invariant theory for maximum likelihood estimation

Anna Seigal University of Oxford

joint work with

Carlos Améndola TU Munich

Kathlén Kohn KTH Stockholm

June 16, 2021

Philipp Reichenbach TU Berlin

statistical setting

statistical model \mathcal{M} in some space:

discrete: random variable X with m states probability mass function: $p = (p_1, \ldots, p_m)$, $p_j = \mathbb{P}(X = j)$ statistical model \mathcal{M} : subset of probability simplex $\Delta_{m-1} = \left\{ q \in \mathbb{R}^m \mid q_j \ge 0, \sum_{j=1}^m q_j = 1 \right\}$.

multivariate Gaussian: random vector $x \in \mathbb{R}^m$ probability density function: $\rho_{\Psi}(x) = \frac{1}{\sqrt{\det(2\pi\Psi^{-1})}} \exp\left(-\frac{1}{2}x^{\mathsf{T}}\Psi x\right), \Psi = \text{concentration matrix}$ statistical model \mathcal{M} : subset of positive definite matrices

group actions

group: set G of elements such that $id \in G$, $gh \in G$, $g^{-1} \in G$. G acts linearly on space V means each $g \in G$ gives linear transformation of V.

Example symmetric group → permutation matrices

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} v_2 \\ v_1 \\ v_3 \end{bmatrix}$$

.

orbit is $G \cdot v = \{g \cdot v \mid g \in G\}$ invariants are functions that are constant on orbits

Example

 $v_1 + v_2 + v_3$, $v_1v_2 + v_1v_3 + v_2v_3$, $v_1v_2v_3$ elementary symmetric polynomials generate ring of invariants.

groups in statistics

- i.i.d. independent and identically distributed \rightarrow permuting observations doesn't change distribution
- \rightarrow invariant under group of permutation matrices

group symmetry models^{1 2}: covariance matrices invariant under some fixed group

transformation family³: statistical model on which a group acts transitively

¹Steen Andersson. "Invariant normal models." Annals of Statistics (1975).

² Jesper Madsen. "Invariant normal models with recursive graphical Markov structure". Annals of Statistics (2000).

³ Jan Draisma, Sonja Kuhnt, Piotr Zwiernik. "Groups acting on Gaussian graphical models." Annals of Statistics (2013).

parameter estimation

have a statistical model ${\cal M}$ and some data. want to use the data to estimate parameters in ${\cal M}.$

maximum likelihood estimate (MLE): point in model that maximizes likelihood of observing data.

maximum likelihood estimation

discrete: random variable with m states

- model: \mathcal{M} a set of $p = (p_1, \ldots, p_m)$ in probability simplex Δ_{m-1}
- data: $u = (u_1, \ldots, u_m)$, $u_j =$ fraction of times j occurs.
- likelihood: $L(p) = p_1^{u_1} \cdots p_m^{u_m}$, log-likelihood $\ell(p) = \sum_i u_i \log p_i$

$$MLE: \hat{p} = \operatorname*{argmax}_{p \in \mathcal{M}} \ell(p).$$

Example:

 $\mathcal{M} = \Delta_{m-1},$ unique MLE is $\hat{p} = u.$

maximum likelihood estimation

multivariate Gaussian: random vector in \mathbb{R}^m

- model: \mathcal{M} a set of possible concentration matrices Ψ in positive definite cone
- data: samples $Y_i \in \mathbb{R}^m$ summarized by sample covariance matrix $S_Y = \frac{1}{n} \sum_{i=1}^n Y_i Y_i^T$
- log-likelihood: $\ell(\Psi) = \log \det(\Psi) \operatorname{tr}(\Psi S_Y)$

$$MLE: \hat{\Psi} = \operatorname*{argmax}_{\Psi \in \mathcal{M}} \ell(\Psi).$$

Example:

 $\mathcal{M} = \mathrm{PD}_{m}$

unique MLE $\hat{\Psi} = S_V^{-1}$...does not exist if $\operatorname{rank}(S_Y) < m$

maximum likelihood thresholds

thresholds⁴: how many samples needed for: (i) log-likelihood to be bounded (ii) MLE to exist

(iii) MLE to be unique.

Example: $\mathcal{M} = \mathrm{PD}_m$, unique MLE $\hat{\Psi} = S_Y^{-1}$ $S_Y = \frac{1}{n} \sum_{i=1}^n Y_i Y_i^T$...thresholds (i), (ii), (iii) are all m.

- for $n \ge m$ samples, the MLE generically exists and is unique
- for n < m samples the log-likelihood is unbounded

smaller models need fewer samples

e.g. for a graphical model, thresholds given in terms of graph structure⁵ recently: connections to rigidity theory

8/16

⁴Buhl, S. L. 'On the existence of maximum likelihood estimators for graphical Gaussian models' (1993)

⁵Caroline Uhler: Geometry of maximum likelihood estimation in Gaussian graphical models (2012)

stability

group G acts linearly on space V. orbit is $G \cdot v = \{g \cdot v \mid g \in G\}$, capacity is $cap(v) = inf_{g \in G} ||g \cdot v||^2$.

Definition

- (a) *unstable* if cap(v) = 0 [unstable points = *null cone*, where all invariants vanish]
- (b) semistable if cap(v) > 0
- (c) *polystable* if $v \neq 0$ and $G \cdot v$ is closed
- (d) stable if v polystable and stabilizer $\{g \in G \mid g \cdot v = v\}$ is finite

Examples: finite group, GL_m on \mathbb{C}^m , $\operatorname{SL}_{m_1} \times \operatorname{SL}_{m_2}$ on $\mathbb{C}^{m_1 \times m_2}$.

invariant theory and maximum likelihood estimation⁶⁷

⁶C. Améndola, K. Kohn, P. Reichenbach, AS, Invariant theory and scaling algorithms for maximum likelihood estimation, to appear in SIAM Journal on Applied Algebra and Geometry (2021).

10/16

^{--,} Toric invariant theory for maximum likelihood estimation in log-linear models, arXiv:2012.07793 (2020)

stability and MLE existence

matrix $A \in \mathbb{Z}^{d \times m}$ with $(1, \ldots, 1) \in \mathbb{C}^m$ in rowspan. data $u \in \mathbb{Z}_{\geq 0}^m$ with $u_1 + \cdots + u_m = n$. stability under complex torus GT_d , action given by matrix nA with linearization $b = Au \in \mathbb{Z}^d$.

Proof idea. polyhedral conditions for MLE existence⁸ relate to Hilbert-Mumford criterion.

⁸ Eriksson N, Fienberg SE, Rinaldo A, Sullivant S: "Polyhedral conditions for the nonexistence of the MLE for hierarchical log-linear models." (2006).

log-linear models

log-linear models: distributions whose logarithm lies in fixed linear space.

$$\mathcal{M}_{A} = \{ p \in \Delta_{m-1} \mid \log p \in \operatorname{rowspan}(A) \},\$$

where $A \in \mathbb{Z}^{d \times m}$ and we assume $(1, \ldots, 1) \in \text{rowspan}(A)$.

e.g. independence model, graphical models, hierarchical models...

log-linear models and torus actions

log-linear model $\mathcal{M}_A = \{p \in \Delta_{m-1} \mid \log p \in \operatorname{rowspan}(A)\}$ parametrise \mathcal{M}_A :

torus action: $GT_d = \text{complex}$, diagonal, invertible $d \times d$ matrices. matrix $A \in \mathbb{Z}^{d \times m}$ gives action on \mathbb{P}^{m-1} : multiply by $\begin{bmatrix} \theta^{a_1} & \\ & \ddots & \\ & & \theta^{a_m} \end{bmatrix}$

linearisation: action on \mathbb{C}^m given by $b \in \mathbb{Z}^d$. multiply by

$$\begin{bmatrix} \theta^{a_1-b} & & \\ & \ddots & \\ & & \theta^{a_m-b} \end{bmatrix}$$

Gaussian group models

given a group G of $m \times m$ real matrices, Gaussian group model is $\mathcal{M}_G = \{g^T g \mid g \in G\}$.

find MLE using group

the point of minimal norm in the orbit gives the MLE.

- discrete: given $v \in \mathbb{C}^m$, MLE is $\hat{p}_i = \frac{|v_i|^2}{||v||^2}$
- Gaussian: given $g \in G$, MLE is $\hat{\Psi} = g^{\mathsf{T}}g$ (up to scale)

can use geodesically convex algorithms for norm minimization on orbit⁹ to find MLE

⁹ Bürgisser P, Franks C, Garg A, Oliveira R, Walter M, Wigderson A. Towards a theory of non-commutative optimization: Geodesic 1st and 2nd order methods for moment maps and polytopes (2019).

