A convex form that is not a sum of squares

James Saunderson
Electrical and Computer Systems Engineering, Monash University, Australia

Fields Institute Workshop on Real Algebraic Geometry and Algorithms for Geometric Constraint Systems June 15, 2021

Forms: homogeneous polynomials of degree $2 d$ in n variables

Convexity:

$p\left(\frac{1}{2}(x+y)\right) \leq \frac{1}{2}(p(x)+p(y))$

- All convex forms are nonnegative

Sums of squares:

$$
p(x)=\sum_{i}\left[q_{i}(x)\right]^{2}
$$

- Some nonnegative forms are SOS

Are convex forms always sums of squares?

Forms: homogeneous polynomials of degree $2 d$ in n variables

Convexity:

$p\left(\frac{1}{2}(x+y)\right) \leq \frac{1}{2}(p(x)+p(y))$

- All convex forms are nonnegative

Sums of squares:

$$
p(x)=\sum_{i}\left[q_{i}(x)\right]^{2}
$$

- Some nonnegative forms are SOS

Are convex forms always sums of squares?

Blekherman (2012): NO! non-constructive argument
This talk: Explicit example of degree 4 in 272 variables

Context

Convexity:

- Natural assumption for opt.
- \Longrightarrow local optimization 'works'

Sums of squares:

- Natural sufficient condition for nonnegativity
- Can be verified by solving a semidefinite program
- Basic sos-based optimization approach

$$
\max _{\gamma} \gamma \text { s.t. } p(x)-\gamma \operatorname{SOS}
$$

Are easy polynomial optimization problems (due to convexity) also easy for SOS?

When are convex forms sums of squares?

Positive results:
Classical:
Convex \Longrightarrow nonneg. \Longrightarrow SOS
El Khadir (2020):
$(n, 2 d)=(4,4)$

- $n=2$
- $2 d=2$
- $(n, 2 d)=(3,4)$ (Hilbert)

When are convex forms sums of squares?

Positive results:
Classical:
Convex \Longrightarrow nonneg. \Longrightarrow SOS
El Khadir (2020):
$(n, 2 d)=(4,4)$

- $n=2$
- $2 d=2$
- $(n, 2 d)=(3,4)$ (Hilbert)

Negative results:
Blekherman (2012): For fixed degree $2 d \geq 4$, and large enough n, there exist convex forms that are not SOS

If $2 d=4$ need $n \geq 27179089915$ to guarantee existence

How do we know a form is convex?

SOS-convexity: (Helton-Nie, Ahmadi-Parrilo, etc.)

$$
\text { If } \quad \frac{1}{2}(p(x)+p(y))-p\left(\frac{1}{2}(x+y)\right) \quad \text { is } \mathrm{SOS}
$$

then p convex \because BUT also implies p SOS \because

How do we know a form is convex?

SOS-convexity: (Helton-Nie, Ahmadi-Parrilo, etc.)

$$
\text { If } \frac{1}{2}(p(x)+p(y))-p\left(\frac{1}{2}(x+y)\right) \quad \text { is SOS }
$$

then p convex \because BUT also implies p SOS

Blekherman's sufficient condition:
If p is a form of degree $2 d$ and

$$
\left(1-\frac{1}{2 d-1}\right)\|x\|^{2 d} \leq p(x) \leq\left(1+\frac{1}{2 d-1}\right)\|x\|^{2 d}
$$

then p is convex.

Polynomial optimization on the sphere

$$
p_{\min }:=\min _{\|x\|^{2}=1} p(x)
$$

- If $2 d=2$, symmetric eigenvalue problem
- If $2 d \geq 4$ NP-hard

Example (Motzkin-Straus): For graph $G=(V, E)$ define

$$
p_{G}(x)=\sum_{i \in V} x_{i}^{4}+2 \sum_{\{i, j\} \in E} x_{i}^{2} x_{j}^{2}
$$

Minimum over sphere is $1 / \alpha(G)$

Basic SOS relaxation

$$
p_{\min }^{\text {sos }}=\max _{\gamma} \gamma \text { subject to } p(x)-\gamma\|x\|^{2 d} \text { SOS }
$$

How good is the basic SOS relaxation?

Natural relative error measure:

$$
\operatorname{GAP}(p)=\frac{p_{\max }-p_{\min }^{\text {sos }}}{p_{\max }-p_{\min }} \geq 1 .
$$

Examples:

- $\operatorname{GAP}\left(p_{G}\right) \leq 2$ for all graphs G

- $\operatorname{GAP}($ Motzkin $) \approx 1.0046$

General upper bounds on $\operatorname{GAP}(\cdot)$: Nie 2012, Fang-Fawzi 2020

Large GAP gives convex not-SOS forms

Recall: Looking for a form that is convex but not SOS
Intuition: Want p that is:

- near constant on sphere (controlled by $p_{\text {min }}$ and $p_{\text {max }}$)
- BUT hard to certify this using SOS (i.e., large $\operatorname{GAP}(p)$)

Proposition: If p is a form of degree $2 d$ and $\operatorname{GAP}(p)>d$ then

$$
p(x)-\left[d p_{\min }-(d-1) p_{\max }\right]\|x\|^{2 d} \quad \text { is convex but not SOS }
$$

Cauchy-Schwarz: the prototypical sum of squares

Degree 4 in $2 k$ variables

$$
\operatorname{CS}_{\mathbb{R}}(x, y)=\|x\|^{2}\|y\|^{2}-\langle x, y\rangle^{2} \geq 0
$$

On sphere in $\mathbb{R}^{2 k}:\|x\|^{2}+\|y\|^{2}=1$

- Minimum value $=0$
- Maximum value $=1 / 4$

Sum-of-squares: (follows from Cauchy-Binet over \mathbb{R})

$$
\operatorname{CS}_{\mathbb{R}}(x, y)=\operatorname{det}\left[\begin{array}{ll}
\langle x, x\rangle & \langle x, y\rangle \\
\langle y, x\rangle & \langle y, y\rangle
\end{array}\right]=\sum_{1 \leq i<j \leq k}\left(x_{i} y_{j}-y_{i} x_{j}\right)^{2}
$$

Cauchy-Schwarz: the prototypical sum of squares?

Over finite-dim. real normed division algebra $(\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O})$

$$
\operatorname{CS}_{\mathbb{O}}(x, y)=\|x\|^{2}\|y\|^{2}-|(x, y)|^{2}
$$

where $x_{1}, \ldots, x_{k}, y_{1}, \ldots, x_{k} \in \mathbb{O}$ (octonions) and

$$
\|x\|^{2}:=\sum_{i} x_{i}^{*} x_{i} \quad \text { and } \quad(x, y):=\sum_{i} x_{i}^{*} y_{i}
$$

On sphere in $\mathbb{R}^{16 k}:\|x\|^{2}+\|y\|^{2}=1$

- Minimum value $=0$ (Cauchy-Schwarz inequality!)
- Maximum value $=1 / 4$

Theorem: (Ge-Tang 2018) $\mathrm{CS}_{\mathbb{H}}$ and $\mathrm{CS}_{\mathbb{O}}$ are not SOS!

Main result

Recall: $\mathrm{CS}_{\mathscr{O}}(x, y)$ quartic form in $16 k$ real variables

Theorem: (S. 2021) If $k \geq 17$ then $\operatorname{GAP}\left(\mathrm{CS}_{\mathscr{O}}\right)=\frac{15}{8 / k+7}>2$

Corollary: If $k=17$ then the quartic

$$
q(x, y):=\frac{1}{4}\left(\|x\|^{2}+\|y\|^{2}\right)^{2}+\operatorname{CS}(x, y)
$$

in $16 \times 17=272$ variables is convex but not SOS.

Note: small perturbation \longrightarrow strictly convex but not SOS form

Remaining proof ideas

Key issue: showing q is not SOS

- "Just" need to solve semidefinite feasibility problem
- Naïve formulation: $\binom{273}{2} \times\binom{ 273}{2}$ matrices

Remaining proof ideas

Key issue: showing q is not SOS

- "Just" need to solve semidefinite feasibility problem
- Naïve formulation: $\binom{273}{2} \times\binom{ 273}{2}$ matrices
- Symmetry: q invariant under

$$
\operatorname{Spin}(9) \times O(k) \text {-action on } \mathbb{R}^{16 \times k} \cong \mathbb{O}^{2 \times k}
$$

- Symmetry reduction \longrightarrow LP feasibility problem in \mathbb{R}^{3}

Questions: convex forms and sums of squares

- What is the real reason why this example works?
- How can we find examples of higher degree? Should this be "easier"?
- Can we construct examples in higher degree
from lower degree examples?

Question: (Ahmadi-Parrilo) For which ($n, 2 d$) are n-variate convex forms of degree $2 d$ always SOS?

Questions: optimization on the sphere

How big can $\operatorname{GAP}(p)$ be for n-variate forms of degree $2 d$?

El Khadir (2020): convex quaternary quartics are sos

Corollary: If p is a quaternary quartic form then $\operatorname{GAP}(p) \leq 2$
Improves on bounds of Nie \& Fang-Fawzi in this special case:
further improvements?

Problem: find explicit examples with large $\operatorname{GAP}(\cdot)$

Thank You!

More information:
"A convex form that is not a sum of squares"
https://arxiv.org/abs/2105.08432

