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Structure from Motion and Factorization

Affine camera model:

M =

P1

P2
...


︸ ︷︷ ︸

camera matrices

[
X1 X2 . . .

]︸ ︷︷ ︸
3D points

W �M M
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Non-Rigid SfM

Use higher rank for non-rigid scenes.

Hard problem, low rank, structured missing data. Primarily interested in
recovering the factors.
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Framework

Sparsity problem:

G (card(x)) + ‖Ax − b‖2, where G (k) =
k∑

i=1

gi ,

with 0 ≤ g1 ≤ g2 ≤ ... ≤ gn ≤ ∞. (gi =∞ is allowed for i > 0).

G (k), k = 0, ..., 10 G (card(x)), x ∈ R2
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Framework

Low rank problem:

G (rank(X )) + ‖AX − b‖2, where G (k) =
k∑

i=1

gi ,

with 0 ≤ g1 ≤ g2 ≤ ... ≤ gn ≤ ∞. (gi =∞ is allowed for i > 0).
Examples:

1 Soft rank penalty gi = µ.

µrank(X ) + ‖AX − b‖2.

2 The fixed rank problem gi =

{
0 i ≤ k

∞ i > k
.

min
rank(X )≤k

‖AX − b‖2.
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Bias

Some general regularizer:

r(|x |) + (x − b)2

Minimizer is either 0 or solution to

x = b − r ′(|x |)
2

sign(x)

Derivative r ′ needs to be zero to recover x = b when b is large.

SCAD: Log: MCP: ETP: Geman:
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Bias

1D versions:

rank(X ) =
∑

i |σi (X )|0 ‖X‖∗ =
∑

i σi (X )

Singular value thresholding:

µrank(X ) + ‖X − X0‖2
F 2

√
µ‖X‖∗ + ‖X − X0‖2

F
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Dino Example

Data set: Errors: Trajectories:

Is there a bias free formulation without local minima?
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Relaxation

The quadratic envelope:

Add quadratic f (x) := G (card(x)) + ‖x‖2.

Compute convex envelope f ∗∗ of f .

Subtract quadratic rg (x) := f ∗∗(x)− ‖x‖2.

Replace G (card(x)) with rg (x):

rg (x) + ‖Ax − b‖2.

Remarks:
Vector case: rg (x) = rg (x̃), where x̃ are sorted magnitudes or elements in
x .
Matrix case: rg (X ) = rg (x̃), where x̃ are sorted singular values of X .
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Evaluating the Relaxation

Evaluation via optimization problem:

rg (x) = max
z̃

(
n∑

i=1

min (gi , z̃i )− ‖z̃ − x̃‖2

)
.

Concave maximization. Can be solved exactly by searching linear (in the
singular values) number of candidate points.

Proximal operator evaluated similarly.
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1D-toy example

If Ga(x) =

{
0 x = 0

1 x 6= 0
then rg (x) = 1−max(1− |x |, 0)2.

Solve minx rg (x) + (x − b)2.

Ga(x) : rg (x) :

Ga(x) = rg (x) if x /∈ (0, 1)
In general G (card(x̃)) = rg (x̃) if x̃i /∈ (0,

√
gi ), ∀i .
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Separable vs. Non-separable

Examples of relaxations:

Ga(x) =

{
0 x = 0

1 x 6= 0
Gb(x) = Ga(x1) + Ga(x2) Gc (x) =


0 x1 = x2 = 0

1 x1 = 0, x2 6= 0

1 x1 6= 0, x2 = 0

∞ x1 6= 0 and x2 6= 0
Scalar relaxation: Separable relaxation: Non-seprable relaxation

Uninformative (high card) Strong gradient (high card)
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Why this approach?

rg (x) continuous.

rg (x) + ‖x − b‖2 convex envelop of g(card(x)) + ‖x − b‖2.
(Same minimizer if unique.)

rg (x) + ‖Ax − b‖2 relaxation of g(card(x)) + ‖Ax − b‖2 have same
global minizers if ‖A‖ < 1 (Carlsson, 2018).

Any local minimum of rg (x) + ‖Ax − b‖2 is a local minimum of
g(card(x)) + ‖Ax − b‖2 if ‖A‖ < 1 (Carlsson, 2018).

Analysis under RIP (Candes etal):

(1− δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2,

for all x with card(x) ≤ k

Intuition: ”‖Ax‖2 behaves similar to ‖x‖2”
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Goal

Study stationary points of rg (x) + ‖Ax − b‖2.

What kind of results can we expect?

Ex. rg (x) +
(

1
2x − b

)2
, g1 = 1:

b = 0 b = 1√
2

b = 1 b =
√

2 b = 2

Ambiguous data will give multiple local minima.
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Stationary Points

rg (x) + ‖Ax − b‖2 = rg (x) + ‖x‖2︸ ︷︷ ︸
=f ∗∗(x)

+ ‖Ax − b‖2 − ‖x‖2︸ ︷︷ ︸
:=h(x)

x̄ stationary iff −∇h(x̄) ∈ ∂f ∗∗(x̄)

−∇h(x̄) = 2(I − ATA)x̄ + 2ATb︸ ︷︷ ︸
:=2z̄

Easy to show that x̄ stationary iff

x̄ ∈ arg min
x

rg (x) + ‖x − z̄‖2

Properties of z̄ determines if the stationary point is unique.
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Main Result

Theorem (Uniqeness of Sparse Stationary Point)

Suppose 2z ∈ ∂f ∗∗(x) with z = (I − ATA)x + ATb, where A fulfills RIP.
If card(x) = k , x̃i /∈ (0,

√
gi ) and z̃ fulfills

z̃i /∈
[

(1− δr )
√
gk ,

√
gk

(1− δr )

]
and z̃k+1 < (1− 2δr )z̃k , (1)

then any other stationary point x ′ has card(x ′) > r − k . If in addition
k < r

2 then x solves

min
card(x)< r

2

rg (x̃) + ‖Ax − b‖2. (2)

Remark: Only uses lower estimate (1− δr )‖x‖2 ≤ ‖Ax‖2.
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Main Result

x̃i /∈ (0,
√
gi ) z̃i /∈

[
(1− δr )

√
gk ,

√
gk

(1−δr )

]
z̃k+1 < (1− 2δr )z̃k

x - z̃i
o - x̃i
· -
√
gi
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Noisy Recovery

Theorem (Exact Recovery of Oracle Solution)

Suppose that b = Ay + ε, for some y with card(y) = k , ‖A‖ < 1,
δ2k <

1
2 . If

ỹk >
5

(1− 2δ2k)
√

1− δ2k
‖ε‖, (3)

then there is a stationary point x , with card(x) = k , that fulfills (1) for all
choices of g where

√
gk < (1− δk)

(
ỹk −

2‖ε‖√
1− δ2k

)
and
√
gk+1 >

3(1− δk)√
1− δ2k

‖ε‖. (4)

Remark: ‖A‖ < 1 restrictive
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Hard Constraints

So far only results for sparse vectors/low rank matrices. Why?

RIP only holds for sparse vectors.

Unbiased separable formulations are uninformative for high cardinality.

Are there high rank local minima?
Ex. minx

∑
i

(
µ−max(

√
µ− x̃i , 0)2

)
+ ‖Ax − b‖2

Let xp ∈ arg min
x
‖Ax − b‖2.

Take dense vector xh in nullspace of A.

xp + txh (t large) minimizes ‖Ax − b‖2, with all elements >
√
µ.
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Hard Constraints

Solution add hard constraints: gi =∞ if i ≥ kmax.

Corollary (Unique Local Minimizer)

Suppose that x is a stationary point fulfilling the assumptions of
Theorem 1 with r = 2k . If ‖A‖ < 1 and gi =∞ for i ≥ k then x is the
unique local minimizer (and therefore the global minimizer).

Corollary (Noisy Recovery)

If ‖A‖ < 1 and gi =∞ for i ≥ k then under the assumptions of
Theorem 2 the problem has a unique local minimizer.

Carl Olsson June 10, 2021 21 / 38



Some Preliminary Experiments

Optimization of F (x) = rg (x) + ‖Ax − b‖2 with

gi = µ for all i (blue) vs. gi =

{
µ i ≤ 10

∞ i > 10
(yellow)

card(x) log(‖x − x0‖) log(F (x))

A - random 60× 80.
card(x0) = 5, b = Ax0 + ε.

Starting point 0.
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Some Preliminary Experiments

Optimization of F (x) = rg (x) + ‖Ax − b‖2 with

gi = µ for all i (blue) vs. gi =

{
µ i ≤ 10

∞ i > 10
(yellow)

card(x) log(‖x − x0‖) log(F (x))

A - random 60× 80.
card(x0) = 5, b = Ax0 + ε.

Starting point A\b.
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Some Preliminary Experiments

Optimization of F (x) = rg (x) + ‖Ax − b‖2 with

gi = µ for all i (blue) vs. gi =

{
µ i ≤ 10

∞ i > 10
(yellow)

card(x) log(‖x − x0‖) log(F (x))

A - random 60× 80.
card(x0) = 5, b = Ax0 + ε.

Starting point A\b + v , v ∈ null(A).
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Bilinear Parameterization

Most common approach if rank is known?

X = BCT , B ∈ Rm×r , C ∈ Rn×r ⇒ rank(X ) ≤ r .

Smooth objective in B,C :

‖A(BCT )− b‖2

Minimize with 2nd order methods.
(SOTA in SfM is VarPro, Hong etal. 2015, 2016, 2017, 2018.)

Can we do the same for soft penalties?
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Low Rank Estimation

Slightly more general framework:

min
X

H(σ(X )) + ‖AX − b‖2.

H(σ(X )) =
∑rank(X )

i=1 hiσi (X ) + gi .

hi , gi , non-negative and non-decreasing.

Quadratic envelope rh(X ) computed in Valtonen-Örnhag 2020.
Example:

1 Weak nuclear norm gi = 0

minhTσ(X ) + ‖AX − b‖2.

Goal: Optimize with second order methods.
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Approach

The variational form nuclear norm:

min ‖X‖∗ + ‖AX − b‖2 ⇔ min
‖B‖2

F + ‖C‖2
F

2
+ ‖A(BCT )− b‖2

No need to compute singular values.

General approach: If X = BCT =
∑

i BiC
T
i replace σi (X ) with

γi (Bi ,Ci ) :=
‖Bi‖2

F + ‖Ci‖2
F

2
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Bilinear Parameterization

Results

Iglesias etal 2020. For any X we have

hTσ(X ) = min
BCT =X

hTγ(B,C )

if h1, h2, ... is increasing.

Valtonen-Örnhag etal 2021. For any X we have

rh(σ(X )) = min
BCT =X

rh(γ(B,C )).
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Bilinear Parameterization

(a): H(x) =

{
0 x = 0

1 x 6= 0
.

(b): rh(x) continuous

(c): rh(b
2+c2

2 ) differentiable (a.e two times).

(d): Slice of rh(b
2+c2

2 ) along c = 0
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Algorithm Overview

Approximation at iteration t: η = γ(B(t),C (t))

r
(t)
h (γ(B,C )) =

n∑
i=1

w
(t)
i

‖Bi‖2 + ‖Ci‖2

2

w
(t)
i = 2(zi − ηi )

where z ∈ ∂f ∗∗(η) with zi = zi−1 (z-maximal) when ηi = 0
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Algorithm Overview

1 Given (B(t),C (t)) compute the maximal subgradient
z ∈ ∂f ∗∗(γ(B(t),C (t))).

2 Compute the approximation r
(t)
h (γ(B,C )).

3 Run one iteration of VarPro to obtain (B(t+1),C (t+1)).

4 Optional: Compute the SVD X (t+1) = UΣV T , where
X (t+1) = B(t+1)(C (t+1))T , and set

B(t+1) := U
√

Σ

C (t+1) := V
√

Σ

Empirical observation: SVD can be omitted if hi 6= 0.
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Issues

Slow iterations.

Hard to increase rank.

Local minima if hi = 0. (Seem to be removed by SVD step.)
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The pOSE Formulation. Hong & Zach 2018

Pinhole Projection:

OML =
∑
i ,j

‖ 1

zij
xij −mij‖2, Xij =

[
xij
zij

]
.

Object Space Error:

OOSE =
∑
i ,j

‖xij −mijzij‖2.

Perpendicular distance from viewing ray to Xij .

Linear residuals. (Bilinear least squares in P,U.)

Not scale invariant (trivial minimizer).
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The pOSE Formulation. Hong & Zach 2018

Affine term:
OAffine =

∑
i ,j

‖xij −mij‖2.

Pseudo Object Space Error:

OpOSE = (1− η)OOSE + ηOAffine.

η = 0.25 η = 0.5 η = 0.75
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Results
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Results

Comparison to ADMM on some data.
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Valtonen-Örnhag, Olsson, Igelsias, Bilinear Parameterization for Non-Separable Singular
Value Penalties, CVPR 2021

Larsson, Olsson, Convex Low Rank Approximation, IJCV 2016.

Carl Olsson June 10, 2021 37 / 38



The End
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