1

Introduction



What is the Dirichlet space?

The Dirichlet space D
D is the set of f holomorphic in D whose Dirichlet integral is finite:

D(f ) :=
1

π

∫
D
|f ′(z)|2 dA(z) <∞.

If f (z) =
∑

k≥0 akz
k , then D(f ) =

∑
k≥0 k |ak |2.

Consequently D ⊂ H2.

D is a Hilbert space with respect to the norm ‖ · ‖D given by

‖f ‖2
D := ‖f ‖2

H2 +D(f ) =
∑
k≥0

(k + 1)|ak |2.
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History and motivation

Very very brief history of D:

Beurling (1930’s–1940’s)

Carleson (1950’s–1960’s)

. . .

Some reasons for studying D:
Potential theory, energy, capacity

Geometric interpretation, Möbius invariance

Weighted shifts, invariant subspaces

Borderline case, still many open problems
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What to study?

Some topics of interest:

Boundary behavior

Zeros

Multipliers

Reproducing kernel

Interpolation

Conformal invariance

Shift-invariant subspaces



Where to find out more about D?

Survey articles:

W. Ross, The classical Dirichlet space, Recent advances in
operator-related function theory, 171–197, Contemp. Math., 393,
Amer. Math. Soc., Providence, RI, 2006.

N. Arcozzi, R. Rochberg, E. Sawyer, B. Wick, The Dirichlet space: a
survey, New York J. Math. 17A (2011), 45–86.

Monographs:

O. El-Fallah, K. Kellay, J. Mashreghi, T. Ransford, A primer on the
Dirichlet space, Cambridge University Press, Cambridge, 2014

N. Arcozzi, R. Rochberg, E. Sawyer, B. Wick, The Dirichlet space
and related function spaces, Amer. Math. Soc., Providence RI, 2019.



Chapter 2

Capacity



Energy

Let µ be a finite positive Borel measure on T.

Energy of µ

I (µ) :=

∫
T

∫
T

log
2

|λ− ζ|
dµ(λ) dµ(ζ).

May have I (µ) = +∞.

Formula for I (µ) in terms of Fourier coefficients of µ:

I (µ) =
∑
k≥1

|µ̂(k)|2

k
+ µ(T)2 log 2.



Capacity of compact sets

Capacity of compact F ⊂ T

c(F ) := 1/ inf{I (µ) : µ is a probability measure on F}.

Elementary properties:

F1 ⊂ F2 ⇒ c(F1) ≤ c(F2)

Fn ↓ F ⇒ c(Fn) ↓ c(F )

c(F1 ∪ F2) ≤ c(F1) + c(F2)

Examples:

c(F ) ≤ 1/ log(2/ diam(F ))

c(F ) = 0 if F is finite or countable

c(F ) ≥ 1/ log(2πe/|F |). In particular c(F ) = 0⇒ |F | = 0.

c(F ) > 0 if F is the (circular) middle-third Cantor set.
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Capacity of general sets

Inner capacity of E ⊂ T

c(E ) := sup{c(F ) : compact F ⊂ E}

Outer capacity of E ⊂ T

c∗(E ) := inf{c(U) : open U ⊃ E}

c∗(∪nEn) ≤
∑

n c
∗(En) (not true for c(·)).

c∗(E ) = c(E ) if E is Borel (Choquet’s capacitability theorem)

A property holds q.e. if it holds outside an E with c∗(E ) = 0.



Equilibrium measures

Let F be a compact subset of T. Recall that

c(F ) := 1/ inf{I (µ) : µ is a probability measure on F}.

Measure µ attaining the inf is called an equilibrium measure for F .

Proposition

If c(F ) > 0, then F admits a unique equilibrium measure.

Fundamental theorem of potential theory (Frostman, 1935)

Let µ be the equilibrium measure for F , and Vµ be its potential, i.e.

Vµ(z) :=

∫
T

log
2

|z − ζ|
dµ(ζ).

Then Vµ ≤ 1/c(F ) on T, and Vµ = 1/c(F ) q.e. on F .
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Boundary behavior



Preliminary remarks

Every f ∈ D has non-tangential limits a.e. on T (as f ∈ H2).

There exists f ∈ D such that limr→1− |f (r)| =∞.

Example: Consider

f (z) :=
∑
k≥2

zk

k log k
.

Then

D(f ) =
∑
k≥2

k
1

(k log k)2
=
∑
k≥2

1

k(log k)2
<∞,

but

lim inf
r→1−

f (r) ≥
∑
k≥2

1

k log k
=∞.
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Beurling’s theorem

Theorem (Beurling, 1940)

If f ∈ D then f has non-tangential limits q.e. on T.

Remarks:

Beurling actually proved his result just for radial limits

Beurling’s theorem is sharp in the following sense:

Theorem (Carleson, 1952)

Given compact E ⊂ T of capacity zero, there exists f ∈ D such that
limr→1− |f (rζ)| =∞ for all ζ ∈ E .
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Capacitary weak-type and strong-type inequalities

Notation: Let f ∈ D. For ζ ∈ T, we write f ∗(ζ) := limr→1− f (rζ).
Also A,B denote absolute positive constants.

Weak-type inequality (Beurling, 1940)

c(|f ∗| > t) ≤ A‖f ‖2
D/t

2 (t > 0).

Corollary

|{|f ∗| > t}| ≤ Ae−Bt
2/‖f ‖2

D (t > 0).

Strong-type inequality (Hansson, 1979)∫ ∞
0

c(|f ∗| > t) t dt ≤ A‖f ‖2
D.
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Douglas’ formula

Theorem (Douglas, 1931)

If f ∈ H2, then

D(f ) =
1

4π2

∫
T

∫
T

∣∣∣ f ∗(λ)− f ∗(ζ)

λ− ζ

∣∣∣2 |dλ| |dζ|.

Corollary

If f ∈ D, then f has oricyclic limits a.e. in T.

non-tangential approach region oricyclic approach region
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Exponential approach region

Theorem (Nagel–Rudin–Shapiro, 1982)

If f ∈ D then, for a.e. ζ ∈ D, we have f (z)→ f ∗(ζ) as z → ζ in the
exponential approach region

|z − ζ| < κ
(

log
1

1− |z |

)−1
.

Remarks:

Approach region is ‘widest possible’.

This is an a.e. result (not q.e.).



Carleson’s formula

Notation: Let f ∈ H2 with canonical factorization f = BSO.
Let (an) be the zeros of B, and σ be the singular measure of S .

Theorem (Carleson, 1960)

D(f ) =

∫
T

∫
T

(|f ∗(λ)|2 − |f ∗(ζ)|2)(log |f ∗(λ)| − log |f ∗(ζ)|)
|λ− ζ|2

|dλ|
2π

|dζ|
2π

+

∫
T

(∑
n

1− |an|2

|ζ − an|2
+

∫
T

2

|λ− ζ|2
dσ(λ)

)
|f ∗(ζ)|2 |dζ|

2π
.

Corollary 1

If f belongs to D then so does its outer factor.

Corollary 2

The only inner functions in D are finite Blaschke products.
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Some further developments

Chang–Marshall theorem (1985):

sup
{∫

T
exp(|f ∗(e iθ)|2) dθ : f (0) = 0, D(f ) ≤ 1

}
<∞.

Trade-off between approach regions and exceptional sets.
Borichev (1994), Twomey (2002)
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Zeros



Preliminary remarks

A sequence (zn) in D (possibly with repetitions) is:

a zero set for D if ∃f ∈ D vanishing on (zn) but f 6≡ 0;

a uniqueness set for D if it is not a zero set.

Proposition

If (zn) is a zero set for D, then ∃f ∈ D vanishing precisely on (zn).

It is well known that (zn) is a zero set for the Hardy space H2 iff∑
n

(1− |zn|) <∞.

What about the Dirichlet space?
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The three cases

Case I (obvious)∑
n(1− |zn|) =∞ ⇒ (zn) is a uniqueness set for D.

Case II (Shapiro–Shields, 1962)∑
n 1/| log(1− |zn|)| <∞ ⇒ (zn) is a zero set for D.

Case III (Nagel–Rudin–Shapiro, 1982)

If (zn) satisfies neither condition, then there exist a zero set (z ′n) and a
uniqueness set (z ′′n ) with |zn| = |z ′n| = |z ′′n | for all n.

Thus, in Case III, the arguments of (zn) matter. Back to this later.
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Boundary zero sets

Let E be a closed subset of T. It is called a Carleson set if∫
T

log
( 2

dist(ζ,E )

)
|dζ| <∞.

Theorem (Carleson 1952)

If E is a Carleson set, then ∃f ∈ A1(D) with f −1(0) = E .

Theorem (Carleson 1952, Brown–Cohn 1985)

If c(E ) = 0, then ∃f ∈ D ∩ A(D) with f −1(0) = E .

Neither result implies the other.

Clearly, if |E | > 0, then E is a boundary uniqueness set for D. But
there also exist closed uniqueness sets E with |E | = 0.
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Arguments of zero sets

We return to zero sets within D, now considering their arguments.

Theorem (Caughran, 1970)

Let (e iθn) be a sequence in T. The following are equivalent:

(rne
iθn) is a zero set for D whenever

∑
n(1− rn) <∞.

E := {e iθn : n ≥ 1} is a Carleson set.

Example of a Blaschke sequence that is a uniqueness set for D

zn :=
(

1− 1

n(log n)2

)
e i/ log n

There is still no satisfactory complete characterization of zero sets.
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Some further developments

Carleson sets as zero sets for A∞(D)
Taylor–Williams (1970)
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Multipliers



Preliminary remarks

Proposition

D is not an algebra.

Proof: Suppose D is an algebra.

By closed graph theorem, D isomorphic to a Banach algebra.

f 7→ f (z) is a character, so |f (z)| ≤ spectral radius of f .

Therefore every f ∈ D is bounded. Contradiction.
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Multipliers

Definition

A multiplier for D is a function φ such that φf ∈ D for all f ∈ D. The set
of multipliers is an algebra, denoted by M(D).

Remark: In the case of Hardy spaces, M(H2) = H∞.

When is φ a multiplier of D?

Necessary condition: φ ∈ D ∩ H∞

Sufficient condition: φ′ ∈ H∞

To completely characterize multipliers, we introduce a new notion.
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Carleson measures

Definition

A measure µ on D is a Carleson measure for D if ∃C such that∫
D
|f |2 dµ ≤ C‖f ‖2

D (f ∈ D).

With this notion in hand, it is quite easy to characterize multipliers:

Proposition

φ ∈M(D) iff both φ ∈ H∞ and |φ′|2 dA is a Carleson measure for D.

Begs a new question: how to characterize Carleson measures?
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Characterization of Carleson measures

Let µ be a finite positive measure on D.
S(I ) := {re iθ : 1− |I | < r < 1, e iθ ∈ I}.
Carleson (1962): µ is Carleson for H2 iff µ(S(I )) = O(|I |).

When is µ a Carleson measure for D?

Theorem (Wynn, 2011)

The condition µ(S(I )) = O(ψ(|I |)) is:

necessary if ψ(x) := 1/ log(1/x);

sufficient if ψ(x) := 1/ log(1/x)(log log(1/x))α with α > 1.

Theorem (Stegenga, 1980)

µ is a Carleson measure for D iff there is a constant A such that, for every
finite set of disjoint closed subarcs I1, . . . , In of T,

µ
(
∪nj=1S(Ij)

)
≤ Ac

(
∪nj=1Ij

)
.
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Multipliers and reproducing kernels

If f ∈ D and w ∈ D, then f (w) = 〈f , kw 〉D, where

kw (z) :=
1

wz
log
( 1

1− wz

)
(w , z ∈ D).

The function kw is called the reproducing kernel for w .

Proposition

Let φ ∈M(D) and define Mφ : D → D by Mφ(f ) := φf . Then

M∗φ(kw ) = φ(w)kw (w ∈ D).

Proof: For all f ∈ D, we have

〈f ,M∗φ(kw )〉D = 〈φf , kw 〉D = φ(w)f (w) = φ(w)〈f , kw 〉D = 〈f , φ(w)kw 〉D.
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Pick interpolation

Problem: Given z1, . . . , zn ∈ D and w1, . . . ,wn ∈ D, does there exist
φ ∈M(D) with ‖Mφ‖ ≤ 1 such that φ(zj) = wj for all j?

Theorem (Agler, 1988)

φ exists iff the matrix (1− w iwj)〈kzi , kzj 〉D is positive semi-definite.

Necessity is a simple consequence of the preceding proposition. The
same argument works for any RKHS.

Sufficiency is a property of the Dirichlet kernel (‘Pick property’).
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Interpolating sequences

A sequence (zn)n≥1 in D is an interpolating sequence for M(D) if{
(φ(z1), φ(z2), φ(z3), . . . ) : φ ∈M(D)

}
= `∞.

Theorem (Marshall–Sundberg (1990’s), Bishop (1990’s), Bøe (2005))

The following are equivalent:

(zn)n≥1 is an interpolating sequence for M(D);∑
n

δzn
‖kzn‖2

is a D-Carleson measure and sup
n,m
n 6=m

|〈kzn , kzm〉D|
‖kzn‖D‖kzm‖D

< 1.
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Factorization theorems

We say f is cyclic for D if M(D)f = D.

Clearly f cyclic ⇒ f (z) 6= 0 for all z ∈ D. The converse is false.

f is cyclic for H2 iff f is an outer function (Beurling).

‘Inner-outer’ factorization (Jury–Martin, 2019)

If f ∈ D, then f = φg , where φ ∈M(D) and g is cyclic in D.

Smirnov factorization (Aleman–Hartz–McCarthy–Richter, 2017)

If f ∈ D, then f = φ1/φ2, where φ1, φ2 ∈M(D) and φ2 is cyclic in D.

Corollary

Given f ∈ D, there exists φ ∈M(D) with the same zero set.
Consequently, the union of two zero sets is again one.
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Some further developments

Further characterizations of multipliers and Carleson measures for D
Arcozzi–Rochberg–Sawyer (2002)

Reverse Carleson measures
Fricain–Hartmann–Ross (2017)

Corona problem for M(D)
Tolokonnikov (1991), Xiao (1998), Trent (2004)



Chapter 6

Conformal invariance



Preliminary remarks

Let φ : D→ C and f : φ(D)→ C be holomorphic functions.
Write nφ(w) for the number of solutions z of φ(z) = w .

Change-of-variable formula

D(f ◦ φ) =
1

π

∫
φ(D)
|f ′(w)|2nφ(w) dA(w).

Corollary 1

If φ is injective, then D(φ) = (area of φ(D))/π.

Corollary 2

If f ∈ D and φ ∈ aut(D), then f ◦ φ ∈ D and D(f ◦ φ) = D(f ).

This last property more-or-less characterizes D.
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Characterization of D via Möbius invariance

Notation:

H := a vector space of holomorphic functions on D
〈·, ·〉 := a semi-inner product on H and E(f ) := 〈f , f 〉.

Theorem (Arazy–Fisher 1985, slightly modified)

Assume:

if f ∈ H and φ ∈ aut(D), then f ◦ φ ∈ H and E(f ◦ φ) = E(f );

‖f ‖2 := |f (0)|2 + E(f ) defines a Hilbert-space norm on H;

convergence in this norm implies pointwise convergence on D;

H contains a non-constant function.

Then H = D and E(·) ≡ aD(·) some constant a > 0.



Composition operators

Given holomorphic φ : D→ D, define Cφ : Hol(D)→ Hol(D) by

Cφ(f ) := f ◦ φ.

If φ ∈ aut(D) then Cφ : D → D. For which other φ is this true?

If φ(z) :=
∑

k≥1 2−kz4k , then φ : D→ D, but Cφ(D) 6⊂ D as φ /∈ D.

Theorem (MacCluer–Shapiro, 1986)

Cφ : D → D ⇐⇒
∫
S(I )

nφ dA = O(|I |2).

Corollary (El-Fallah–Kellay–Shabankhah–Youssfi, 2011)

Conditions for Cφ : D → D:

necessary: D(φk) = O(k) as k →∞.

sufficient: D(φk) = O(1) as k →∞.
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Weighted composition operators

Theorem (Mashreghi–J. Ransford–T. Ransford, 2018)

Let T : D → Hol(D) be a linear map. The following are equivalent:

T maps nowhere-vanishing functions to nowhere-vanishing functions.

∃ holomorphic functions φ : D→ D and ψ : D→ C \ {0} such that

Tf = ψ.(f ◦ φ) (f ∈ D).



Some further developments

Compact composition operators on D
MacCluer, Shapiro (1986)

Composition operators in Schatten classes
Lefèvre, Li, Queffélec, Rodŕıguez-Piazza (2013)

Geometry of φ(D) when Cφ is Hilbert–Schmidt
Gallardo-Gutiérrez, Gonzalez (2003)



Chapter 7

Weighted Dirichlet spaces



The Dα spaces

Definition

For −1 < α ≤ 1, write Dα for the set of holomorphic f on D with

Dα(f ) :=
1

π

∫
D
|f ′(z)|2(1− |z |2)α dA(z) <∞.

Properties:

Dα(
∑

k akz
k) �

∑
k k

1−α|ak |2

D0 = D and D1
∼= H2

If 0 < α < 1, then Dα is ‘akin’ to D (using Riesz capacity cα).

If −1 < α < 0, then Dα is a subalgebra of the disk algebra.
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The Dµ spaces

Given a finite positive measure µ on T, write Pµ for its Poisson integral:

Pµ(z) :=

∫
T

1− |z |2

|ζ − z |2
dµ(ζ) (z ∈ D).

Definition (Richter, 1991)

Given µ, we denote by Dµ the set of holomorphic f on D such that

Dµ(f ) :=
1

π

∫
D
|f ′(z)|2Pµ(z) dA(z) <∞.

If µ = dθ/2π, then Dµ = D, the classical Dirichlet space.

If µ = δζ , then Dµ is the local Dirichlet space at ζ, denoted Dζ .

Note: Can recover Dµ(f ) from Dζ(f ) using Fubini’s theorem:

Dµ(f ) =

∫
T
Dζ(f ) dµ(ζ).
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Properties of Dµ (Richter–Sundberg, 1991)

Dµ ⊂ H2 and is Hilbert space w.r.t. ‖f ‖2
Dµ

:= ‖f ‖2
H2 +Dµ(f ).

Douglas formula: if f ∈ Dµ, then f ∗ exists µ-a.e. and

Dµ(f ) =

∫
T

∫
T

|f ∗(λ)− f ∗(ζ)|2

|λ− ζ|2
|dλ|
2π

dµ(ζ).

Special case: f ∈ Dζ ⇐⇒ f (z) = a + (z − ζ)g(z) where g ∈ H2,

and then Dζ(f ) = ‖g‖2
H2 .

Carleson formula for Dµ(f ).

Polynomials are dense in Dµ.

Dµ(fr ) ≤ 4Dµ(f ) (where fr (z) := f (rz)).
Can replace 4 by 1 (Sarason 1997, using de Branges–Rovnyak spaces).
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Can replace 4 by 1 (Sarason 1997, using de Branges–Rovnyak spaces).



Some further developments

Capacities for Dµ.
Chacón (2011), Guillot (2012)

Estimates for reproducing kernel and capacities in Dµ.
El-Fallah, Elmadani, Kellay (2019)

Superharmonic weights
Aleman (1993)

Dµ has the complete Pick property
Shimorin (2002)



Chapter 8

Shift-invariant subspaces



Preliminary remarks

Notation:

T a bounded operator on a Hilbert space H
Lat(T ,H) := the lattice of closed T -invariant subspaces of H.

Mz := the shift operator (multiplication by z).

Theorem (Beurling, 1948)

If M∈ Lat(Mz ,H
2) \ {0}, then M = θH2 where θ is inner.

Analogue for Lat(Mz ,D)?
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The shift operator on Dµ

Write (T ,H) := (Mz ,D). Clearly:

(1) ‖T 2f ‖2 − 2‖Tf ‖2 + ‖f ‖2 = 0 for all f ∈ H.

(2) ∩n≥0T
n(H) = {0}.

(3) dim(H	 T (H)) = 1.

It turns out that the same properties hold if (T ,H) := (Mz ,Dµ).
Conversely:

Theorem (Richter, 1991)

Let T be an operator on a Hilbert space H satisfying (1),(2),(3). Then
there exists a unique finite measure µ on T such that (T ,H) is unitarily
equivalent to (Mz ,Dµ).
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Invariant subspaces of (Mz ,D)

Let M∈ Lat(Mz ,D).

Clearly (Mz ,M) satisfies properties (1),(2).

If M 6= {0}, then (3) also holds (Richter–Shields 1988).

Leads to:

Theorem (Richter 1991, Richter–Sundberg 1992)

Let M∈ Lat(Mz ,D) and let φ ∈M	Mz(M) with φ 6≡ 0. Then:

φ is a multiplier for D.

M = φDµ where dµ := |φ∗|2 dθ.

Corollary

M is cyclic (i.e. singly generated as an invariant subspace).
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Cyclic invariant subspaces

Problem: Given f ∈ D, identify [f ]D, the closed invariant subspace of D
generated by f .

Theorem (Richter–Sundberg 1992)

Let f ∈ D have inner-outer factorization f = fi fo . Then

[f ]D = fi [fo ]D ∩ D = [fo ]D ∩ fiH
2.

It remains to identify [fo ]D. We might expect that [fo ]D = D. However,
another phenomenon intervenes, that of boundary zeros.
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Cyclic invariant subspaces and boundary zeros

Notation: Given E ⊂ T, write DE := {h ∈ D : h∗ = 0 q.e. on E}.

Theorem (Carleson 1952)

DE is closed in D. Hence DE ∈ Lat(Mz ,D).

Corollary

Let f ∈ D and let E := {f ∗ = 0}. Then [f ]D ⊂ DE .

Open problem

Let f ∈ D be outer and let E := {f ∗ = 0}. Then do we have [f ]D = DE?
In particular, if c(E ) = 0, then do we have [f ]D = D?

Special case where c(E ) = 0 is a celebrated conjecture of Brown–Shields
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Brown–Shields conjecture

f ∈ D is cyclic for D if [f ]D = D. Necessary conditions for cyclicity:

f is outer;

E := {f ∗ = 0} is of capacity zero.

Conjecture (Brown–Shields, 1984)

These conditions are also sufficient.

Partial results:

Theorem (Hedenmalm–Shields, 1990)

If f ∈ D ∩ A(D) is outer and if E := {f = 0} is countable, then f is cyclic.

Theorem (El-Fallah–Kellay–Ransford, 2009)

If f ∈ D ∩ A(D) is outer and if E := {f = 0} satisfies, for some ε > 0,

|Et | = O(tε) (t → 0+) and

∫ 1

0
dt/|Et | =∞,

then f is cyclic.
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Some further developments

Shift-invariant subspaces and cyclicity in Dµ
Richter, Sundberg (1992)
Guillot (2012)
El-Fallah, Elmadani, Kellay (2016)

Optimal polynomial approximants
Catherine Bénéteau and co-authors (2015 onwards)

Cyclicity in Dirichlet spaces on the bi-disk
Knese–Kosiński–Ransford–Sola (2019)



Conclusion: a shameless advertisement


