A geodesic interior-point method for linear optimization over symmetric cones

Frank Permenter

Toyota Research Institute

Symmetric cones have underlying algebraic structure

A set \mathcal{K} is a symmetric cone if $\mathcal{K} = \{x^2 : x \in \mathcal{J}\}$ for a commutative algebra \mathcal{J} over real inner-product space satisfying

$$\langle x \circ y, z \rangle = \langle y, x \circ z \rangle, \qquad (x \circ y) \circ x^2 = x \circ (y \circ x^2)$$

Examples:

• Nonnegative orthant $\{x \in \mathbb{R}^n : x \ge 0\}$

$$[x \circ y]_i := x_i y_i$$

• Second-order-cone $\{(x_0, x) \in \mathbb{R} \times \mathbb{R}^n : ||x|| \le x_0\}$

$$(x_0, x) \circ (y_0, y) := (x_0y_0 + x^Ty, x_0x + y_0x).$$

• Cone of psd matrices $\{VV^T : V \in \mathbb{R}^{n \times n}\}$

$$X \circ Y := \frac{1}{2}(XY + YX)$$

Symmetric cone programs generalize LP/SOCP/SDP

Given symmetric cone $\mathcal{K} = \{z^2 : z \in \mathcal{J}\}$, we consider problem

 $\begin{array}{ll} \text{minimize} & \langle c, x \rangle \\ \text{subject to} & Ax = b \\ & x \in \mathcal{K}. \end{array}$

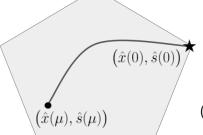
This generalizes linear (LP), second-order-cone (SOCP), and semidefinite programming (SDP).

A well-studied family:

- Algorithms: Faybusovich, Alizadeh/Schmieta, Nesterov/Todd
- Polynomial-time complexity bounds
- Software packages: SeDuMi, SDPT3, Mosek, ...

Symmetric cone programs solved by interior-point methods

IPMs track the *central-path* of $\min_{x \in \mathcal{K}, Ax=b} c^T x$.



 $egin{aligned} &x\circ s=\mu\mathbf{1},\ &Ax=b,\ s=c-A^*y \ &x\in\mathcal{K}\ &s\in\mathcal{K}. \end{aligned}$

(1 denotes the identity of \circ .)

That is, they reduce μ to zero while computing solutions to (1).

Properties of IPMs:

- Move along central path in $\mathcal{O}(\|\mathbf{1}\| \log \frac{\mu_0}{\mu_{\epsilon}})$ iterations
- s and x updated using subspaces:

$$x_{i+1} - x_i \in \operatorname{null} A, \qquad s_{i+1} - s_i \in \operatorname{range} A^*$$

We present a new IPM for symmetric cone optimization.

Key idea: update (s_i, x_i) using geodesics of \mathcal{K} instead of subspaces of A such that complementarity is maintained.

$$\underbrace{Ax_i = b, s_i = c - A^* y_i}_{\text{existing algs}}, \qquad \underbrace{x_i \circ s_i = \mu_i \mathbf{1}}_{\text{this talk}} \qquad \forall \text{ iters. } i$$

Remainder of talk:

Part I: The special-case of linear programming

- Log-space transformation of central-path
- A log-space IPM and $\mathcal{O}(\sqrt{n})$ complexity.
- Part II: The generalization to symmetric cones
 - From log-space to geodesics
 - A geodesic IPM and $\mathcal{O}(\|\mathbf{1}\|)$ complexity.

Part I: A log-space interior-point method for linear programming.

minimize
$$c^T x$$

subject to $Ax = b$
 $x \ge 0$, $i.e., x \in \mathbb{R}^n_+$

We solve log-domain central-path conditions

We rewrite central-path conditions:

$$Ax = b \qquad s = c - A^T y, x \ge 0, s \ge 0, \ s_i x_i = \mu$$

using a log param. $v \in \mathbb{R}^m$ and elementwise exp. e^v :

$$b = A\sqrt{\mu}e^{\nu}, \quad \sqrt{\mu}e^{-\nu} = c - A^{T}y$$
(2)

By construction: $x = \sqrt{\mu}e^{\nu}$ and $s = \sqrt{\mu}e^{-\nu}$ satisfy $x_i s_i = \mu$.

Our meta-algorithm:

- Fix μ and apply Newton's method to (2)
- Decrease μ .
- Repeat.

Previously unanalyzed!

Newton's method ($\circ :=$ elementwise mult.):

• Solve Newton system for $(y, d) \in \mathbb{R}^m \times \mathbb{R}^n$:

$$\sqrt{\mu}A(e^{\nu} + e^{\nu} \circ d) = b$$

$$\sqrt{\mu}(e^{-\nu} - e^{-\nu} \circ d) = c - A^{T}y$$
(3)

• Pick step-size α , set $v \leftarrow v + \frac{1}{\alpha}d$ and repeat.

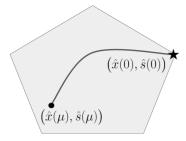
Properties (P., 2020):

- Globally converges if $\alpha = \max(1, \frac{1}{2} \|d\|^2)$.
- Quadratically converges to limit v_* if $||v v_*|| \le \cosh^{-1}(5/4)$.

A log-space IPM for $\min_{x \ge 0, Ax=b} c^T x$

Let $d(\mu)$ denote Newton dir. as function of μ at current $v \in \mathbb{R}^n$.

while
$$\mu > \mu_f$$
 or $\|d(\mu)\| > \epsilon$ do
Decrease μ
 $\alpha \leftarrow \max(1, \frac{1}{2} \|d(\mu)\|^2)$
 $v \leftarrow v + \frac{1}{\alpha} d(\mu)$
end
 $x = \sqrt{\mu} e^v$, $s = \sqrt{\mu} e^{-v}$



Main results (P., 2020):

- Finitely terminates by simply setting $\mu = \mu_f$
- Exists μ -update rule with $\mathcal{O}(\sqrt{n}\log\frac{\mu_0}{\mu_c})$ iteration complexity
- Final log-distance of (x, s) to central-path is $\mathcal{O}(\epsilon)$

Part II: a geodesic-interior point method for symmetric cone optimization.

 $\begin{array}{ll} \text{minimize} & \langle c, x \rangle \\ \text{subject to} & Ax = b \\ & x \in \mathcal{K} \end{array}$

Line-segments in log-space are geodesics of \mathbb{R}^n_+

For curve $c:[0,1]
ightarrow {
m int}\, \mathbb{R}^n_+$, let

$$L(c) := \int_0^1 \|c(t)^{-1} \circ c'(t)\| dt$$

Let $g(t) := e^{t \log a + (1-t) \log b}$ for $a, b \in \operatorname{int} \mathbb{R}^n_+$.

Properties

- The curve g(t) is a geodesic, i.e., it minimizes L(c) over c(t) satisfying c(0) = a and c(1) = b.
- $L(g) = \|\log a \log b\|.$
- $g^{-1}(t)$ is the geodesic between a^{-1} and b^{-1} .

Geodesics of symm. cones have a known parametrization

For curve $c:[0,1] \rightarrow \mathsf{int}\,\mathcal{K}$, define

$$L(c) := \int_0^1 \|Q(c(t))^{-1/2}c'(t)\|dt,$$

where $Q(w) : \mathcal{K} \to \mathcal{K}$ denotes the *quadratic representation* of *w*.

Properties:

• Geodesics have form $g(t) := Q(w^{1/2}) \exp td$,

$$\exp d := \sum_{m=0}^{\infty} \frac{1}{m!} d^m, \qquad g(0) = w, \qquad L(g) = \|d\|$$

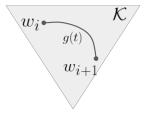
• $g^{-1}(t) = Q(w^{-1/2}) \exp -td$ also a geodesic.

$$\begin{array}{l} \mathsf{Example} \ (\mathcal{K} = \mathbb{R}^n_+, \ \mathcal{K} = \mathsf{psd} \ \mathsf{matrices}) \\ g(t) = w \circ e^{td} = e^{\log w + td}, \qquad g(t) = W^{1/2} e^{tD} W^{1/2} \end{array}$$

A template geodesic IPM for $\min_{x \in \mathcal{K}, Ax=b} \langle c, x \rangle$

while $\mu > \mu_f$ do Decrease μ Compute search direction dSelect step-size t. $w \leftarrow Q(w^{1/2}) \exp td$ end

$$x=\sqrt{\mu}w$$
, $s=\sqrt{\mu}w^{-1}$



Iterates joined by geodesic curve $g(t) = Q(w^{1/2}) \exp td.$

Properties of w-update:

- Equivalent to $w^{-1} \leftarrow Q(w^{-1/2}) \exp -td$.
- Formulae for LP and SDP:

$$w \leftarrow e^{\log w + td}, \qquad W \leftarrow W^{1/2} e^{tD} W^{1/2}$$

Linearizing w-update yields a geodesic Newton method

Geodesic Newton method:

• Solve Newton system for $(y, d) \in \mathbb{R}^m \times \mathbb{R}^n$:

$$\sqrt{\mu}AQ(w^{1/2})(\mathbf{1}+d) = b,$$

 $\sqrt{\mu}Q(w^{-1/2})(\mathbf{1}-d) = c - A^T y$

• Set $w \leftarrow Q(w^{1/2}) \exp \frac{1}{\alpha} d$ using step-size α and repeat.

Properties (P., 2020):

- Based on approx. $Q(w^{1/2})\exp d pprox Q(w^{1/2})(\mathbf{1}+d)$
- Globally converges to limit w_* if $\alpha = \max(1, \frac{1}{2} ||d||^2)$.
- Quad. converges if geodesic distance $\delta(w, w_*) \leq \cosh^{-1}(5/4)$.

A geodesic IPM for $\min_{x \in \mathcal{K}, Ax = b} \langle c, x \rangle$

Let $d(\mu)$ denote Newton dir. as function of μ at current $w \in \mathcal{K}$.

while
$$\mu > \mu_f$$
 or $||d(\mu)|| > \epsilon$ do
Decrease μ
 $\alpha \leftarrow \max(1, \frac{1}{2} ||d(\mu)||^2)$
 $w \leftarrow Q(w^{1/2}) \exp \frac{1}{\alpha} d(\mu)$
end
 $x = \sqrt{\mu}w, \ s = \sqrt{\mu}w^{-1}$
 $(\hat{x}(\mu), \hat{s}(\mu))$

Main results (P. 2020):

- Finitely terminates by simply setting $\mu = \mu_f$.
- Exists μ -update with $\mathcal{O}(\|\mathbf{1}\| \log \frac{\mu_0}{\mu_f})$ iteration complexity
- Final geodesic distance of (x, s) to central-path is $\mathcal{O}(\epsilon)$

Geodesic IPM implemented in software package conex

Currently developing conex, a software package for:

```
\begin{array}{ll} \text{minimize} & \langle c, x \rangle \\ \text{subject to} & Ax = b \\ & x \in \mathcal{K} \end{array}
```

Features:

- Supports all symmetric cones ${\cal K}$
 - LP, SDP, SOCP
 - Hermitian psd matrices with complex and quaternion entries
 - The exceptional one (3x3 octonions)
- Sparse (supernodal) linear algebra.
- Approximation methods for matrix exponential.
- Lanczos methods for generalized eigenvalues.

Parameters	Solver Time (sec)		$\ Ax - b\ $		Duality Gap	
(<i>n</i> , <i>m</i>)	spdt3	conex	spdt3	conex	sdpt3	conex
(20, 20)	1.1e-01	4.1e-03	1.4e-12	3.9e-12	1.4e-09	8.9e-10
(50, 50)	7.0e-01	1.1e-01	1.0e-12	1.5e-12	1.1e-09	1.9e-09
(100, 100)	3.1e+00	9.8e-01	2.0e-12	3.9e-12	9.7e-10	2.4e-09
(20, 40)	1.4e-01	1.6e-02	6.9e-11	7.7e-13	4.6e-10	7.2e-10
(50, 250)	1.8e+00	5.6e-01	1.5e-11	9.8e-12	5.3e-09	6.6e-10
(100, 1000)	$1.9e{+}01$	1.4e+01	3.4e-11	3.1e-11	6.5e-10	6.9e-10

Table: SDPs of order n with m equality constraints.

Remarks:

- Our solver conex faster and just as accurate.
- Speed-up diminishes with m > n since computation of Newton step dominates both solvers.

In summary,

- Presented new IPM for symmetric cone programming
- For LP, reduces to central-path tracking in log domain
- $\mathcal{O}(\|\mathbf{1}\|)$ complexity bounds match state-of-the-art
- Software package conex in development (demo on Thursday).

Paper and software:

www.mit.edu/~fperment/ www.github.com/FrankPermenter/