Non-Separable Relaxations of a Class of Rank Penalties

Carl Olsson

June 10, 2021

Outline

Background:

- Structure from Motion (SfM) and Factorization
- Relaxations of Non-Separable Rank/Sparsity Penalties:
 - Framework
 - Relaxations
 - Shrinking bias, non-separable regularization
 - Theoretical results under RIP

Bilinear Parameterization of Rank Penalties:

- Approach
- Theoretical results
- Algorithm Overview
- The pOSE formulation
- SfM results

Structure from Motion and Factorization

Affine camera model:

Use higher rank for non-rigid scenes.

Hard problem, low rank, structured missing data. Primarily interested in recovering the factors.

Sparsity problem:

$$G(\operatorname{card}(oldsymbol{x})) + \|Aoldsymbol{x} - oldsymbol{b}\|^2, \quad ext{where } G(k) = \sum_{i=1}^k g_i,$$

with $0 \le g_1 \le g_2 \le ... \le g_n \le \infty$. $(g_i = \infty \text{ is allowed for } i > 0)$.

Low rank problem:

$$G(\operatorname{rank}(X)) + \|\mathcal{A}X - \boldsymbol{b}\|^2$$
, where $G(k) = \sum_{i=1}^k g_i$,

with $0 \le g_1 \le g_2 \le ... \le g_n \le \infty$. $(g_i = \infty \text{ is allowed for } i > 0)$. Examples:

• Soft rank penalty
$$g_i = \mu$$
.

$$\mu$$
rank $(X) + \|\mathcal{A}X - b\|^2$.

Some general regularizer:

$$r(|x|) + (x-b)^2$$

Minimizer is either 0 or solution to

$$x = b - \frac{r'(|x|)}{2} \operatorname{sign}(x)$$

Derivative r' needs to be zero to recover x = b when b is large.

1D versions:

Singular value thresholding:

NUMBER OF STREET

Dino Example

Carl Olsson

June 10, 2021

Relaxation

The quadratic envelope:

- Add quadratic $f(x) := G(\operatorname{card}(x)) + ||x||^2$.
- Compute convex envelope f^{**} of f.
- Subtract quadratic $r_g(\mathbf{x}) := f^{**}(\mathbf{x}) \|\mathbf{x}\|^2$.

Replace G(card(x)) with $r_g(x)$:

$$r_g(\mathbf{x}) + \|A\mathbf{x} - \mathbf{b}\|^2.$$

Remarks:

Vector case: $r_g(\mathbf{x}) = r_g(\tilde{\mathbf{x}})$, where $\tilde{\mathbf{x}}$ are sorted magnitudes or elements in \mathbf{x} . Matrix case: $r_g(X) = r_g(\tilde{\mathbf{x}})$, where $\tilde{\mathbf{x}}$ are sorted singular values of X.

Evaluating the Relaxation

Evaluation via optimization problem:

$$r_g(\mathbf{x}) = \max_{\tilde{\mathbf{z}}} \left(\sum_{i=1}^n \min(g_i, \ \tilde{z}_i) - \|\tilde{\mathbf{z}} - \tilde{\mathbf{x}}\|^2 \right).$$

Concave maximization. Can be solved exactly by searching linear (in the singular values) number of candidate points.

Proximal operator evaluated similarly.

1D-toy example

If
$$G_a(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$$
 then $r_g(x) = 1 - \max(1 - |x|, 0)^2$.
Solve $\min_x r_g(x) + (x - b)^2$.

 $\begin{aligned} G_a(x) &= r_g(x) \text{ if } x \notin (0,1) \\ \text{In general } G(\operatorname{card}(\tilde{\boldsymbol{x}})) &= r_g(\tilde{\boldsymbol{x}}) \text{ if } \tilde{x}_i \notin (0,\sqrt{g_i}), \ \forall i. \end{aligned}$

Examples of relaxations:

 $G_a(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$

$$G_b(x) = G_a(x_1) + G_a(x_2)$$

Uninformative (high card)

 $G_{c}(\mathbf{x}) = \begin{cases} 0 & x_{1} = x_{2} = 0 \\ 1 & x_{1} = 0, x_{2} \neq 0 \\ 1 & x_{1} \neq 0, x_{2} = 0 \\ \infty & x_{1} \neq 0 \text{ and } x_{2} \neq 0 \end{cases}$ Non-seprable relaxation

Strong gradient (high card)

Why this approach?

- $r_g(\mathbf{x})$ continuous.
- $r_g(\mathbf{x}) + \|\mathbf{x} \mathbf{b}\|^2$ convex envelop of $g(\operatorname{card}(\mathbf{x})) + \|\mathbf{x} \mathbf{b}\|^2$. (Same minimizer if unique.)
- $r_g(\mathbf{x}) + ||A\mathbf{x} \mathbf{b}||^2$ relaxation of $g(\operatorname{card}(\mathbf{x})) + ||A\mathbf{x} \mathbf{b}||^2$ have same global minizers if ||A|| < 1 (Carlsson, 2018).
- Any local minimum of $r_g(\mathbf{x}) + ||A\mathbf{x} \mathbf{b}||^2$ is a local minimum of $g(\operatorname{card}(\mathbf{x})) + ||A\mathbf{x} \mathbf{b}||^2$ if ||A|| < 1 (Carlsson, 2018).

Analysis under RIP (Candes etal):

$$(1 - \delta_k) \| \mathbf{x} \|^2 \le \| A \mathbf{x} \|^2 \le (1 + \delta_k) \| \mathbf{x} \|^2,$$

for all \boldsymbol{x} with card $(\boldsymbol{x}) \leq k$

Intuition: "
$$||A\mathbf{x}||^2$$
 behaves similar to $||\mathbf{x}||^2$ "

Goal

Study stationary points of $r_g(\mathbf{x}) + ||A\mathbf{x} - \mathbf{b}||^2$.

What kind of results can we expect? Ex. $r_g(x) + (\frac{1}{2}x - b)^2$, $g_1 = 1$:

Ambiguous data will give multiple local minima.

Stationary Points

$$r_g(\mathbf{x}) + ||A\mathbf{x} - \mathbf{b}||^2 = \underbrace{r_g(\mathbf{x}) + ||\mathbf{x}||^2}_{=f^{**}(\mathbf{x})} + \underbrace{||A\mathbf{x} - \mathbf{b}||^2 - ||\mathbf{x}||^2}_{:=h(\mathbf{x})}$$

 $ar{m{x}}$ stationary iff $abla h(ar{m{x}})\in \partial f^{**}(ar{m{x}})$

$$-\nabla h(\bar{\mathbf{x}}) = \underbrace{2(I - A^T A)\bar{\mathbf{x}} + 2A^T b}_{:=2\bar{\mathbf{z}}}$$

Easy to show that \bar{x} stationary iff

$$ar{\mathbf{x}} \in \mathop{\mathrm{arg\,min}}_{\mathbf{x}} r_g(\mathbf{x}) + \|\mathbf{x} - ar{\mathbf{z}}\|^2$$

Properties of \bar{z} determines if the stationary point is unique.

Main Result

Theorem (Uniqueness of Sparse Stationary Point)

Suppose $2\mathbf{z} \in \partial f^{**}(\mathbf{x})$ with $\mathbf{z} = (I - A^T A)\mathbf{x} + A^T \mathbf{b}$, where A fulfills RIP. If $card(\mathbf{x}) = k$, $\tilde{x}_i \notin (0, \sqrt{g_i})$ and $\tilde{\mathbf{z}}$ fulfills

$$ilde{z}_i \notin \left[(1 - \delta_r) \sqrt{g_k}, rac{\sqrt{g_k}}{(1 - \delta_r)}
ight]$$
 and $ilde{z}_{k+1} < (1 - 2\delta_r) ilde{z}_k,$ (1)

then any other stationary point \mathbf{x}' has $card(\mathbf{x}') > r - k$. If in addition $k < \frac{r}{2}$ then \mathbf{x} solves

$$\min_{\operatorname{card}(\boldsymbol{x}) < \frac{r}{2}} r_g(\tilde{\boldsymbol{x}}) + \|A\boldsymbol{x} - \boldsymbol{b}\|^2.$$
(2)

Remark: Only uses lower estimate $(1 - \delta_r) \| \mathbf{x} \|^2 \le \| A \mathbf{x} \|^2$

Main Result

 $\begin{array}{l} \mathbf{x} - \widetilde{z}_i \\ \mathbf{0} - \widetilde{x}_i \\ \cdot - \sqrt{g_i} \end{array}$

Carl Olsson

June 10, 2021

Noisy Recovery

Theorem (Exact Recovery of Oracle Solution)

Suppose that $\mathbf{b} = A\mathbf{y} + \epsilon$, for some \mathbf{y} with card $(\mathbf{y}) = k$, ||A|| < 1, $\delta_{2k} < \frac{1}{2}$. If

$$\tilde{y}_k > \frac{5}{(1 - 2\delta_{2k})\sqrt{1 - \delta_{2k}}} \|\epsilon\|,\tag{3}$$

then there is a stationary point x, with card(x) = k, that fulfills (1) for all choices of g where

$$\sqrt{g_k} < (1 - \delta_k) \left(\tilde{y}_k - \frac{2\|\epsilon\|}{\sqrt{1 - \delta_{2k}}} \right) \text{ and } \sqrt{g_{k+1}} > \frac{3(1 - \delta_k)}{\sqrt{1 - \delta_{2k}}} \|\epsilon\|.$$
 (4)

Hard Constraints

So far only results for sparse vectors/low rank matrices. Why?

- RIP only holds for sparse vectors.
- Unbiased separable formulations are uninformative for high cardinality.

Are there high rank local minima? Ex. min_x $\sum_{i} (\mu - \max(\sqrt{\mu} - \tilde{x}_{i}, 0)^{2}) + ||Ax - b||^{2}$

- Let $\boldsymbol{x}_{p} \in \operatorname{arg\,min}_{\boldsymbol{x}} ||A\boldsymbol{x} \boldsymbol{b}||^{2}$.
- Take dense vector x_h in nullspace of A.
- $x_p + tx_h$ (t large) minimizes $||Ax b||^2$, with all elements $> \sqrt{\mu}$.

Solution add hard constraints: $g_i = \infty$ if $i \ge k_{max}$.

Corollary (Unique Local Minimizer)

Suppose that **x** is a stationary point fulfilling the assumptions of Theorem 1 with r = 2k. If ||A|| < 1 and $g_i = \infty$ for $i \ge k$ then **x** is the unique local minimizer (and therefore the global minimizer).

Corollary (Noisy Recovery)

If ||A|| < 1 and $g_i = \infty$ for $i \ge k$ then under the assumptions of Theorem 2 the problem has a unique local minimizer.

Some Preliminary Experiments

Optimization of
$$F(\mathbf{x}) = r_g(\mathbf{x}) + ||A\mathbf{x} - \mathbf{b}||^2$$
 with
 $g_i = \mu$ for all i (blue) vs. $g_i = \begin{cases} \mu & i \leq 10 \\ \infty & i > 10 \end{cases}$ (yellow)

Some Preliminary Experiments

Optimization of
$$F(\mathbf{x}) = r_g(\mathbf{x}) + ||A\mathbf{x} - \mathbf{b}||^2$$
 with
 $g_i = \mu$ for all i (blue) vs. $g_i = \begin{cases} \mu & i \leq 10 \\ \infty & i > 10 \end{cases}$ (yellow)

Some Preliminary Experiments

Optimization of
$$F(\mathbf{x}) = r_g(\mathbf{x}) + ||A\mathbf{x} - \mathbf{b}||^2$$
 with
 $g_i = \mu$ for all i (blue) vs. $g_i = \begin{cases} \mu & i \leq 10 \\ \infty & i > 10 \end{cases}$ (yellow)

Most common approach if rank is known?

$$X = BC^T$$
, $B \in \mathbb{R}^{m \times r}$, $C \in \mathbb{R}^{n \times r} \Rightarrow \operatorname{rank}(X) \leq r$.

Smooth objective in B, C:

$$\|\mathcal{A}(BC^T) - \boldsymbol{b}\|^2$$

Minimize with 2nd order methods. (SOTA in SfM is VarPro, Hong etal. 2015, 2016, 2017, 2018.)

Can we do the same for soft penalties?

Low Rank Estimation

Slightly more general framework:

$$\min_X H(\sigma(X)) + \|\mathcal{A}X - b\|^2.$$

•
$$H(\sigma(X)) = \sum_{i=1}^{\operatorname{rank}(X)} h_i \sigma_i(X) + g_i.$$

• h_i, g_i , non-negative and non-decreasing.

Quadratic envelope $r_h(X)$ computed in Valtonen-Örnhag 2020. Example:

• Weak nuclear norm $g_i = 0$

$$\min \boldsymbol{h}^T \boldsymbol{\sigma}(X) + \|\mathcal{A}X - b\|^2.$$

Goal: Optimize with second order methods.

Approach

The variational form nuclear norm:

$$\min \|X\|_* + \|\mathcal{A}X - b\|^2 \Leftrightarrow \min \frac{\|B\|_F^2 + \|C\|_F^2}{2} + \|\mathcal{A}(BC^T) - b\|^2$$

No need to compute singular values.

General approach: If $X = BC^T = \sum_i B_i C_i^T$ replace $\sigma_i(X)$ with

$$\gamma_i(B_i, C_i) := \frac{\|B_i\|_F^2 + \|C_i\|_F^2}{2}$$

Results

• Iglesias etal 2020. For any X we have

$$\boldsymbol{h}^{T}\boldsymbol{\sigma}(X) = \min_{BC^{T}=X} \boldsymbol{h}^{T}\boldsymbol{\gamma}(B,C)$$

if h_1, h_2, \dots is increasing.

• Valtonen-Örnhag etal 2021. For any X we have

$$r_h(\sigma(X)) = \min_{BC^T=X} r_h(\gamma(B, C)).$$

Bilinear Parameterization

(a):
$$H(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$$

(b): $r_h(x)$ continuous
(c): $r_h(\frac{b^2+c^2}{2})$ differentiable (a.e two times).
(d): Slice of $r_h(\frac{b^2+c^2}{2})$ along $c = 0$

Algorithm Overview

Approximation at iteration t: $\eta = \gamma(B^{(t)}, C^{(t)})$

$$r_h^{(t)}(\gamma(B,C)) = \sum_{i=1}^n w_i^{(t)} \frac{\|B_i\|^2 + \|C_i\|^2}{2}$$

$$w_i^{(t)} = 2(z_i - \eta_i)$$

where $z \in \partial f^{**}(\boldsymbol{\eta})$ with $z_i = z_{i-1}$ (z-maximal) when $\eta_i = 0$

Algorithm Overview

- Given (B^(t), C^(t)) compute the maximal subgradient z ∈ ∂f^{**}(γ(B^(t), C^(t))).
- Occupate the approximation $r_h^{(t)}(\gamma(B,C))$.
- Solution Run one iteration of VarPro to obtain $(B^{(t+1)}, C^{(t+1)})$.
- Optional: Compute the SVD $X^{(t+1)} = U\Sigma V^T$, where $X^{(t+1)} = B^{(t+1)}(C^{(t+1)})^T$, and set

$$B^{(t+1)} := U\sqrt{\Sigma}$$
$$C^{(t+1)} := V\sqrt{\Sigma}$$

Empirical observation: SVD can be omitted if $h_i \neq 0$.

Issues

- Slow iterations.
- Hard to increase rank.
- Local minima if $h_i = 0$. (Seem to be removed by SVD step.)

June 10, 2021 32 / 38

The pOSE Formulation. Hong & Zach 2018

Pinhole Projection:

$$\mathcal{O}_{\mathsf{ML}} = \sum_{i,j} \| \frac{1}{z_{ij}} \mathbf{x}_{ij} - \mathbf{m}_{ij} \|^2, \qquad \mathbf{X}_{ij} = \begin{bmatrix} \mathbf{x}_{ij} \\ z_{ij} \end{bmatrix}.$$

Object Space Error:

$$\mathcal{O}_{\mathsf{OSE}} = \sum_{i,j} \|\boldsymbol{x}_{ij} - \boldsymbol{m}_{ij} \boldsymbol{z}_{ij}\|^2.$$

- Perpendicular distance from viewing ray to X_{ij}.
- Linear residuals. (Bilinear least squares in P, U.)

Not scale invariant (trivial minimizer).

The pOSE Formulation. Hong & Zach 2018

Affine term:

$$\mathcal{O}_{\mathsf{Affine}} = \sum_{i,j} \| \mathbf{x}_{ij} - \mathbf{m}_{ij} \|^2.$$

Pseudo Object Space Error:

 $\mathcal{O}_{\mathsf{pOSE}} = (1 - \eta)\mathcal{O}_{\mathsf{OSE}} + \eta\mathcal{O}_{\mathsf{Affine}}.$

Results

Carl Olsson

June 10, 2021

35/3

Comparison to ADMM on some data.

Some References

- Carlsson, On convex envelopes and regularization of non-convex functionals without moving global minima, Journal of Optimization Theory and Applications, 2019.
- Olsson, Gerosa, Carlsson, *Relaxations for Non-Separable Cardinality/Rank Penalties*, Preprint.
- Hong, Zach, pOSE: Pseudo Object Space Error for Initialization-Free Bundle Adjustment, CVPR 2018.
- Hong, Zach, Fitzgibbon, *Revisiting the Variable Projection Method for Separable Nonlinear Least Squares Problems*, CVPR 2017.
- Hong, Zach, Fitzgibbon, Chipola, *Projective Bundle Adjustment from Arbitrary Initialization Using the Variable Projection Method*, CVPR 2017.
- Valtonen-Örnhag, Olsson, A Unified Optimization Framework for Low-Rank Inducing Penalties, CVPR 2020.
- Iglesias, Olsson, Valtonen-Örnhag, Accurate Optimization of Weighted Nuclear Norm for Non-Rigid Structure from Motion, ECCV 2020
- Valtonen-Örnhag, Olsson, Igelsias, *Bilinear Parameterization for Non-Separable Singular Value Penalties*, CVPR 2021

Lasson, Olsson, Convex Low Rank Approximation, IJCV 2016.

The End

Carl Olsson

June 10, 2021