
Computational Barriers to Estimation from
Low-Degree Polynomials

Alex Wein
Courant Institute, New York University

Joint work with:

Tselil Schramm
Stanford

1 / 23

Part I: Why Low-Degree Polynomials?

2 / 23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G (n, 1/2)

3 / 23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G (n, 1/2)

I Detection/testing: distinguish between a random graph and
a graph with a planted clique

3 / 23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G (n, 1/2)

I Detection/testing: distinguish between a random graph and
a graph with a planted clique

I Recovery/estimation: given a graph with a planted clique,
find the clique

3 / 23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G (n, 1/2)

I Detection/testing: distinguish between a random graph and
a graph with a planted clique

I Recovery/estimation: given a graph with a planted clique,
find the clique

Both problems have an information-computation gap

3 / 23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G (n, 1/2)

I Detection/testing: distinguish between a random graph and
a graph with a planted clique

I Recovery/estimation: given a graph with a planted clique,
find the clique

Both problems have an information-computation gap

3 / 23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G (n, 1/2)

I Detection/testing: distinguish between a random graph and
a graph with a planted clique

I Recovery/estimation: given a graph with a planted clique,
find the clique

Both problems have an information-computation gap

What makes problems easy vs hard?

3 / 23

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18 (PhD thesis)]

Today: self-contained motivation (without SoS)

4 / 23

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18 (PhD thesis)]

Today: self-contained motivation (without SoS)

4 / 23

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18 (PhD thesis)]

Today: self-contained motivation (without SoS)

4 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection)

or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms:

input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: b ∈ {0, 1} (detection) or v ∈ Rn (recovery)

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1 or Tr(Y k) k = O(log n)

I Approximate message passing: v ← Y h(v) O(1) rounds

I Local algorithms on sparse graphs radius O(1)

I Or any of the above applied to Ỹ = g(Y) deg g = O(1)

5 / 23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, planted

sparse vector in a subspace ...

...it is the case that

I the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): for “natural” problems, if
low-degree polynomials fail then all poly-time algorithms fail
[Hopkins ’18]

Caveat: Gaussian elimination for planted XOR-SAT

6 / 23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, planted

sparse vector in a subspace ...

...it is the case that

I the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): for “natural” problems, if
low-degree polynomials fail then all poly-time algorithms fail
[Hopkins ’18]

Caveat: Gaussian elimination for planted XOR-SAT

6 / 23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, planted

sparse vector in a subspace ...

...it is the case that

I the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): for “natural” problems, if
low-degree polynomials fail then all poly-time algorithms fail
[Hopkins ’18]

Caveat: Gaussian elimination for planted XOR-SAT

6 / 23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, planted

sparse vector in a subspace ...

...it is the case that

I the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): for “natural” problems, if
low-degree polynomials fail then all poly-time algorithms fail
[Hopkins ’18]

Caveat: Gaussian elimination for planted XOR-SAT

6 / 23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, planted

sparse vector in a subspace ...

...it is the case that

I the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): for “natural” problems, if
low-degree polynomials fail then all poly-time algorithms fail
[Hopkins ’18]

Caveat: Gaussian elimination for planted XOR-SAT

6 / 23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, planted

sparse vector in a subspace ...

...it is the case that

I the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): for “natural” problems, if
low-degree polynomials fail then all poly-time algorithms fail
[Hopkins ’18]

Caveat: Gaussian elimination for planted XOR-SAT

6 / 23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, planted

sparse vector in a subspace ...

...it is the case that

I the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): for “natural” problems, if
low-degree polynomials fail then all poly-time algorithms fail
[Hopkins ’18]

Caveat: Gaussian elimination for planted XOR-SAT

6 / 23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, planted

sparse vector in a subspace ...

...it is the case that

I the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

I low-degree polynomials fail in the “hard” regime

“Low-degree conjecture” (informal): for “natural” problems, if
low-degree polynomials fail then all poly-time algorithms fail
[Hopkins ’18]

Caveat: Gaussian elimination for planted XOR-SAT

6 / 23

Overview

This talk: techniques to prove that all low-degree polynomials fail

I Gives evidence for computational hardness

Settings:

I Detection (prior work)
[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

[Kunisky, W., Bandeira ’19] (survey)

I Recovery (this work)
[Schramm, W. ’20]

I Optimization
[Gamarnik, Jagannath, W. ’20]

7 / 23

Overview

This talk: techniques to prove that all low-degree polynomials fail

I Gives evidence for computational hardness

Settings:

I Detection (prior work)
[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

[Kunisky, W., Bandeira ’19] (survey)

I Recovery (this work)
[Schramm, W. ’20]

I Optimization
[Gamarnik, Jagannath, W. ’20]

7 / 23

Overview

This talk: techniques to prove that all low-degree polynomials fail

I Gives evidence for computational hardness

Settings:

I Detection (prior work)
[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

[Kunisky, W., Bandeira ’19] (survey)

I Recovery (this work)
[Schramm, W. ’20]

I Optimization
[Gamarnik, Jagannath, W. ’20]

7 / 23

Overview

This talk: techniques to prove that all low-degree polynomials fail

I Gives evidence for computational hardness

Settings:

I Detection (prior work)
[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

[Kunisky, W., Bandeira ’19] (survey)

I Recovery (this work)
[Schramm, W. ’20]

I Optimization
[Gamarnik, Jagannath, W. ’20]

7 / 23

Overview

This talk: techniques to prove that all low-degree polynomials fail

I Gives evidence for computational hardness

Settings:

I Detection (prior work)
[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

[Kunisky, W., Bandeira ’19] (survey)

I Recovery (this work)
[Schramm, W. ’20]

I Optimization
[Gamarnik, Jagannath, W. ’20]

7 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification

I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples

I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree

I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)

I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]

I Need to argue that starting problem is hard [BB20]

8 / 23

Relation to Other Frameworks

I Sum-of-squares (SoS) lower bounds [BHKKMP16,...]

I Actually for certification
I Connected to low-degree [HKPRSS17]

I Statistical query (SQ) lower bounds [FGRVX12,...]

I Need i.i.d. samples
I Low-degree algorithms are at least as powerful as SQ [BBHLS20]

I Sometimes strictly stronger (e.g. tensor PCA) [DH20]

I Approximate message passing (AMP) [DMM09, LKZ15,...]

I AMP algorithms are low-degree
I AMP can be sub-optimal (e.g. tensor PCA) [MR14]

I Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

I MCMC algorithms are not low-degree (?)
I MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

I Average-case reductions [BR13,...]
I Need to argue that starting problem is hard [BB20]

8 / 23

Part II: Detection

9 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q
I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

10 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q

I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

10 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q
I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

10 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q
I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

10 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D polynomial f : Rn×n → R that distinguishes P
from Q
I f (Y) is “big” when Y ∼ P and “small” when Y ∼ Q

Compute “advantage”:

Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

mean in P
fluctuations in Q

=

{
ω(1) “degree-D polynomial succeed”
O(1) “degree-D polynomials fail”

10 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

11 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

11 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

11 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

11 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

11 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G (n, 1/2),

I if k = Ω(
√
n) then Adv≤D = ω(1) for some D = O(log n)

low-degree polynomials succeed when k &
√
n

I if k = O(n1/2−ε) then Adv≤D = O(1) for any D = O(log n)
low-degree polynomials fail when k �

√
n

Sometimes can rule out polynomials of degree D = nδ

Extended low-degree conjecture [Hopkins ’18]:

degree-D polynomials ⇔ nΘ̃(D)-time algorithms

D = nδ ⇔ exp(nδ±o(1)) time

11 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)]

=
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S]

=: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2]

=
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S

= ‖f̂ ‖2

(orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖

=

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Goal: compute Adv≤D := max
f deg D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Suppose Q is i.i.d. Unif(±1)

Write f (Y) =
∑
|S|≤D f̂SY

S Y S :=
∏

i∈S Yi S ⊆ [m]

{Y S}S⊆[m] are orthonormal: EY∼Q[Y SY T] = 1S=T

Numerator: E
Y∼P

[f (Y)] =
∑
|S |≤D

f̂S E
Y∼P

[Y S] =: 〈f̂ , c〉

Denominator: E
Y∼Q

[f (Y)2] =
∑
|S |≤D

f̂ 2
S = ‖f̂ ‖2 (orthonormality)

Adv≤D = max
f̂

〈f̂ , c〉
‖f̂ ‖

=
〈c , c〉
‖c‖

= ‖c‖ =

√√√√∑
|S |≤D

(
E

Y∼P
[Y S]

)2

Optimizer: f̂ ∗ = c

12 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

13 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

13 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

13 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

13 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

13 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

13 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

13 / 23

Detection (e.g. [Hopkins, Steurer ’17])

Remarks:

I Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) =
dP
dQ

(Y)

I Best degree-D test (maximizer of Adv≤D) is

f ∗ = L≤D := projection of L onto deg-D subspace

orthogonal projection w.r.t. 〈f , g〉 := E
Y∼Q

[f (Y)g(Y)]

“low-degree likelihood ratio”

I Adv≤D = ‖L≤D‖ ‖f ‖ :=
√
〈f , f 〉 = E

Y∼Q
[f (Y)2]

“norm of low-degree likelihood ratio”

Proof: L̂S = E
Y∼Q

[L(Y)Y S] = E
Y∼P

[Y S] f̂ ∗S = E
Y∼P

[Y S]1|S |≤D

13 / 23

Part III: Recovery

14 / 23

Planted Submatrix

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Regime: 1/
√
n� ρ� 1

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.

I Sum of all entries succeeds when λ� (ρ
√
n)−2

Recovery: given Y ∼ P, recover v

I Leading eigenvector succeeds when λ� (ρ
√
n)−1

I Exhaustive search succeeds when λ� (ρn)−1/2

Detection-recovery gap

15 / 23

Planted Submatrix

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Regime: 1/
√
n� ρ� 1

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.

I Sum of all entries succeeds when λ� (ρ
√
n)−2

Recovery: given Y ∼ P, recover v

I Leading eigenvector succeeds when λ� (ρ
√
n)−1

I Exhaustive search succeeds when λ� (ρn)−1/2

Detection-recovery gap

15 / 23

Planted Submatrix

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Regime: 1/
√
n� ρ� 1

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.

I Sum of all entries succeeds when λ� (ρ
√
n)−2

Recovery: given Y ∼ P, recover v

I Leading eigenvector succeeds when λ� (ρ
√
n)−1

I Exhaustive search succeeds when λ� (ρn)−1/2

Detection-recovery gap

15 / 23

Planted Submatrix

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Regime: 1/
√
n� ρ� 1

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.

I Sum of all entries succeeds when λ� (ρ
√
n)−2

Recovery: given Y ∼ P, recover v

I Leading eigenvector succeeds when λ� (ρ
√
n)−1

I Exhaustive search succeeds when λ� (ρn)−1/2

Detection-recovery gap

15 / 23

Planted Submatrix

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Regime: 1/
√
n� ρ� 1

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.

I Sum of all entries succeeds when λ� (ρ
√
n)−2

Recovery: given Y ∼ P, recover v

I Leading eigenvector succeeds when λ� (ρ
√
n)−1

I Exhaustive search succeeds when λ� (ρn)−1/2

Detection-recovery gap

15 / 23

Planted Submatrix

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Regime: 1/
√
n� ρ� 1

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.

I Sum of all entries succeeds when λ� (ρ
√
n)−2

Recovery: given Y ∼ P, recover v

I Leading eigenvector succeeds when λ� (ρ
√
n)−1

I Exhaustive search succeeds when λ� (ρn)−1/2

Detection-recovery gap

15 / 23

Planted Submatrix

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Regime: 1/
√
n� ρ� 1

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.

I Sum of all entries succeeds when λ� (ρ
√
n)−2

Recovery: given Y ∼ P, recover v

I Leading eigenvector succeeds when λ� (ρ
√
n)−1

I Exhaustive search succeeds when λ� (ρn)−1/2

Detection-recovery gap

15 / 23

Planted Submatrix

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Regime: 1/
√
n� ρ� 1

Detection: distinguish P : Y = X + Z vs Q : Y = Z w.h.p.

I Sum of all entries succeeds when λ� (ρ
√
n)−2

Recovery: given Y ∼ P, recover v

I Leading eigenvector succeeds when λ� (ρ
√
n)−1

I Exhaustive search succeeds when λ� (ρn)−1/2

Detection-recovery gap

15 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

I How: run recovery algorithm to get v̂ ∈ {0, 1}n; check v̂>Y v̂

So if Adv≤D = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

I Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

I Match mean of planted distribution?

I Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16 / 23

Low-Degree Recovery

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Goal: given Y , estimate v1 via polynomial f : Rn×n → R

Low-degree minimum mean squared error:

MMSE≤D = min
f deg D

E(f (Y)− v1)2

Equivalent to low-degree maximum correlation:

Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Fact: MMSE≤D = E[v2
1]− Corr2

≤D

17 / 23

Low-Degree Recovery

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Goal: given Y , estimate v1 via polynomial f : Rn×n → R

Low-degree minimum mean squared error:

MMSE≤D = min
f deg D

E(f (Y)− v1)2

Equivalent to low-degree maximum correlation:

Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Fact: MMSE≤D = E[v2
1]− Corr2

≤D

17 / 23

Low-Degree Recovery

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Goal: given Y , estimate v1 via polynomial f : Rn×n → R

Low-degree minimum mean squared error:

MMSE≤D = min
f deg D

E(f (Y)− v1)2

Equivalent to low-degree maximum correlation:

Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Fact: MMSE≤D = E[v2
1]− Corr2

≤D

17 / 23

Low-Degree Recovery

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> λ > 0 vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Goal: given Y , estimate v1 via polynomial f : Rn×n → R

Low-degree minimum mean squared error:

MMSE≤D = min
f deg D

E(f (Y)− v1)2

Equivalent to low-degree maximum correlation:

Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Fact: MMSE≤D = E[v2
1]− Corr2

≤D

17 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1]

=
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1]

=
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1]

=
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1]

=
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1]

=: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2]

=
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2] =
∑
S ,T

f̂S f̂T E[Y S · Y T]

= f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2] =
∑
S ,T

f̂S f̂T E[Y S · Y T] = f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2] =
∑
S ,T

f̂S f̂T E[Y S · Y T] = f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Same proof as detection?

f =
∑
|S|≤D

f̂SY
S

Numerator: E[f (Y) · v1] =
∑
|S|≤D

f̂S E[Y S · v1] =: 〈f̂ , c〉

Denominator: E[f (Y)2] =
∑
S ,T

f̂S f̂T E[Y S · Y T] = f̂ >Mf̂

Corr≤D = max
f̂

〈f̂ , c〉√
f̂ >Mf̂

=
√
c>M−1c

Seems difficult to handle M−1

18 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight?

In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight?

In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight?

In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular

(can invert)

19 / 23

Hardness of Recovery

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y) · v1]√
E[f (Y)2]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f (Y)2] = E
Z
E
X

[f (X + Z)2] ≥ E
Z

(
E
X
f (X + Z)

)2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

Corr≤D ≤ max
f̂

〈f̂ , c〉
‖Mf̂ ‖

= ‖c>M−1‖

where M is upper triangular (can invert)

19 / 23

Main Result

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 23

Main Result

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 23

Main Result

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 23

Main Result

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 23

Main Result

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 23

Main Result

Theorem [Schramm, W. ’20]

Additive Gaussian model Y = X + Z
Scalar value to recover: x

Corr2
≤D ≤

∑
|S |≤D

κ2
S

where κS is the joint cumulant of {x} ∪ {Yi : i ∈ S}

Corollary (tight bounds for planted submatrix recovery)

I if λ� min{1, 1
ρ
√
n
} then MMSE≤nΩ(1) ≈ ρ(1− ρ)

low-degree polynomials have trivial MSE in the “hard” regime

I if λ� min{1, 1
ρ
√
n
} then MMSE≤O(log n) = o(ρ)

low-degree polynomials succeed in the “easy” regime

20 / 23

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) sharp threshold for planted submatrix
I AMP succeeds when λ > (ρ

√
en)−1 [Hajek, Wu, Xu ’15]

I Implications for other algorithms?
I E.g. convex programming, MCMC

21 / 23

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) sharp threshold for planted submatrix
I AMP succeeds when λ > (ρ

√
en)−1 [Hajek, Wu, Xu ’15]

I Implications for other algorithms?
I E.g. convex programming, MCMC

21 / 23

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) sharp threshold for planted submatrix
I AMP succeeds when λ > (ρ

√
en)−1 [Hajek, Wu, Xu ’15]

I Implications for other algorithms?
I E.g. convex programming, MCMC

21 / 23

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) sharp threshold for planted submatrix
I AMP succeeds when λ > (ρ

√
en)−1 [Hajek, Wu, Xu ’15]

I Implications for other algorithms?
I E.g. convex programming, MCMC

21 / 23

Future Directions?

I (Detection) bound Adv≤D when Q is not a product measure
I E.g. random regular graphs

I (Recovery) bound MMSE≤D when not “signal + noise”
I E.g. sparse regression, phase retrieval

I (Recovery) sharp threshold for planted submatrix
I AMP succeeds when λ > (ρ

√
en)−1 [Hajek, Wu, Xu ’15]

I Implications for other algorithms?
I E.g. convex programming, MCMC

21 / 23

References

I Detection (survey article)
Notes on Computational Hardness of Hypothesis Testing:
Predictions using the Low-Degree Likelihood Ratio

Kunisky, W., Bandeira

arXiv:1907.11636

I Recovery
Computational Barriers to Estimation from Low-Degree
Polynomials

Schramm, W.

arXiv:2008.02269

I Optimization
Low-Degree Hardness of Random Optimization Problems
Gamarnik, Jagannath, W.

arXiv:2004.12063

22 / 23

23 / 23

