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Impossible,  Hard , Easy
T L) >
2 log,n vn k

What makes problems easy vs hard?

3/23



The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

4/23



The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins "18 (PhD thesis)]

4/23



The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins "18 (PhD thesis)]

Today: self-contained motivation (without SoS)
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5/23



Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

6/23



Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

6/23



Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ..

6/23



Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...

...it is the case that

6/23



Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...

...it is the case that

» the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

6/23



Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...
...it is the case that

» the best known poly-time algorithms are captured by

O(log n)-degree polynomials (spectral/AMP)
» low-degree polynomials fail in the “hard” regime

6/23



Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...

...it is the case that

» the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)
» low-degree polynomials fail in the “hard” regime
“Low-degree conjecture” (informal): for “natural” problems, if

low-degree polynomials fail then all poly-time algorithms fail
[Hopkins '18]

6/23



Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...

...it is the case that

» the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)
» low-degree polynomials fail in the “hard” regime
“Low-degree conjecture” (informal): for “natural” problems, if

low-degree polynomials fail then all poly-time algorithms fail
[Hopkins '18]

Caveat: Gaussian elimination for planted XOR-SAT
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P Average-case reductions [BR13,..]
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\% = X
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B (1) “degree-D polynomial succeed”
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» if k =Q(y/n) then Adv<p = w(1) for some D = O(log n)

low-degree polynomials succeed when k = /n

> if k = O(n'/27¢) then Adv<p = O(1) for any D = O(log n)
low-degree polynomials fail when k < \/n

Sometimes can rule out polynomials of degree D = n’

Extended low-degree conjecture [Hopkins '18]:
degree-D polynomials < n®(P)_time algorithms

D=n’ & exp(n®*°(1)) time
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Detection (e.g. [Hopkins, Steurer '17])

Eyp[f(Y)]
fdeg D \/Eyqlf(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1

N . E [f(Y)] = fs E [Y°]=:(f
Numerator: E_[f(Y)] g;DSYNP[Y] (f,c)

Goal: compute Adv<p =

Denominator: E [f )?] = Z f2 (orthonormality)
IS|<D

12/23



Detection (e.g. [Hopkins, Steurer '17])

Eyp[f(Y)]
fdeg D \/Eyqlf(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1
Numerator: YIEp[f(Y)] = |§<:D fs YIEIP[YS] =:(f,c)

Denominator: E [f )?] = Z 2 = ||f|? (orthonormality)
IS|<D

Goal: compute Adv<p =

12/23



Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥°  Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[ (V)] Z SYNIP[ ]=:(f,c)

IS|<D
Denominator: E [f )?] = Z 2 = ||f|? (orthonormality)
IS|<D
)Z-‘
Adv<p = max < ’AC>
amu

12/23



Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥°  Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[ (V)] Z SYNIP[ ]=:(f,c)

IS|<D
Denominator: E [f )?] = Z 2 = ||f|? (orthonormality)
IS|<D
)'c‘
Adv<p = max < ’AC>
amu

Optimizer: fr=c

12/23



Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥°  Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[ (V)] Z SYNIP[ ]=:(f,c)

IS|<D
Denominator: E [f )?] = Z 2 = ||f|? (orthonormality)
IS|<D
)'c‘
Advep — max (P26 _ (€0
= T <]l

Optimizer: fr=c

12/23



Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥°  Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[ (V)] Z SYNIP[ ]=:(f,c)

IS|<D
Denominator: E [f )?] = Z 2 = ||f|? (orthonormality)
IS|<D
(f.c) _{c.c)
Adv<p = max —% = ||c||
= T <]l

Optimizer: fr=c

12/23



Detection (e.g. [Hopkins, Steurer '17])

w _Everlf(Y)]
fdeg D \/Eyq[f(Y)?]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[ (V)] Z SYNIP[ ]=:(f,c)

IS|<D
: _ 1712 -
Denominator: E [f )?] = Z 2 =||f| (orthonormality)
IS|<D
(f.c) _{c.c) ?
Adv<p = max — =|lc|l = E [Y?]
= T <]l |5,Z§:D L

Optimizer: f* = ¢
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Detection (e.g. [Hopkins, Steurer '17])

Remarks:
> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = Z5()

» Best degree-D test (maximizer of Adv<p) is
=150 .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f,g) := E [f(Y)g(Y)]

Y ~Q

“low-degree likelihood ratio”

> Advep = [[LZPI| = UFR) = B TA(Y))
“norm of low-degree likelihood ratio”

Proof: Is = E [L(V)Y*]= E [Y]  #5 = E [Y]Ls<p
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Regime: 1//n < p <1
Detection: distinguishP: Y =X+2Z vs Q:Y =2 w.h.p.

» Sum of all entries succeeds when \ > (py/n) 2

Recovery: given Y ~ P, recover v

» Leading eigenvector succeeds when \ > (py/n)~?

» Exhaustive search succeeds when \ > (pn)~1/2

Detection-recovery gap
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Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get ¥ € {0,1}"; check ¥ Y ¥

So if Adv<p = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

» Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?
» Match mean of planted distribution?
» Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way
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Low-Degree Recovery

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A(0,1)

Goal: given Y, estimate v; via polynomial f: R™" — R

Low-degree minimum mean squared error:

MMSE<p = min E(f(Y) - »)?
SE<p fgygnD(() v1)

Equivalent to low-degree maximum correlation:

Corr<p = max 7E[f(Y)-v1]
0 i E[F(V)

Fact: MMSE<p = E[v{] — CorrZ
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Hardness of Recovery

For hardness, want upper bound on Corr<p = max
- f deg D E[f( Y)Z]

Same proof as detection?
f=Y fY®
ISI<D

Numerator: E[f(Y)-w]= Y HE[Y® - u]=:(f,c)
|SI<D

Denominator: E[f(Y)?] = Z fofrE[Y® - YT =FfTMF
S, T

Corr<p = mgx% =VecTM-1c
f fTMf

Seems difficult to handle M1

E[f(Y) - vi]
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E[f(Y)?] = EE[f(X + 2 > E <I)[*% F(X + Z)>2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

(f,c)

Correp < max -2 = ||c" M7
f

M

where M is upper triangular (can invert)

E[f(Y) - wi]
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Main Result

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

2 2
Corrcp < Z KS
|S|<D

where kg is the joint cumulant of {x} U{Y; : i € S}

Corollary (tight bounds for planted submatrix recovery)
> if A < min{1, %ﬁ} then MMSE_ a0 ~ p(1 — p)
low-degree polynomials have trivial MSE in the “hard” regime
> if A>> min{l, pf\l/g} then MMSE < o (10g n) = 0(p)

low-degree polynomials succeed in the “easy” regime
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» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

» (Recovery) bound MMSE<p when not “signal + noise”
> E.g. sparse regression, phase retrieval

» (Recovery) sharp threshold for pIanted submatrix
> AMP succeeds when \ > (py/en) ! [Hajek, Wu, Xu '15]

» Implications for other algorithms?
» E.g. convex programming, MCMC
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