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Markov chains

K : S × S → R transition matrix

Kij ≥ 0,
∑
j∈S

Kij = 1 ∀i ∈ S i j
Kij

Invariant distribution π ∈ RS :
∑

i∈S Kijπi = πj (i.e., πK = π).

Continuous-time Markov process (“heat equation”)

dp(t)

dt
= −p(t)L

where L = I − K is Laplacian. p(t) ∈ RS distribution at time t

Q: How fast does p(t) converge to π?
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Spectral theory / Poincaré inequality

Let x(t) = p(t)/π the density of p(t) wrt π at time t

∀t, Eπ[x(t)] = 1 and x(t)→ 1 when t →∞

Define Var(x(t)) = Eπ[(x(t)− 1)2]. Note Var(x(t))→ 0 as t →∞

Evolution of Var(x(t)):

d

dt
Var(x(t)) = −2E(x(t), x(t)) where E(x , y) = 〈x , Ly〉π︸ ︷︷ ︸

Dirichlet form

Poincaré inequality:

E(x , x) ≥ λVar(x) =⇒ Var(x(t)) ≤ Var(x(0))e−2λt

λ is the second smallest eigenvalue of the Laplacian matrix L
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Poincaré inequality:

E(x , x) ≥ λVar(x) =⇒ Var(x(t)) ≤ Var(x(0))e−2λt

λ is the second smallest eigenvalue of the Laplacian matrix L

3/18



Functional inequalities

Logarithmic-Sobolev inequality:

E(x , x) ≥ α
∑
i

πix
2
i log(x2

i ) ∀x :
∑
i

πix
2
i = 1.

Largest α for which this inequality holds is the logarithmic Sobolev constant

Controls convergence of p(t) to π in the relative entropy sense

D(p(t)‖π) ≤ D(p(0)‖π)e−4αt where D(p‖q) :=
∑
i∈S

pi log(pi/qi ).

Advantage is that D(p(0)‖π)� Var(x(0))
Example: if p(0) = δi and π = 1/|S| (uniform) then D(p(0)‖π) = log(|S|) and Var(x(0)) ≈ |S|

Compared to λ (Poincaré constant), α is much harder to compute
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Computing α

...

This talk: Computational method to produce formal lower bounds on α
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Sum-of-squares proofs

Given p, q ∈ R[x1, . . . , xn], decide:

is p(x) ≥ 0 ∀x ∈ Rn s.t. q(x) = 0 ?

Hard for general polynomials p, q.

A sufficient condition:

p(x) = s(x) + h(x)q(x)

where h(x) is an arbitrary polynomial and s(x) is a sum of squares of
polynomials, i.e.,

s =
∑
k

h2
k

where hk are polynomials.

Key fact: Can search for a sum-of-squares proof efficiently, using
semidefinite programming
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Sum-of-squares proofs and semidefinite programming

Let R[x ]≤d = space of polynomials of degree ≤ d , N(n, d) = dimR[x ]≤d

s(x) ∈ R[x ]≤d is a sum of squares if, and only if, there exists a symmetric
matrix Q of size N(n, d/2) such that

Q � 0 and sγ =
∑

α+β=γ

Qα,β ∀|γ| ≤ d

where s(x) =
∑
γ:|γ|≤d sγx

γ

Rows/columns of Q indexed by monomials of degree ≤ d/2
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Log-Sobolev inequality

E(x , x)− αB(x) ≥ 0 ∀x ∈ Rn : S(x) = 0

where

E(x , x) = 1
2

∑
ij πiKij(xi − xj)

2

B(x) =
∑

i πix
2
i log(x2

i )

S(x) =
∑

i πix
2
i − 1.

Main problem: B(x) is not a polynomial.

Approach: Find B̂(x) polynomial such that B(x) ≤ B̂(x) and attempt to prove
instead

E(x , x)− αB̂(x) ≥ 0 ∀x : S(x) = 0

using sums of squares. How to choose B̂(x)?
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Taylor bound

Simple fact: Let pTaylor
2d−1 be the degree 2d − 1 Taylor expansion of t2 log(t) at

t = 1. Then
pTaylor(t) ≥ t2 log(t) ∀t ≥ 0.

Consequence

B̂(x) = 2
∑
i

πip
Taylor(xi ) ≥ B(x).

Semidefinite programming lower bound on α:

max
α̂,s(x),h(x)

α̂

s.t. E(x , x)− 2α̂
∑

i πip
Taylor(xi ) = s(x) + h(x)(

∑
i πix

2
i − 1)

s sum of squares, deg(s) = 2k
h arbitrary polynomial, deg(h) = 2k − 2.

Solution of SDP gives formal lower bound on α
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Example: two-point space

K =

[
1/2 1/2
1/2 1/2

]
1/2

1/2

1/2 1/2

It is known that α = 1/2. The inequality we have to prove is

1

4
(x − y)2 − 1

2
(x2 log(x) + y 2 log(y)) ≥ 0 ∀(x , y) ∈ R2

+ : x2 + y 2 = 2.

Using Taylor bound of degree 3, we seek to prove the stronger polynomial
inequality:

−1 + 3x + 3y − 3xy − x3 − y3 ≥ 0 ∀(x , y) ∈ R2
+ : x2 + y2 = 2.

Sum-of-squares proof:

−1 + 3x + 3y − 3xy − x3 − y 3 = s(x , y)(1 + x + y) + h(x , y)(x2 + y 2 − 2)

where s(x , y) = 2(x/2 + y/2− 1)2 and h(x , y) = −3(x + y − 1)/2.
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Searching for the best polynomial bound

We want the optimization program to search for the best polynomial upper
bound on B(x), i.e., we want to solve:

max
α̂,s(x),h(x),p̂

α̂

s.t. E(x , x)− 2α̂
∑

i πi p̂(xi ) = s(x) + h(x)(
∑

i πix
2
i − 1)

s sum of squares, deg(s) = 2k
h arbitrary polynomial, deg(h) = 2k − 2
p̂(t) ≥ t2 log(t) ∀t ≥ 0, deg(p̂) = `.

Need a tractable formulation of the convex set{
p̂ ∈ R[t], deg(p̂) = ` s.t. p̂(t) ≥ t2 log(t) ∀t > 0

}
We use rational approximations of log
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Padé approximations

The (m, n) Padé approximation of f (t) at t = t0 is a rational function P/Q
with degP = m, degQ = n so that around t = t0

f (t)− P(t)/Q(t) = O((t − t0)m+n+1)

1 2 3 4 5

-3

-2

-1

1

2

3

4

log(t)

padelog

taylorlog

Padé (4,3) vs Taylor of order 7 of log around t = 1
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Padé upper bound on log

Proposition: For any integer m, the (m + 1,m) Padé approximant Pm/Qm

of log at t = 1 is an upper bound on log. Furthermore Qm(t) > 0 for all
t > 0

Thus a sufficient condition for p̂(t) ≥ t2 log(t) is p̂ ≥ t2Pm/Qm, which we can
impose via sum-of-squares as

Qmp̂ − t2Pm is a sum-of-squares

Theorem: The solution of the following sum-of-squares program is a lower
bound on the log-Sobolev constant of (K , π):

max
α̂,s(x),h(x),p̂

α̂

s.t. E(x , x)− 2α̂
∑

i πi p̂(xi ) = s(x) + h(x)(
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Formal proofs from approximate SDP solutions

Sum-of-squares programs are transformed into standard form semidefinite
programs

max
X∈Sn

〈C ,X 〉 s.t. X � 0 and 〈Ai ,X 〉 = bi (i = 1, . . . ,m)

Numerical solvers yield approximate (floating-point) solutions. Need to
extract formal lower bounds on α

We use a perturb-and-project approach [Peyrl-Parrilo]. We first perturb the
SDP to

max
X∈Sn

〈C ,X 〉 s.t. X � εI and 〈Ai ,X 〉 = bi (i = 1, . . . ,m)

and project the returned X̂ (using rational arithmetic) on the subspace
A(X ) = b.

All of this implemented in the Julia language, available at

https://github.com/oisinfaust/LogSobolevRelaxations
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Examples

Simple walk on the complete graph Kn

Exact value known α = n−2
(n−1) log(n−1) [Diaconis-Saloff-Coste]

n α̂ εrel
3 0.72134751987 7.96 × 10−10

4 0.6068261485 4.25 × 10−9

5 0.541010629 2.16 × 10−8

6 0.497067908 7.95 × 10−8

7 0.46509209 2.22 × 10−7

8 0.44048407 5.06 × 10−7

9 0.4207856 1.02 × 10−6

10 0.4045500 1.85 × 10−6

11 0.3908638 3.13 × 10−6

12 0.3791184 5.06 × 10−6

13 0.3688909 7.81 × 10−6

Using Padé approach with m = 5
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3-point stick

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

p

αp
αp
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The cycle

Simple walk on Zn: Ki,i±1 = 1/2 for i ∈ Zn.

It is known that α = λ
2 = 1

2 (1− cos(2π/n)) for all even n and n = 5.
[Chen-Sheu],[Chen-Liu-Saloff-Coste]

Open question: is α = λ/2 for all odd n ≥ 5?

We give formal proofs that

α =
1

2
(1− cos(2π/n)) ∀n ∈ {5, 7, 9, . . . , 21}

Several ingredients:

Relaxation based on the Taylor upper bound of degree 5

Symmetry reduction reduces SDP from a large block of size ∼ 3n2/2 to
smaller blocks of size ∼ 3n/2

Rounding in Q[cos(2π/n)] (instead of just Q)
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Conclusion

Paper at arXiv:2101.04988

Open directions

Fastest Mixing Markov Chain: can use the relaxation to search for a
Markov chain with the largest log-Sobolev constant. Compare with Markov
chains with largest Poincaré constant [Boyd-Diaconis-Xiao].

Modified log-Sobolev constant

Quantum (modified) log-Sobolev constant?

Thank you!
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