A geodesic interior-point method for linear optimization over symmetric cones

Frank Permenter

Toyota Research Institute

Symmetric cones have underlying algebraic structure

A set \mathcal{K} is a symmetric cone if $\mathcal{K}=\left\{x^{2}: x \in \mathcal{J}\right\}$ for a commutative algebra \mathcal{J} over real inner-product space satisfying

$$
\langle x \circ y, z\rangle=\langle y, x \circ z\rangle, \quad(x \circ y) \circ x^{2}=x \circ\left(y \circ x^{2}\right)
$$

Examples:

- Nonnegative orthant $\left\{x \in \mathbb{R}^{n}: x \geq 0\right\}$

$$
[x \circ y]_{i}:=x_{i} y_{i}
$$

- Second-order-cone $\left\{\left(x_{0}, x\right) \in \mathbb{R} \times \mathbb{R}^{n}:\|x\| \leq x_{0}\right\}$

$$
\left(x_{0}, x\right) \circ\left(y_{0}, y\right):=\left(x_{0} y_{0}+x^{T} y, x_{0} x+y_{0} x\right)
$$

- Cone of psd matrices $\left\{V V^{T}: V \in \mathbb{R}^{n \times n}\right\}$

$$
X \circ Y:=\frac{1}{2}(X Y+Y X)
$$

Symmetric cone programs generalize LP/SOCP/SDP

Given symmetric cone $\mathcal{K}=\left\{z^{2}: z \in \mathcal{J}\right\}$, we consider problem

$$
\begin{array}{ll}
\operatorname{minimize} & \langle c, x\rangle \\
\text { subject to } & A x=b \\
& x \in \mathcal{K} .
\end{array}
$$

This generalizes linear (LP), second-order-cone (SOCP), and semidefinite programming (SDP).

A well-studied family:

- Algorithms: Faybusovich, Alizadeh/Schmieta, Nesterov/Todd
- Polynomial-time complexity bounds
- Software packages: SeDuMi, SDPT3, Mosek, ...

Symmetric cone programs solved by interior-point methods

IPMs track the central-path of $\min _{x \in \mathcal{K}, A x=b} c^{T} x$.

$$
\begin{gather*}
x \circ s=\mu \mathbf{1} \\
A x=b, \quad s=c-A^{*} y \tag{1}\\
x \in \mathcal{K} \quad s \in \mathcal{K}
\end{gather*}
$$

($\mathbf{1}$ denotes the identity of \circ.)

That is, they reduce μ to zero while computing solutions to (1).
Properties of IPMs:

- Move along central path in $\mathcal{O}\left(\|\mathbf{1}\| \log \frac{\mu_{0}}{\mu_{f}}\right)$ iterations
- s and x updated using subspaces:

$$
x_{i+1}-x_{i} \in \text { null } A, \quad s_{i+1}-s_{i} \in \operatorname{range} A^{*}
$$

We present a new IPM for symmetric cone optimization.

Key idea: update (s_{i}, x_{i}) using geodesics of \mathcal{K} instead of subspaces of A such that complementarity is maintained.

$$
\underbrace{A x_{i}=b, s_{i}=c-A^{*} y_{i}}_{\text {existing algs }}, \quad \underbrace{x_{i} \circ s_{i}=\mu_{i} \mathbf{1}}_{\text {this talk }} \quad \forall \text { iters. } i
$$

Remainder of talk:
Part I: The special-case of linear programming

- Log-space transformation of central-path
- A log-space IPM and $\mathcal{O}(\sqrt{n})$ complexity.

Part II: The generalization to symmetric cones

- From log-space to geodesics
- A geodesic IPM and $\mathcal{O}(\|\mathbf{1}\|)$ complexity.

Part I: A log-space interior-point method for linear programming.

$$
\begin{array}{ll}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b \\
& x \geq 0, \quad \text { i.e., } x \in \mathbb{R}_{+}^{n}
\end{array}
$$

We solve log-domain central-path conditions

We rewrite central-path conditions:

$$
A x=b \quad s=c-A^{T} y, x \geq 0, s \geq 0, \quad s_{i} x_{i}=\mu
$$

using a \log param. $v \in \mathbb{R}^{m}$ and elementwise exp. e^{v} :

$$
\begin{equation*}
b=A \sqrt{\mu} e^{v}, \quad \sqrt{\mu} e^{-v}=c-A^{T} y \tag{2}
\end{equation*}
$$

By construction: $x=\sqrt{\mu} e^{v}$ and $s=\sqrt{\mu} e^{-v}$ satisfy $x_{i} s_{i}=\mu$.
Our meta-algorithm:

- Fix μ and apply Newton's method to (2)
- Decrease μ.
- Repeat.

Previously unanalyzed!

Newton's method uses approx. $e^{v+d} \approx e^{v}+e^{v} \circ d$

Newton's method ($\circ:=$ elementwise mult.):

- Solve Newton system for $(y, d) \in \mathbb{R}^{m} \times \mathbb{R}^{n}$:

$$
\begin{align*}
\sqrt{\mu} A\left(e^{v}+e^{v} \circ d\right) & =b \\
\sqrt{\mu}\left(e^{-v}-e^{-v} \circ d\right) & =c-A^{T} y \tag{3}
\end{align*}
$$

- Pick step-size α, set $v \leftarrow v+\frac{1}{\alpha} d$ and repeat.

Properties (P., 2020):

- Globally converges if $\alpha=\max \left(1, \frac{1}{2}\|d\|^{2}\right)$.
- Quadratically converges to limit v_{*} if $\left\|v-v_{*}\right\| \leq \cosh ^{-1}(5 / 4)$.

A log-space IPM for $\min _{x>0, A x=b} c^{T} x$

Let $d(\mu)$ denote Newton dir. as function of μ at current $v \in \mathbb{R}^{n}$.
while $\mu>\mu_{f}$ or $\|d(\mu)\|>\epsilon$ do Decrease μ $\alpha \leftarrow \max \left(1, \frac{1}{2}\|d(\mu)\|^{2}\right)$ $v \leftarrow v+\frac{1}{\alpha} d(\mu)$
end
$x=\sqrt{\mu} e^{v}, s=\sqrt{\mu} e^{-v}$

Main results (P., 2020):

- Finitely terminates by simply setting $\mu=\mu_{f}$
- Exists μ-update rule with $\mathcal{O}\left(\sqrt{n} \log \frac{\mu_{0}}{\mu_{f}}\right)$ iteration complexity
- Final log-distance of (x, s) to central-path is $\mathcal{O}(\epsilon)$

Part II: a geodesic-interior point method for symmetric cone optimization.

$$
\begin{array}{ll}
\operatorname{minimize} & \langle c, x\rangle \\
\text { subject to } & A x=b \\
& x \in \mathcal{K}
\end{array}
$$

Line-segments in log-space are geodesics of \mathbb{R}_{+}^{n}

For curve $c:[0,1] \rightarrow \operatorname{int} \mathbb{R}_{+}^{n}$, let

$$
L(c):=\int_{0}^{1}\left\|c(t)^{-1} \circ c^{\prime}(t)\right\| d t
$$

Let $g(t):=e^{t \log a+(1-t) \log b}$ for $a, b \in \operatorname{int} \mathbb{R}_{+}^{n}$.
Properties

- The curve $g(t)$ is a geodesic, i.e., it minimizes $L(c)$ over $c(t)$ satisfying $c(0)=a$ and $c(1)=b$.
- $L(g)=\|\log a-\log b\|$.
- $g^{-1}(t)$ is the geodesic between a^{-1} and b^{-1}.

Geodesics of symm. cones have a known parametrization

For curve $c:[0,1] \rightarrow$ int \mathcal{K}, define

$$
L(c):=\int_{0}^{1}\left\|Q(c(t))^{-1 / 2} c^{\prime}(t)\right\| d t
$$

where $Q(w): \mathcal{K} \rightarrow \mathcal{K}$ denotes the quadratic representation of w.

Properties:

- Geodesics have form $g(t):=Q\left(w^{1 / 2}\right) \exp t d$,

$$
\exp d:=\sum_{m=0}^{\infty} \frac{1}{m!} d^{m}, \quad g(0)=w, \quad L(g)=\|d\|
$$

- $g^{-1}(t)=Q\left(w^{-1 / 2}\right) \exp -t d$ also a geodesic.

Example $\left(\mathcal{K}=\mathbb{R}_{+}^{n}, \mathcal{K}=\right.$ psd matrices $)$

$$
g(t)=w \circ e^{t d}=e^{\log w+t d}, \quad g(t)=W^{1 / 2} e^{t D} W^{1 / 2}
$$

A template geodesic IPM for $\min _{x \in \mathcal{K}, A x=b}\langle c, x\rangle$

while $\mu>\mu_{\boldsymbol{f}}$ do
Decrease μ
Compute search direction d Select step-size t.
$w \leftarrow Q\left(w^{1 / 2}\right) \exp t d$
end
$x=\sqrt{\mu} w, s=\sqrt{\mu} w^{-1}$

Iterates joined by geodesic curve

$$
g(t)=Q\left(w^{1 / 2}\right) \exp t d
$$

Properties of w-update:

- Equivalent to $w^{-1} \leftarrow Q\left(w^{-1 / 2}\right) \exp -t d$.
- Formulae for LP and SDP:

$$
w \leftarrow e^{\log w+t d}, \quad W \leftarrow W^{1 / 2} e^{t D} W^{1 / 2}
$$

Linearizing w-update yields a geodesic Newton method

Geodesic Newton method:

- Solve Newton system for $(y, d) \in \mathbb{R}^{m} \times \mathbb{R}^{n}$:

$$
\begin{aligned}
& \sqrt{\mu} A Q\left(w^{1 / 2}\right)(\mathbf{1}+d)=b \\
& \sqrt{\mu} Q\left(w^{-1 / 2}\right)(\mathbf{1}-d)=c-A^{T} y
\end{aligned}
$$

- Set $w \leftarrow Q\left(w^{1 / 2}\right) \exp \frac{1}{\alpha} d$ using step-size α and repeat.

Properties (P., 2020):

- Based on approx. $Q\left(w^{1 / 2}\right) \exp d \approx Q\left(w^{1 / 2}\right)(\mathbf{1}+d)$
- Globally converges to limit w_{*} if $\alpha=\max \left(1, \frac{1}{2}\|d\|^{2}\right)$.
- Quad. converges if geodesic distance $\delta\left(w, w_{*}\right) \leq \cosh ^{-1}(5 / 4)$.

A geodesic IPM for $\min _{x \in \mathcal{K}, A x=b}\langle c, x\rangle$

Let $d(\mu)$ denote Newton dir. as function of μ at current $w \in \mathcal{K}$.
while $\mu>\mu_{f}$ or $\|d(\mu)\|>\epsilon$ do Decrease μ
$\alpha \leftarrow \max \left(1, \frac{1}{2}\|d(\mu)\|^{2}\right)$
$w \leftarrow Q\left(w^{1 / 2}\right) \exp \frac{1}{\alpha} d(\mu)$
end

$$
x=\sqrt{\mu} w, s=\sqrt{\mu} w^{-1}
$$

Main results (P. 2020):

- Finitely terminates by simply setting $\mu=\mu_{f}$.
- Exists μ-update with $\mathcal{O}\left(\|\mathbf{1}\| \log \frac{\mu_{0}}{\mu_{f}}\right)$ iteration complexity
- Final geodesic distance of (x, s) to central-path is $\mathcal{O}(\epsilon)$

Geodesic IPM implemented in software package conex

Currently developing conex, a software package for:

$$
\begin{array}{ll}
\operatorname{minimize} & \langle c, x\rangle \\
\text { subject to } & A x=b \\
& x \in \mathcal{K}
\end{array}
$$

Features:

- Supports all symmetric cones \mathcal{K}
- LP, SDP, SOCP
- Hermitian psd matrices with complex and quaternion entries
- The exceptional one (3×3 octonions)
- Sparse (supernodal) linear algebra.
- Approximation methods for matrix exponential.
- Lanczos methods for generalized eigenvalues.

Comparison with SDPT3 solver

Parameters	Solver Time (sec)		$\\|A x-b\\|$		Duality Gap	
(n, m)	spdt3	conex	spdt3	conex	sdpt3	conex
$(20,20)$	$1.1 \mathrm{e}-01$	$4.1 \mathrm{e}-03$	$1.4 \mathrm{e}-12$	$3.9 \mathrm{e}-12$	$1.4 \mathrm{e}-09$	$8.9 \mathrm{e}-10$
$(50,50)$	$7.0 \mathrm{e}-01$	$1.1 \mathrm{e}-01$	$1.0 \mathrm{e}-12$	$1.5 \mathrm{e}-12$	$1.1 \mathrm{e}-09$	$1.9 \mathrm{e}-09$
$(100,100)$	$3.1 \mathrm{e}+00$	$9.8 \mathrm{e}-01$	$2.0 \mathrm{e}-12$	$3.9 \mathrm{e}-12$	$9.7 \mathrm{e}-10$	$2.4 \mathrm{e}-09$
$(20,40)$	$1.4 \mathrm{e}-01$	$1.6 \mathrm{e}-02$	$6.9 \mathrm{e}-11$	$7.7 \mathrm{e}-13$	$4.6 \mathrm{e}-10$	$7.2 \mathrm{e}-10$
$(50,250)$	$1.8 \mathrm{e}+00$	$5.6 \mathrm{e}-01$	$1.5 \mathrm{e}-11$	$9.8 \mathrm{e}-12$	$5.3 \mathrm{e}-09$	$6.6 \mathrm{e}-10$
$(100,1000)$	$1.9 \mathrm{e}+01$	$1.4 \mathrm{e}+01$	$3.4 \mathrm{e}-11$	$3.1 \mathrm{e}-11$	$6.5 \mathrm{e}-10$	$6.9 \mathrm{e}-10$

Table: SDPs of order n with m equality constraints.

Remarks:

- Our solver conex faster and just as accurate.
- Speed-up diminishes with $m>n$ since computation of Newton step dominates both solvers.

In summary,

- Presented new IPM for symmetric cone programming
- For LP, reduces to central-path tracking in log domain
- $\mathcal{O}(\|\mathbf{1}\|)$ complexity bounds match state-of-the-art
- Software package conex in development (demo on Thursday).

Paper and software:

www.mit.edu/~fperment/
www.github.com/FrankPermenter/

