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Overview

Broad motivating problem: fit model to relatively small dataset (fewer
observations than variables)
Gaussian graphical models: family of multivariate normal distributions
satisfying independence constraints given by a graph
Goal: use combinatorics of the graph to determine how few
observations are needed to be able to fit the graphical model
Take-home message: rigidity theory offers many tools
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Gaussian graphical models

Let µ ∈ Rv and Σ ∈ Rv×v be positive definite. The multivariate normal
distribution N (µ,Σ) with mean µ and covariance Σ has density

fµ,Σ(x) :=
exp(−1

2 (x − µ)T Σ−1(x − µ))√
(2π)v det(σ)

Given a graph G = (V ,E ), the Gaussian graphical model MG consists
of all multivariate normal distributions N (µ,Σ), with random variables V ,
such that (Σ)−1

uv = 0 whenever uv is not an edge of G .

1

2 3

4
Σ−1 =


x11 x12 0 x14
x12 x22 x23 0
0 x23 x33 x34

x14 0 x34 x44


Interpretation: uv /∈ E means u ⊥⊥ v | V \ {u, v} for distributions in MG
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Maximum likelihood estimation: definition

Suppose we are given:
A graph G = (V ,E ), and
datapoints x1, . . . , xn, supposedly iid from some distribution in MG .

The maximum likelihood estimate (MLE) is the solution to the
following optimization problem, if it exists:

max
µ,Σ

n∏
i=1

fµ,Σ(xi )

s.t. (Σ−1)uv = 0 for all uv /∈ E ,
Σ � 0

This can be found via convex optimization.
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Maximum likelihood estimation: convex optimization
Let µ̂ and S be the sample mean and covariance (note: rank(S) = n a.s.)

µ̂ := 1
n

n∑
i=1

xi S :=
n∑

i=1
(xi − µ̂)T (xi − µ̂).

The MLE in MG exists if and only if the following can be solved:
max

K
Tr(SK ) + log det K

s.t. K � 0 and Kuv = 0 for all non-edges uv of G .

Theorem (Dempster 1972)
The MLE exists iff there exists A � 0 satisfying

Aij = Sij if i = j or ij is an edge of G .

Definition (Maximum likelihood threshold)
Given G = (V ,E ), MLT(G) is the minimum n such that the maximum
likelihood estimate in MG exists almost surely given n datapoints.
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First bounds on MLT

Theorem (Dempster 1972)
MLT(G) is the minimum r such that for almost every S � 0 of rank r ,
there exists A � 0 such that

Aij = Sij if i = j or ij is an edge of G .

MLT(Kn) = n.
If G has a k-clique, then MLT(G) ≥ k.

1

2 3

4


x11 x12 x13 x14
x12 x22 x23 x24
x13 x23 x33 x34
x14 x24 x34 x44


Theorem (Buhl 1993)
Let ω(G) and τ(G) denote the clique number and treewidth of G. Then

ω(G) ≤ MLT(G) ≤ τ(G) + 1.
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Rigidity theory basics

Definition
A bar and joint framework in d dimensions consists of a graph G , and
a map p : V (G)→ Rd . Such a framework is independent if the
edge-lengths can be independently perturbed.

Theorem (Asimov and Roth 1978)
Given a graph G, then if p : V (G)→ Rd is “generic,” then whether the
framework (G , p) is independent in Rd does not depend on p.

One says that G is (generically) independent in Rd if (G , p) is independent
for all generic p : V (G)→ Rd .
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Upper bounds via generic independence

Definition (Generic completion rank)
The generic completion rank of G , denoted GCR(G), is the minimum d
such that G is generically independent in Rd−1.

GCR(G) is also the minimum k such that every generic partial symmetric
matrix whose missing entries correspond to the non-edges of G can be
completed to rank k.

Theorem (Uhler 2012, Gross and Sullivant 2018)
MLT(G) ≤ GCR(G).

GCR(G) can be computed in RP time, so it would be great if the above
inequality were sharp. However...

Theorem (Blekherman and Sinn 2019)
MLT(K5,5) = 4 but GCR(K5,5) = 5.
MLT(Kn,n) grows linearly with n whereas GCR(Kn,n) grows quadratically.
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MLT in rigidity-theoretic terms

Definition
Let (G , p) and (G , q) be frameworks in Rd and Re . Consider the equality

‖p(u)− p(v)‖ = ‖q(u)− q(v)‖.
If it holds for all edges uv of G , the frameworks are equivalent. If it
moreover holds for all pairs of vertices, the frameworks are congruent.

A framework (G , p) in Rk has full affine span if {p(v) : v ∈ V (G)}
affinely spans Rk .

Theorem (BDGNST 2021+)
Let G be a graph with n vertices. MLT(G) is the smallest d such that
every generic framework in Rd−1 is equivalent to a framework in Rn−1

with full affine span.
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More rigidity
One says that (G , p) is:

universally rigid if (G , p) and (G , q) are congruent when equivalent
globally rigid if (G , p) and (G , q) are congruent when they are
equivalent frameworks in the same dimension
locally rigid if (G , p) and (G , q) are congruent when they are
equivalent frameworks in the same dimension and sufficiently close

→ →

Local and global rigidity are generic properties (Asimov and Roth
1978; Connelly 2005; Gortler, Healy, and Thurston 2010)
If G has an open set of frameworks in Rd−1 that are all universally
rigid, then MLT(G) > d
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Importing results from rigidity

Theorem (Connelly, Gortler, and Theran 2020)
G is generically globally rigid in Rd−1 if and only if there exists an open
set of configurations on G in Rd−1 that are all universally rigid.

Theorem (BDGNST 2021+)
If a subgraph of G on at least d + 1 vertices is generically globally rigid in
Rd−1, then MLT(G) > d.

Implications:
Lower bounds on MLT generalizing Buhl’s result ω(G) ≤ MLT(G)
If G has fewer than 9 vertices, then MLT(G) = GCR(G)
If GCR(G) ≤ 4 or MLT(G) ≤ 3, then MLT(G) = GCR(G)

BDGNST Maximum likelihood threshold 11 / 15



Importing results from low-dimensional rigidity

Proposition (Folklore)
Let G be a graph with n vertices. Then

G is independent in R1 iff G has no cycles
G is globally rigid in R1 iff G is 2-connected

If GCR(G) = 3, then MLT(G) = 3:
GCR(G) = 3 implies G has a cycle
cycles are globally rigid in R1, so MLT(G) > 2
MLT(G) ≤ GCR(G), so MLT(G) = 3.

Theorem (Berg and Jordán 2003)
If G is 3-connected and minimally dependent in R2, then G is globally
rigid in R2.

Theorem (BDGNST 2021+)
If GCR(G) = 4 then MLT(G) = 4.
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Weak maximum likelihood thresholds

Definition (Weak maximum likelihood threshold)
Given a graph G , WMLT(G) denotes the minimum n such that the
maximum likelihood estimate in MG given n datapoints exists with
positive probability.

Proposition (Folklore)
WMLT(G) = 1 iff G has no edges.

Proposition (BDGNST)
If WMLT(G) = 2, then there exists an orientation of the edges of G
yielding the order diagram of a partially ordered set.

Conjecture: the converse is true too
If the above conjecture holds, then computing WMLT(G) is NP-hard
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Future work

Find an algorithm for computing MLT(G) and WMLT(G)
Find new examples of graphs where MLT(G) < GCR(G)
Determine if there exists an efficient algorithm for finding the largest
d such that G contains a subgraph that is globally rigid in Rd

Bound MLT(G) in terms of the genus of G (Dewar 2021+)
Can coordinated rigidity (Schulze, Serocold, and Theran 2018) be
used to understand MLTs of colored Gaussian graphical models?
Are there any subfields of rigidity theory that could be used to
understand MLTs of directed Gaussian graphical models?
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The end

Thank you for your attention!

(Preprint coming soon)

BDGNST Maximum likelihood threshold 15 / 15


