Data-driven dynamic interpolation and approximation

Ivan Markovsky joint work with Florian Dörfler

CDC'19 Nice, France

Data-driven = bypass model identification

Example: data-driven forecasting of sum-of-damped-exponentials signal

→ Hankel structured low-rank completion

Simulation example of trajectory interpolation

Data-driven representation of LTI systems

Interpolation of trajectories

Generalizations and empirical validation

Outline

Data-driven representation of LTI systems

Interpolation of trajectories

Generalizations and empirical validation

A dynamical system \mathscr{B} is a set of signals

$$w \in \mathscr{B} \quad \leftrightarrow \quad "w \text{ is trajectory of } \mathscr{B}"$$

 $\leftrightarrow \quad "\mathscr{B} \text{ is exact model for } w"$

 \mathscr{B} is linear system : $\iff \mathscr{B}$ is subspace

 \mathscr{B} is time-invariant : $\iff \sigma \mathscr{B} = \mathscr{B}$

 $(\sigma w)(t) := w(t+1)$ — shift operator

 $\sigma\mathscr{B} := \big\{ \sigma \mathsf{W} \mid \mathsf{W} \in \mathscr{B} \big\}$

The set of linear time-invariant systems \mathscr{L} has structure characterized by set of integers

the dimension of $\mathscr{B} \in \mathscr{L}$ is determined by

 $\mathbf{m}(\mathscr{B})$ — number of inputs

 $\mathbf{n}(\mathscr{B})$ — order (= minimal state dimension)

 $I(\mathscr{B})$ — lag (= observability index)

J.C. Willems, From time series to linear systems. Part I, Finite dimensional linear time invariant systems, Automatica, 22(561–580), 1986

Identifiability: $w_d \in \mathscr{B}$ specifies $\mathscr{B} \in \mathscr{L}$

define $\widehat{\mathscr{B}} := \operatorname{span}\{w_d, \sigma w_d, \sigma^2 w_d, \dots\}$

fact:
$$\widehat{\mathscr{B}} \in \mathscr{L}$$
 and $\widehat{\mathscr{B}} \subseteq \mathscr{B}$

identifiability condition: $\widehat{\mathscr{B}} = \mathscr{B}$

J.C. Willems, From time series to linear systems. Part II, Exact modelling, Automatica, 22(675–694), 1986 We aim to obtain finite horizon results

restriction of w and \mathscr{B} to finite interval [1, L]

 $w|_L := (w(1), \ldots, w(L)), \quad \mathscr{B}|_L := \{w|_L \mid w \in \mathscr{B}\}$

fact: dim $\mathscr{B}|_{L} = \mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B})$, for all $L \ge \mathbf{I}(\mathscr{B})$

fact: for $\mathscr{B}, \mathscr{B}' \in \mathscr{L}$, $\mathscr{B} = \mathscr{B}'$ if and only if

 $\mathscr{B}|_{L} = \mathscr{B}'|_{L}, \text{ for } L = \max\{\mathbf{I}(\mathscr{B}), \mathbf{I}(\mathscr{B}')\} + 1$

Shifting and cutting w_d leads to Hankel matrix

for
$$w_d = (w_d(1), \dots, w_d(T))$$
 and $1 \le L \le T$

$$\mathscr{H}_{L}(w_{d}) := \begin{bmatrix} (\sigma^{0}w_{d})|_{L} & (\sigma^{1}w_{d})|_{L} & \cdots & (\sigma^{T-L}w_{d})|_{L} \end{bmatrix}$$

define $\widehat{\mathscr{B}}_L := \operatorname{image} \mathscr{H}_L(w_d)$

fact: $\widehat{\mathscr{B}}_L \subseteq \mathscr{B}|_L$

Identifiability condition that is verifiable from $w_d \in \mathscr{B}|_T$ and $(\mathbf{m}(\mathscr{B}), \mathbf{l}(\mathscr{B}), \mathbf{n}(\mathscr{B}))$

$$\begin{split} \widehat{\mathscr{B}} &= \mathscr{B} \quad \iff \quad \widehat{\mathscr{B}}|_{\mathbf{I}(\mathscr{B})+1} = \mathscr{B}|_{\mathbf{I}(\mathscr{B})+1} \\ & \longleftrightarrow \quad \dim \widehat{\mathscr{B}}|_{\mathbf{I}(\mathscr{B})+1} = \dim \mathscr{B}|_{\mathbf{I}(\mathscr{B})+1} \end{split}$$

 \mathscr{B} is identifiable from $w_d \in \mathscr{B}|_{\mathcal{T}}$ if and only if

$$\operatorname{rank} \mathscr{H}_{\mathbf{I}(\mathscr{B})+1}(w_{d}) = (\mathbf{I}(\mathscr{B})+1)\mathbf{m}(\mathscr{B}) + \mathbf{n}(\mathscr{B})$$

Nonparametric repr. $\mathscr{B}|_L = \operatorname{image} \mathscr{H}_L(w_d)$

 $\widehat{\mathscr{B}}_L \subseteq \mathscr{B}|_L, L \ge I(\mathscr{B})$, equality holds if and only if

 $\operatorname{rank} \mathscr{H}_L(w_d) = L\mathbf{m}(\mathscr{B}) + \mathbf{n}(\mathscr{B})$

sufficient conditions ("fundamental lemma"):

- 1. $W_d = \begin{bmatrix} u_d \\ V_d \end{bmatrix}$
- 2. B controllable
- 3. $\mathscr{H}_{L+\mathbf{n}(\mathscr{B})}(u_d)$ full row rank

J.C. Willems et al., A note on persistency of excitation Systems & Control Letters, (54)325–329, 2005

Data-driven representation of LTI systems

Interpolation of trajectories

Generalizations and empirical validation

Data-driven interpolation is missing data recovery

given: $w_d \in \mathscr{B}|_{\mathcal{T}}$ — "data" trajectory $w|_{I_{given}}$ — partially specified trajectory

 $(w|_{I_{given}}$ selects the elements of w, specified by I_{given})

find:

$$\widehat{w} \in \mathscr{B}|_L$$
, such that $\widehat{w}|_{I_{qiven}} = w|_{I_{qiven}}$

Solution may not exist

A1: rank
$$\mathscr{H}_L(w_d) = \mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B})$$

A2: $w|_{I_{given}}$ has exact completion $w \in \mathscr{B}|_L$

$$\operatorname{rank} \begin{bmatrix} \mathscr{H}_{L}(w_{d}) |_{I_{given}} & w |_{I_{given}} \end{bmatrix} = \operatorname{rank} \mathscr{H}_{L}(w_{d}) |_{I_{given}}$$

 $(M|_{I_{given}}$ selects the submatrix of M with rows in I_{given})

 $A1 + A2 \implies$ exact solution exists

Solution may not be unique

when recovered solution is exact, *i.e.*, $\hat{w} = w$?

A3: there are "enough" given samples I_{given}

$$\operatorname{rank} \mathscr{H}_L(w_d)|_{I_{given}} = \operatorname{rank} \mathscr{H}_L(w_d)$$

A2 and A3 are verifiable from the data A1 requires in addition $\mathbf{m}(\mathcal{B}), \mathbf{l}(\mathcal{B}), \mathbf{n}(\mathcal{B})$ Data-driven interpolation method: solve system of linear equations

there is g, such that $w = \mathscr{H}_L(w_d)g$

method:

1. solve $w|_{I_{given}} = \mathscr{H}_L(w_d)|_{I_{given}}g$ 2. define $\widehat{w} := \mathscr{H}_L(w_d)g$

Simulation is special case of interpolation

Simulation with "terminal conditions"

Data-driven representation of LTI systems

Interpolation of trajectories

Generalizations and empirical validation

approximation + missing data estimation

minimize over g and $\widehat{w} ||w|_{l_{given}} - \widehat{w}|_{l_{given}}||$ subject to $\widehat{w} = \mathscr{H}_{L}(w_{d})g$

data-driven filtering and control are special cases

interpolation + approximation + missing data ~ equality constrained least squares problem

multiple data trajectories w_d^1, \dots, w_d^N $w = \begin{bmatrix} \mathscr{H}_L(w_d^1) & \cdots & \mathscr{H}_L(w_d^N) \end{bmatrix} g$

Example: data-driven approximation (errors-in-variables Kalman smoothing)

efficient / real-time computation

non-parametric version of the Kalman filter

w_d not exact / noisy

maximum-likelihood estimation

 Hankel structured low-rank approximation/completion parametric, non-convex optimization problem

nuclear norm and ℓ_1 -norm relaxations \rightsquigarrow nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems: Volterra, Wiener-Hammerstein, bilinear, ... ℓ_1 -norm regularization

in the noise-free case g can be chosen sparse

 $\|g\|_0 \leq L\mathbf{m}(\mathscr{B}) + \mathbf{n}(\mathscr{B})$

impose sparsity in the case of noisy data

minimize over
$$g \| w |_{I_{\text{given}}} - \mathscr{H}_L(w_d) |_{I_{\text{given}}} g \| + \lambda \| g \|_1$$

hyper-parameter: $\lambda \leftrightarrow \mathbf{m}(\mathscr{B}), \mathbf{n}(\mathscr{B})$

Empirical validation on real-life datasets

	data set name	Т	т	р
1	Air passengers data	144	0	1
2	Distillation column	90	5	3
3	pH process	2001	2	1
4	Hair dryer	1000	1	1
5	Heat flow density	1680	2	1
6	Heating system	801	1	1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4–5, 1997

 ℓ_1 -norm regularization with optimized λ achieves the best performance

$$e_{\mathsf{missing}} \coloneqq rac{\|w|_{I_{\mathsf{missing}}} - \widehat{w}|_{I_{\mathsf{missing}}}\|}{\|w|_{I_{\mathsf{missing}}}\|} \ 100\%$$

	data set name	pinv	ML	ℓ_1 -norm
1	Air passengers data	3.9	fail	3.3
2	Distillation column	19.24	17.44	9.30
3	pH process	38.38	85.71	12.19
4	Hair dryer	12.35	8.96	7.06
5	Heat flow density	7.16	44.10	3.98
6	Heating system	0.92	1.35	0.36

Tuning of λ and sparsity of *g* (datasets 1, 2)

Tuning of λ and sparsity of *g* (datasets 3, 4)

Tuning of λ and sparsity of *g* (datasets 5, 6)

System theory without transfer function and state space representations is possible

data-driven representation

leads to general, simple, practical methods

interpolation/approximation of trajectories

simulation, filtering and control are special cases assumes only LTI dynamics; no hyper parameters

future work

efficient / real-time algorithms sensitivity / statistical analysis nonlinear systems