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statistical setting

statistical model M in some space:

discrete: random variable X with m states
probability mass function: p = (p1, . . . , pm), pj = P(X = j)

statistical modelM: subset of probability simplex ∆m−1 =
{
q ∈ Rm | qj ≥ 0,

∑m
j=1 qj = 1

}
.

multivariate Gaussian: random vector x ∈ Rm

probability density function: ρΨ(x) = 1√
det(2πΨ−1)

exp
(
−1

2x
TΨx

)
, Ψ = concentration matrix

statistical model M: subset of positive definite matrices
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group actions

group: set G of elements such that id ∈ G , gh ∈ G , g−1 ∈ G .
G acts linearly on space V means each g ∈ G gives linear transformation of V .

Example

symmetric group → permutation matrices

0 1 0
1 0 0
0 0 1

 v1

v2

v3

 =

v2

v1

v3

 .
orbit is G · v = {g · v | g ∈ G} invariants are functions that are constant on orbits

Example

v1 + v2 + v3, v1v2 + v1v3 + v2v3, v1v2v3

elementary symmetric polynomials generate ring of invariants.
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groups in statistics

i.i.d. independent and identically distributed
→ permuting observations doesn’t change distribution
→ invariant under group of permutation matrices

group symmetry models1 2: covariance matrices invariant under some fixed group

transformation family3: statistical model on which a group acts transitively

1
Steen Andersson. “Invariant normal models.” Annals of Statistics (1975).

2
Jesper Madsen. “Invariant normal models with recursive graphical Markov structure”. Annals of Statistics (2000).

3
Jan Draisma, Sonja Kuhnt, Piotr Zwiernik. “Groups acting on Gaussian graphical models.” Annals of Statistics (2013).
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parameter estimation

have a statistical model M and some data.
want to use the data to estimate parameters in M.

MLEMLE

datadata

maximum likelihood estimate (MLE):
point in model that maximizes likelihood of observing data.
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maximum likelihood estimation

MLEMLE

datadata

discrete: random variable with m states

• model: M a set of p = (p1, . . . , pm) in probability simplex ∆m−1

• data: u = (u1, . . . , um), uj = fraction of times j occurs.
• likelihood: L(p) = pu1

1 · · · pumm , log-likelihood `(p) =
∑

i ui log pi

MLE : p̂ = argmax
p∈M

`(p).

Example:
M = ∆m−1,
unique MLE is p̂ = u.

6/16



maximum likelihood estimation

MLEMLE

datadata

multivariate Gaussian: random vector in Rm

• model: M a set of possible concentration matrices Ψ in positive definite cone
• data: samples Yi ∈ Rm summarized by sample covariance matrix SY = 1

n

∑n
i=1 YiY

T
i

• log-likelihood: `(Ψ) = log det(Ψ)− tr(ΨSY )

MLE : Ψ̂ = argmax
Ψ∈M

`(Ψ).
Example:
M = PDm,
unique MLE Ψ̂ = S−1

Y ...does not exist if rank(SY ) < m
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maximum likelihood thresholds

thresholds4: how many samples needed for:
(i) log-likelihood to be bounded
(ii) MLE to exist
(iii) MLE to be unique.

Example: M = PDm, unique MLE Ψ̂ = S−1
Y SY = 1

n

∑n
i=1 YiY

T
i

...thresholds (i), (ii), (iii) are all m.

• for n ≥ m samples, the MLE generically exists and is unique

• for n < m samples the log-likelihood is unbounded

smaller models need fewer samples
e.g. for a graphical model, thresholds given in terms of graph structure5

recently: connections to rigidity theory
4

Buhl, S. L. ‘On the existence of maximum likelihood estimators for graphical Gaussian models’ (1993)
5

Caroline Uhler: Geometry of maximum likelihood estimation in Gaussian graphical models (2012)
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stability

eq1eq1

originorigin

group G acts linearly on space V .

orbit is G · v = {g · v | g ∈ G},

capacity is cap(v) = infg∈G ‖g · v‖2.

Definition

(a) unstable if cap(v) = 0 [unstable points = null cone, where all invariants vanish]

(b) semistable if cap(v) > 0

(c) polystable if v 6= 0 and G · v is closed

(d) stable if v polystable and stabilizer {g ∈ G | g · v = v} is finite

Examples: finite group, GLm on Cm, SLm1 ×SLm2 on Cm1×m2 .
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invariant theory and maximum likelihood estimation6 7

invariant theory

eq1eq1

originorigin

statistics

MLEMLE

datadata
unstable

semistable
polystable

stable




likelihood unbounded from above
likelihood bounded from above

MLE exists
MLE exists uniquely


6

C. Améndola, K. Kohn, P. Reichenbach, AS, Invariant theory and scaling algorithms for maximum likelihood estimation, to appear in SIAM Journal on
Applied Algebra and Geometry (2021).

7
——-, Toric invariant theory for maximum likelihood estimation in log-linear models, arXiv:2012.07793 (2020)
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stability and MLE existence

invariant theory

eq1eq1

originorigin

torus action by matrix A

statistics

MLEMLE

datadata

log-linear model MA

unstable does not happen
semistable ⇔ extended MLE exists and is unique
polystable ⇔ MLE exists and is unique

stable does not happen

matrix A ∈ Zd×m with (1, . . . , 1) ∈ Cm in rowspan. data u ∈ Zm
≥0 with u1 + · · ·+ um = n.

stability under complex torus GTd , action given by matrix nA with linearization b = Au ∈ Zd .

Proof idea. polyhedral conditions for MLE existence8 relate to Hilbert-Mumford criterion.
8

Eriksson N, Fienberg SE, Rinaldo A, Sullivant S: “Polyhedral conditions for the nonexistence of the MLE for hierarchical log-linear models.” (2006).
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log-linear models

log-linear models: distributions whose logarithm lies in fixed linear space.

MA = {p ∈ ∆m−1 | log p ∈ rowspan(A)},

where A ∈ Zd×m and we assume (1, . . . , 1) ∈ rowspan(A).

e.g. independence model, graphical models, hierarchical models...

A =

p11 p21 p31 p12 p22 p32 p13 p23 p33


λ1 1 1 1
λ2 1 1 1
λ3 1 1 1
µ1 1 1 1
µ2 1 1 1
µ3 1 1 1

∈ Z6×9

log(pij) = λi + µj
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log-linear models and torus actions

log-linear model MA = {p ∈ ∆m−1 | log p ∈ rowspan(A)}
parametrise MA:

Rd
>0 −→ ∆m−1

θ 7−→ 1

Z (θ)
θaj , θaj = θ

a1j

1 · · · θ
adj
d , Z (θ) normalisation constant.

torus action: GTd = complex, diagonal, invertible d × d matrices.
matrix A ∈ Zd×m gives action on Pm−1: multiply by

θ
a1

. . .

θam


linearisation: action on Cm given by b ∈ Zd . multiply byθ

a1−b

. . .

θam−b


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Gaussian group models

given a group G of m ×m real matrices, Gaussian group model is MG = {gTg | g ∈ G}.

invariant theory

eq1eq1

originorigin

group G

statistics

MLEMLE

datadata

Gaussian group model MG

unstable ⇔ likelihood unbounded from above
semistable ⇔ likelihood bounded from above
polystable ⇔ MLE exists

stable ⇒ finitely many MLEs ⇔ unique MLE

stability under G ∩ SLm. for complex G , get equivalence of all four conditions.

Proof idea. log-likelihood is log det(Ψ)− tr(ΨSY ) = log det(gTg)− 1
n ‖g · Y ‖

2.
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find MLE using group

eq1eq1

originorigin

MLEMLE

datadata

the point of minimal norm in the orbit gives the MLE.

• discrete: given v ∈ Cm, MLE is p̂i = |vi |2
‖v‖2

• Gaussian: given g ∈ G , MLE is Ψ̂ = gTg (up to scale)

can use geodesically convex algorithms for norm minimization on orbit9 to find MLE

9
Bürgisser P, Franks C, Garg A, Oliveira R, Walter M, Wigderson A. Towards a theory of non-commutative optimization: Geodesic 1st and 2nd order

methods for moment maps and polytopes (2019).
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eq1eq1

originorigin

MLEMLE

datadata

Thank you!
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