Computational Barriers to Estimation from
Low-Degree Polynomials

Alex Wein

Courant Institute, New York University

Joint work with:

Tselil Schramm
Stanford

1/23

Part I: Why Low-Degree Polynomials?

2/23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G(n,1/2)

3/23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G(n,1/2)

» Detection/testing: distinguish between a random graph and
a graph with a planted clique

3/23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G(n,1/2)

» Detection/testing: distinguish between a random graph and
a graph with a planted clique

> Recovery/estimation: given a graph with a planted clique,
find the clique

3/23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G(n,1/2)

» Detection/testing: distinguish between a random graph and
a graph with a planted clique

> Recovery/estimation: given a graph with a planted clique,
find the clique

Both problems have an information-computation gap

3/23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G(n,1/2)

» Detection/testing: distinguish between a random graph and
a graph with a planted clique

> Recovery/estimation: given a graph with a planted clique,
find the clique

Both problems have an information-computation gap

Impossible, Hard , Easy
T L) >
2 log,n vn k

3/23

Problems in High-Dimensional Statistics

Example: planted k-clique in a random graph G(n,1/2)

» Detection/testing: distinguish between a random graph and
a graph with a planted clique

> Recovery/estimation: given a graph with a planted clique,
find the clique

Both problems have an information-computation gap

Impossible, Hard , Easy
T L) >
2 log,n vn k

What makes problems easy vs hard?

3/23

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

4/23

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins "18 (PhD thesis)]

4/23

The Low-Degree Polynomial Method

A framework for predicting/explaining average-case computational
complexity

Originated from sum-of-squares literature (for detection)
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins "18 (PhD thesis)]

Today: self-contained motivation (without SoS)

4/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM
» Input: e.g. graph Y € {0’1}(;)

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {0,1}('27)
» Output: b € {0,1} (detection)

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {0,1}('27)
» Output: b € {0,1} (detection) or v € R" (recovery)

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {0,1}('27)
» Output: b € {0,1} (detection) or v € R" (recovery)

» “Low” means O(log n) where n is dimension

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {0’1}(;)
» Output: b € {0,1} (detection) or v € R" (recovery)

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms:

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {0’1}(;)
» Output: b € {0,1} (detection) or v € R" (recovery)

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {0,1}('27)
» Output: b € {0,1} (detection) or v € R" (recovery)

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"

» Power iteration: Y*1 or Tr(Y") k = O(log n)

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {0,1}('27)
» Output: b € {0,1} (detection) or v € R" (recovery)

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"
» Power iteration: Y*1 or Tr(Y") k = O(log n)

» Approximate message passing: v < Y h(v) O(1) rounds

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {0’1}(;)
» Output: b € {0,1} (detection) or v € R" (recovery)

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"
» Power iteration: Y*1 or Tr(Y") k = O(log n)
» Approximate message passing: v < Y h(v) O(1) rounds

» Local algorithms on sparse graphs radius O(1)

5/23

The Low-Degree Polynomial Method

Study a restricted class of algorithms: low-degree polynomials

» Multivariate polynomial f : RV — RM

» Input: e.g. graph Y € {0’1}(;)
» Output: b € {0,1} (detection) or v € R" (recovery)

» “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y € R™"
» Power iteration: Y*1 or Tr(Y") k = O(log n)
» Approximate message passing: v < Y h(v) O(1) rounds
» Local algorithms on sparse graphs radius O(1)

> Or any of the above applied to ¥ = g(Y) degg = O(1)

5/23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

6/23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

6/23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ..

6/23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...

...it is the case that

6/23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...

...it is the case that

» the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

6/23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...
planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...
...it is the case that

» the best known poly-time algorithms are captured by

O(log n)-degree polynomials (spectral/AMP)
» low-degree polynomials fail in the “hard” regime

6/23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...

...it is the case that

» the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)
» low-degree polynomials fail in the “hard” regime
“Low-degree conjecture” (informal): for “natural” problems, if

low-degree polynomials fail then all poly-time algorithms fail
[Hopkins '18]

6/23

Optimality of Low-Degree Polynomials?

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked
Wigner /Wishart, planted submatrix, planted dense subgraph, planted
sparse vector in a subspace ...

...it is the case that

» the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)
» low-degree polynomials fail in the “hard” regime
“Low-degree conjecture” (informal): for “natural” problems, if

low-degree polynomials fail then all poly-time algorithms fail
[Hopkins '18]

Caveat: Gaussian elimination for planted XOR-SAT

6/23

Overview

This talk: techniques to prove that all low-degree polynomials fail

7/23

Overview

This talk: techniques to prove that all low-degree polynomials fail

» Gives evidence for computational hardness

7/23

Overview

This talk: techniques to prove that all low-degree polynomials fail
» Gives evidence for computational hardness

Settings:

» Detection (prior work)
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]
[Hopkins "18] (PhD thesis)
[Kunisky, W., Bandeira '19] (survey)

7/23

Overview

This talk: techniques to prove that all low-degree polynomials fail

» Gives evidence for computational hardness
Settings:

» Detection (prior work)
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]
[Hopkins "18] (PhD thesis)
[Kunisky, W., Bandeira '19] (survey)

» Recovery (this work)
[Schramm, W. "20]

7/23

Overview

This talk: techniques to prove that all low-degree polynomials fail

» Gives evidence for computational hardness
Settings:

» Detection (prior work)
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]
[Hopkins "18] (PhD thesis)
[Kunisky, W., Bandeira '19] (survey)

» Recovery (this work)
[Schramm, W. "20]

» Optimization
[Gamarnik, Jagannath, W. '20]

7/23

Relation to Other Frameworks

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]
» Actually for certification

8/23

Relation to Other Frameworks
» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]
» Need i.i.d. samples

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]
> Sometimes strictly stronger (e.g. tensor PCA) [DH20]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]
> Sometimes strictly stronger (e.g. tensor PCA) [DH20]

» Approximate message passing (AMP) [DVMO09, LKZ15,..]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]
> Sometimes strictly stronger (e.g. tensor PCA) [DH20]

» Approximate message passing (AMP) [DVMO09, LKZ15,..]
» AMP algorithms are low-degree

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]
> Sometimes strictly stronger (e.g. tensor PCA) [DH20]

» Approximate message passing (AMP) [DVMO09, LKZ15,..]

» AMP algorithms are low-degree
» AMP can be sub-optimal (e.g. tensor PCA) [MR14]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]
> Sometimes strictly stronger (e.g. tensor PCA) [DH20]

» Approximate message passing (AMP) [DVMO09, LKZ15,..]

» AMP algorithms are low-degree
» AMP can be sub-optimal (e.g. tensor PCA) [MR14]

» Overlap gap property / MCMC lower bounds [GS13, GZ17,..]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]
> Sometimes strictly stronger (e.g. tensor PCA) [DH20]

» Approximate message passing (AMP) [DVMO09, LKZ15,..]

» AMP algorithms are low-degree
» AMP can be sub-optimal (e.g. tensor PCA) [MR14]

» Overlap gap property / MCMC lower bounds [GS13, GZ17,..]
» MCMC algorithms are not low-degree (?)

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]
> Sometimes strictly stronger (e.g. tensor PCA) [DH20]

» Approximate message passing (AMP) [DVMO09, LKZ15,..]

» AMP algorithms are low-degree
» AMP can be sub-optimal (e.g. tensor PCA) [MR14]

» Overlap gap property / MCMC lower bounds [GS13, GZ17,..]

» MCMC algorithms are not low-degree (?)
» MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]
> Sometimes strictly stronger (e.g. tensor PCA) [DH20]

» Approximate message passing (AMP) [DVMO09, LKZ15,..]

» AMP algorithms are low-degree
» AMP can be sub-optimal (e.g. tensor PCA) [MR14]

» Overlap gap property / MCMC lower bounds [GS13, GZ17,..]

» MCMC algorithms are not low-degree (?)
» MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

P Average-case reductions [BR13,..]

8/23

Relation to Other Frameworks

» Sum-of-squares (SoS) lower bounds [BHKKMP16,..]

» Actually for certification
» Connected to low-degree [HKPRSS17]

» Statistical query (SQ) lower bounds [FGRVX12,.]

» Need i.i.d. samples
» Low-degree algorithms are at least as powerful as SQ [BBHLS20]
> Sometimes strictly stronger (e.g. tensor PCA) [DH20]

» Approximate message passing (AMP) [DVMO09, LKZ15,..]

» AMP algorithms are low-degree
» AMP can be sub-optimal (e.g. tensor PCA) [MR14]

» Overlap gap property / MCMC lower bounds [GS13, GZ17,..]

» MCMC algorithms are not low-degree (?)
» MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

P Average-case reductions [BR13,..]
» Need to argue that starting problem is hard [BB20]

8/23

Part |l: Detection

9/23

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

10/23

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

Look for a degree-D polynomial f : R™" — R that distinguishes P
from Q

10/23

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

Look for a degree-D polynomial f : R™" — R that distinguishes P
from Q

» f(Y)is “big” when Y ~ P and “small” when Y ~ Q

10/23

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

Look for a degree-D polynomial f : R™" — R that distinguishes P
from Q

» f(Y)is “big” when Y ~ P and “small” when Y ~ Q

Compute “advantage”:

Ad ma Eyp[f(Y)] mean in P
\% = X
<P fdeg D Eyglf(Y)?] fluctuations in Q

10/23

Detection (e.g. [Hopkins, Steurer '17])

Goal: hypothesis test with error probability o(1) between:
> Null model Y ~ Q, e.g. G(n,1/2)
» Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

Look for a degree-D polynomial f : R™" — R that distinguishes P
from Q

» f(Y)is “big” when Y ~ P and “small” when Y ~ Q

Compute “advantage”:

Ad ma Eyp[f(Y)] mean in P
\% = X
<P fdeg D Eyglf(Y)?] fluctuations in Q

B (1) “degree-D polynomial succeed”
| O(1) ‘“degree-D polynomials fail”

10/23

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

11/23

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),

11/23

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),
» if k =Q(y/n) then Adv<p = w(1) for some D = O(log n)

low-degree polynomials succeed when k = /n

11/23

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),
» if k =Q(y/n) then Adv<p = w(1) for some D = O(log n)

low-degree polynomials succeed when k = /n

> if k = O(n'/27¢) then Adv<p = O(1) for any D = O(log n)
low-degree polynomials fail when k < \/n

11/23

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),
» if k =Q(y/n) then Adv<p = w(1) for some D = O(log n)

low-degree polynomials succeed when k = /n

> if k = O(n'/27¢) then Adv<p = O(1) for any D = O(log n)
low-degree polynomials fail when k < \/n

Sometimes can rule out polynomials of degree D = n’

11/23

Detection (e.g. [Hopkins, Steurer '17])

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n,1/2),
» if k =Q(y/n) then Adv<p = w(1) for some D = O(log n)

low-degree polynomials succeed when k = /n

> if k = O(n'/27¢) then Adv<p = O(1) for any D = O(log n)
low-degree polynomials fail when k < \/n

Sometimes can rule out polynomials of degree D = n’

Extended low-degree conjecture [Hopkins '18]:
degree-D polynomials < n®(P)_time algorithms

D=n’ & exp(n®*°(1)) time

11/23

Detection (e.g. [Hopkins, Steurer '17])

Goal: compute Adv<p = _max_ IIEEYNP[’[:E(YY)L]
eg YNQ

12/23

Detection (e.g. [Hopkins, Steurer '17])

Goal: compute Adv<p = _max_ IIEEYNP[€;2/3§2]
eg YNQ

Suppose Q is i.i.d. Unif(+1)

12/23

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdesD /By qff(Y)?]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]

12/23

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdesD /By qff(Y)?]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7

12/23

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdesD /By qff(Y)?]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7

N . E[f(Y
MYNP[()]

12/23

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdeD Ey off(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1

N - E[F(Y)] = fs E [Y°
Numerator: E [f(V)] I;:Dswp[]

12/23

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© fdeD Ey off(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1

N . E [f(Y)] = fs E [Y°]=:(f
Numerator: E_[f(Y)] g;DSYNP[|=:(f,c)

12/23

Detection (e.g. [Hopkins, Steurer '17])
Goal: compute Adv<p := max Ey-e[f(Y)]
© deeD /By gff(Y)?]

Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1

: _ 2 S1_. (f
Numerator: E_[f(Y)] = g;D fs B [Y*]=:(f,c)

Denominator: [E [f(Y)Q]
= v~

12/23

Detection (e.g. [Hopkins, Steurer '17])

Eyp[f(Y)]
fdeg D \/Eyqlf(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1

N . E [f(Y)] = fs E [Y°]=:(f
Numerator: E_[f(Y)] g;DSYNP[Y] (f,c)

Goal: compute Adv<p =

Denominator: E [f)?] = Z f2 (orthonormality)
IS|<D

12/23

Detection (e.g. [Hopkins, Steurer '17])

Eyp[f(Y)]
fdeg D \/Eyqlf(Y)]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]
{Ys}sg[m] are orthonormal: Ey g[Y°Y '] = 1s_1
Numerator: YIEp[f(Y)] = |§<:D fs YIEIP[YS] =:(f,c)

Denominator: E [f)?] = Z 2 = ||f|? (orthonormality)
IS|<D

Goal: compute Adv<p =

12/23

Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥° Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[(V)] Z SYNIP[]=:(f,c)

IS|<D
Denominator: E [f)?] = Z 2 = ||f|? (orthonormality)
IS|<D
)Z-‘
Adv<p = max < ’AC>
amu

12/23

Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥° Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[(V)] Z SYNIP[]=:(f,c)

IS|<D
Denominator: E [f)?] = Z 2 = ||f|? (orthonormality)
IS|<D
)'c‘
Adv<p = max < ’AC>
amu

Optimizer: fr=c

12/23

Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥° Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[(V)] Z SYNIP[]=:(f,c)

IS|<D
Denominator: E [f)?] = Z 2 = ||f|? (orthonormality)
IS|<D
)'c‘
Advep — max (P26 _ (€0
= T <]l

Optimizer: fr=c

12/23

Detection (e.g. [Hopkins, Steurer '17])
w _Everlf(Y)]
Fdeg D /By~glf(Y)’]
Suppose Q is i.i.d. Unif(+1)
Write F(Y) = Yi5cpfs¥° Y*:=Tlies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[(V)] Z SYNIP[]=:(f,c)

IS|<D
Denominator: E [f)?] = Z 2 = ||f|? (orthonormality)
IS|<D
(f.c) _{c.c)
Adv<p = max —% = ||c||
= T <]l

Optimizer: fr=c

12/23

Detection (e.g. [Hopkins, Steurer '17])

w _Everlf(Y)]
fdeg D \/Eyq[f(Y)?]
Suppose Q is i.i.d. Unif(+1)
Write f(Y) =Y s5<p fs ¥° Yo =1lies Vi SC[m]

Goal: compute Adv<p =

{Ys}sg[m] are orthonormal: IEYNQ[YS YT]=1s_7
N . E [f(Y)] = e EIYS = (f
Humerator YNIP’[(V)] Z SYNIP[]=:(f,c)

IS|<D
: _ 1712 -
Denominator: E [f)?] = Z 2 =||f| (orthonormality)
IS|<D
(f.c) _{c.c) ?
Adv<p = max — =|lc|l = E [Y?]
= T <]l |5,Z§:D L

Optimizer: f* = ¢

12/23

Detection (e.g. [Hopkins, Steurer '17])

Remarks:

13/23

Detection (e.g. [Hopkins, Steurer '17])

Remarks:
> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = Z5()

13/23

Detection (e.g. [Hopkins, Steurer '17])

Remarks:
P Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = Z5()

» Best degree-D test (maximizer of Adv<p) is

f* = L=P .= projection of L onto deg-D subspace

13/23

Detection (e.g. [Hopkins, Steurer '17])

Remarks:
P Best test is likelihood ratio (Neyman-Pearson lemma)

dP
L(Y)=—=(Y
(=55
» Best degree-D test (maximizer of Adv<p) is
f* = L=P .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f,g) ;== E [f(Y)g(Y)]

Y~Q

13/23

Detection (e.g. [Hopkins, Steurer '17])

Remarks:
> Best test is likelihood ratio (Neyman-Pearson lemma)

dP
LY)=—(Y
()= %M
» Best degree-D test (maximizer of Adv<p) is

=150 .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f,g) := YI%~;[f(Y)g(Y)]

“low-degree likelihood ratio”

13/23

Detection (e.g. [Hopkins, Steurer '17])

Remarks:
> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = Z5()

» Best degree-D test (maximizer of Adv<p) is
=150 .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f, g) := YIEﬂ[f(Y)g(Y)]

“low-degree likelihood ratio”
> Advep = [[LZPI| = UFR) = B TA(Y))

13/23

Detection (e.g. [Hopkins, Steurer '17])

Remarks:
> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = Z5()

» Best degree-D test (maximizer of Adv<p) is
=150 .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f,g) := YIEﬂ[f(Y)g(Y)]

“low-degree likelihood ratio”

> Advep = [[LZPI| = UFR) = B TA(Y))
“norm of low-degree likelihood ratio”

13/23

Detection (e.g. [Hopkins, Steurer '17])

Remarks:
> Best test is likelihood ratio (Neyman-Pearson lemma)

L(Y) = Z5()

» Best degree-D test (maximizer of Adv<p) is
=150 .= projection of L onto deg-D subspace

orthogonal projection w.r.t. (f,g) := E [f(Y)g(Y)]

Y ~Q

“low-degree likelihood ratio”

> Advep = [[LZPI| = UFR) = B TA(Y))
“norm of low-degree likelihood ratio”

Proof: Is = E [L(V)Y*]= E [Y] #5 = E [Y]Ls<p

13/23

Part Ill: Recovery

14/23

Planted Submatrix

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v ~ Bernoulli(p)
» Noise: Z i.i.d. N(0,1)

15/23

Planted Submatrix

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v ~ Bernoulli(p)
» Noise: Z i.i.d. N(0,1)

Regime: 1//n < p <1

15/23

Planted Submatrix

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v ~ Bernoulli(p)
» Noise: Z i.i.d. N(0,1)

Regime: 1//n < p <1

Detection: distinguishP: Y =X+2Z vs Q:Y =2 w.h.p.

15/23

Planted Submatrix

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v ~ Bernoulli(p)
» Noise: Z i.i.d. N(0,1)

Regime: 1//n < p <1

Detection: distinguishP: Y =X+2Z vs Q:Y =2 w.h.p.
» Sum of all entries succeeds when \ > (py/n) 2

15/23

Planted Submatrix

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v ~ Bernoulli(p)
» Noise: Z i.i.d. N(0,1)

Regime: 1//n < p <1

Detection: distinguishP: Y =X+2Z vs Q:Y =2 w.h.p.
» Sum of all entries succeeds when \ > (py/n) 2

Recovery: given Y ~ P, recover v

15/23

Planted Submatrix

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v ~ Bernoulli(p)
» Noise: Z i.i.d. N(0,1)

Regime: 1//n < p <1

Detection: distinguishP: Y =X+2Z vs Q:Y =2 w.h.p.
» Sum of all entries succeeds when \ > (py/n) 2

Recovery: given Y ~ P, recover v

» Leading eigenvector succeeds when \ > (py/n)~?

15/23

Planted Submatrix

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v ~ Bernoulli(p)
» Noise: Z i.i.d. N(0,1)

Regime: 1//n < p <1

Detection: distinguishP: Y =X+2Z vs Q:Y =2 w.h.p.
» Sum of all entries succeeds when \ > (py/n) 2

Recovery: given Y ~ P, recover v
» Leading eigenvector succeeds when \ > (py/n)~?

» Exhaustive search succeeds when \ > (pn)~1/2

15/23

Planted Submatrix

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v ~ Bernoulli(p)
» Noise: Z i.i.d. N(0,1)

Regime: 1//n < p <1
Detection: distinguishP: Y =X+2Z vs Q:Y =2 w.h.p.

» Sum of all entries succeeds when \ > (py/n) 2

Recovery: given Y ~ P, recover v

» Leading eigenvector succeeds when \ > (py/n)~?

» Exhaustive search succeeds when \ > (pn)~1/2

Detection-recovery gap

15/23

Recovery Hardness from Detection Hardness?

16/23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

16/23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)

» How: run recovery algorithm to get ¥ € {0,1}"; check ¥ Y ¥

16/23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get ¥ € {0,1}"; check ¥ Y ¥
So if Adv<p = O(1), this suggests recovery is hard

16/23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get ¥ € {0,1}"; check ¥ Y ¥
So if Adv<p = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

16/23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get ¥ € {0,1}"; check ¥ Y ¥
So if Adv<p = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

» Prior to our work, there were not really any fully-satisfying
lower bounds of this type

16/23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get ¥ € {0,1}"; check ¥ Y ¥
So if Adv<p = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?
» Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

16/23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get ¥ € {0,1}"; check ¥ Y ¥
So if Adv<p = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

» Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?
» Match mean of planted distribution?

16/23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get ¥ € {0,1}"; check ¥ Y ¥

So if Adv<p = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

» Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?

» Match mean of planted distribution?

» Gaussian matching first 2 moments of planted distribution?

16/23

Recovery Hardness from Detection Hardness?

If you can recover then you can detect (poly-time reduction)
» How: run recovery algorithm to get ¥ € {0,1}"; check ¥ Y ¥

So if Adv<p = O(1), this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

» Prior to our work, there were not really any fully-satisfying
lower bounds of this type

Attempt: choose a better null distribution?
» Match mean of planted distribution?
» Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

16/23

Low-Degree Recovery

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A(0,1)

17/23

Low-Degree Recovery

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A(0,1)

Goal: given Y, estimate v; via polynomial f: R™" — R

17/23

Low-Degree Recovery

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A(0,1)

Goal: given Y, estimate v; via polynomial f : R"*" — R

Low-degree minimum mean squared error:

MMSE<p = min E(f(Y) - »)?
SE<p fgygnD(() v1)

17/23

Low-Degree Recovery

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X =Aw' A>0 v; ~ Bernoulli(p)
» Noise: Z i.i.d. A(0,1)

Goal: given Y, estimate v; via polynomial f: R™" — R

Low-degree minimum mean squared error:

MMSE<p = min E(f(Y) - »)?
SE<p fgygnD(() v1)

Equivalent to low-degree maximum correlation:

Corr<p = max 7E[f(Y)-v1]
0 i E[F(V)

Fact: MMSE<p = E[v{] — CorrZ

17/23

Hardness of Recovery

E[f(Y) -
For hardness, want upper bound on Corr<p = max [F(Y) - vl

18/23

Hardness of Recovery
E[f(Y) -
For hardness, want upper bound on Corr<p = max [F(¥) - vl

Same proof as detection?

18/23

Hardness of Recovery
E[f(Y) -
For hardness, want upper bound on Corr<p = max M
- f deg D E[f(Y)Z]

Same proof as detection?

f=> Fy®
Isl<D

18/23

Hardness of Recovery

E[f(Y) -
For hardness, want upper bound on Corr<p = max M
- f deg D E[f(Y)Z]

Same proof as detection?

f=Y fY®
SI<D

Numerator: E[f(Y) - v]

18/23

Hardness of Recovery
E[f(Y) -
For hardness, want upper bound on Corr<p = max M
- f deg D E[f(Y)2]

Same proof as detection?

f=Y fY®
SI<D

Numerator: E[f(Y) - wv] = Z fSE[Y® -]
|S|<D

18/23

Hardness of Recovery
For hardness, want upper bound on Corr<p = max
7 a0 /E[F(V)

Same proof as detection?

f=Y fY®
SI<D

Numerator: E[f(Y)-v]= Y fsB[Y®-wv]=: ()
|SI<D

E[f(Y) - vi]

18/23

Hardness of Recovery

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)2]

Same proof as detection?

f=Y fY®
SI<D

Numerator: E[f(Y)-v]= Y fsB[Y®-wv]=: ()
|SI<D

Denominator: E[f(Y)?]

E[f(Y) - vi]

18/23

Hardness of Recovery

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)2]

Same proof as detection?

f=Y fY®
SI<D

Numerator: E[f(Y)-v]= Y fsB[Y®-wv]=: ()
|SI<D

Denominator: E[f(Y)?] = Z fofrE[Y® - YT]
S, T

E[f(Y) - vi]

18/23

Hardness of Recovery

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)2]

Same proof as detection?

f=Y fY®
SI<D

Numerator: E[f(Y)-v]= Y fsB[Y®-wv]=: ()
|SI<D

Denominator: E[f(Y)?] = Z fofrE[Y® - YT =FfTMF
S, T

E[f(Y) - vi]

18/23

Hardness of Recovery

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)2]

Same proof as detection?

f=Y fY®
SI<D

Numerator: E[f(Y)-v]= Y fsB[Y®-wv]=: ()
|SI<D

Denominator: E[f(Y)?] = Z fofrE[Y® - YT =FfTMF
S, T

(f,c)

Corr<p = max ——=
f fTMF

E[f(Y) - vi]

18/23

Hardness of Recovery

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)Z]

Same proof as detection?
f=Y fY®
ISI<D

Numerator: E[f(Y)-w]= Y HE[Y® - u]=:(f,c)
|SI<D

Denominator: E[f(Y)?] = Z fofrE[Y® - YT =FfTMF
S, T

Corr<p = mgx% =VecTM-1c
f fTMf

Seems difficult to handle M1

E[f(Y) - vi]

18/23

Hardness of Recovery

E[f(Y) -
For hardness, want upper bound on Corr<p = max M
= a0 JR[F(V)]

19/23

Hardness of Recovery
E[f(Y) -
For hardness, want upper bound on Corr<p = max M
= a0 JR[F(V)]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f(Y)?] = EE[f(X + 2 > E (1}; F(X + Z)>2

19/23

Hardness of Recovery

E[f(Y) -
For hardness, want upper bound on Corr<p = max M
= a0 JR[F(V)]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f(Y)?] = EE[f(X + 2 > E <I)[*% F(X + Z)>2

Why is this tight?

19/23

Hardness of Recovery

E[f(Y) -
For hardness, want upper bound on Corr<p = max M
= a0 JR[F(V)]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f(Y)?] = EE[f(X + 2 > E <I)[*% F(X + Z)>2

Why is this tight? In hard regime, f depends mostly on Z

19/23

Hardness of Recovery

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)Z]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f(Y)?] = EE[f(X + 2 > E <I)[*% F(X + Z)>2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

E[f(Y) - wi]

19/23

Hardness of Recovery

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)Z]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f(Y)?] = EE[f(X + 2 > E <I)[*% F(X + Z)>2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

(f,c)
Corr<p < max =
Fo M

where M is upper triangular

E[f(Y) - wi]

19/23

Hardness of Recovery

For hardness, want upper bound on Corr<p = max
- f deg D E[f(Y)Z]

Trick: bound denominator via Jensen’s inequality on “signal” X

E[f(Y)?] = EE[f(X + 2 > E <I)[*% F(X + Z)>2

Why is this tight? In hard regime, f depends mostly on Z

This simplifies expression enough to find a closed form:

(f,c)

Correp < max -2 = ||c" M7
f

M

where M is upper triangular (can invert)

E[f(Y) - wi]

19/23

Main Result

20/23

Main Result

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

20/23

Main Result

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

2 2
Corrcp < Z KS
|S|<D

where kg is the joint cumulant of {x} U{Y; : i € §}

20/23

Main Result

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

2 2
Corrcp < Z KS
|S|<D

where kg is the joint cumulant of {x} U{Y; : i € §}

Corollary (tight bounds for planted submatrix recovery)

20/23

Main Result

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

2 2
Corrcp < Z KS
|S|<D

where kg is the joint cumulant of {x} U{Y; : i € S}
Corollary (tight bounds for planted submatrix recovery)

> if A < min{1, ﬁ} then MMSE_ a0 ~ p(1 — p)
low-degree polynomials have trivial MSE in the “hard” regime

20/23

Main Result

Theorem [Schramm, W. "20]
Additive Gaussian model Y = X + 7
Scalar value to recover: x

2 2
Corrcp < Z KS
|S|<D

where kg is the joint cumulant of {x} U{Y; : i € S}

Corollary (tight bounds for planted submatrix recovery)
> if A < min{1, %ﬁ} then MMSE_ a0 ~ p(1 — p)
low-degree polynomials have trivial MSE in the “hard” regime
> if A>> min{l, pf\l/g} then MMSE < o (10g n) = 0(p)

low-degree polynomials succeed in the “easy” regime

20/23

Future Directions?

21/23

Future Directions?

» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

21/23

Future Directions?

» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

» (Recovery) bound MMSE<p when not “signal + noise”
> E.g. sparse regression, phase retrieval

21/23

Future Directions?

» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

» (Recovery) bound MMSE<p when not “signal + noise”
> E.g. sparse regression, phase retrieval

» (Recovery) sharp threshold for pIanted submatrix
> AMP succeeds when \ > (py/en) ! [Hajek, Wu, Xu '15]

21/23

Future Directions?

» (Detection) bound Adv<p when Q is not a product measure
» E.g. random regular graphs

» (Recovery) bound MMSE<p when not “signal + noise”
> E.g. sparse regression, phase retrieval

» (Recovery) sharp threshold for pIanted submatrix
> AMP succeeds when \ > (py/en) ! [Hajek, Wu, Xu '15]

» Implications for other algorithms?
» E.g. convex programming, MCMC

21/23

References

» Detection (survey article)
Notes on Computational Hardness of Hypothesis Testing:
Predictions using the Low-Degree Likelihood Ratio
Kunisky, W., Bandeira
arXiv:1907.11636

» Recovery
Computational Barriers to Estimation from Low-Degree
Polynomials
Schramm, W.
arXiv:2008.02269

» Optimization
Low-Degree Hardness of Random Optimization Problems
Gamarnik, Jagannath, W.
arXiv:2004.12063

22/23

23/23

