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Cylindrical Algebraic Decomposition
Cylindrical Algebraic Decomposition (CAD) was first
introduced by Collins in the 1970s, as an algorithm to produce:

A decomposition of Rn is a set of cells Ci such that⋃
i Ci = Rn; and Ci ∩ Cj = ∅ if i 6= j .

The cells are semi-algebraic meaning they may be described
by a finite sequence of polynomial constraints.
The cells are cylindrical meaning the projection of any two
cells to a lower coordinate space, in the variable ordering, are
identical or disjoint. I.e. the cells in Rm stack up in cylinders
over cells from CAD in Rm−1; can project via cell description.

A CAD is traditionally built relative to a set of input polynomials
such that each polynomial has constant sign in each cell: this is
called sign-invariance. You can uncover properties of polynomials
over infinite space by examining finite set of sample points.
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Cylindrical Algebraic Decomposition
Cylindrical Algebraic Decomposition (CAD) was first
introduced by Collins in the 1970s, as an algorithm to produce:

A decomposition of Rn is a set of cells Ci such that⋃
i Ci = Rn; and Ci ∩ Cj = if i 6= j .

The cells are semi-algebraic meaning they may be described
by a finite sequence of polynomial constraints.
The cells are cylindrical meaning the projection of any two
cells to a lower coordinate space, in the variable ordering, are
identical or disjoint. I.e. the cells in Rm stack up in cylinders
over cells from CAD in Rm−1; can project via cell description.

A CAD is ideally built relative to a set of input polynomial
constraints such that each constraint has constant truth value in
each cell: this is called truth-invariance. Uncover solutions from
semi-algebraic descriptions of true cells.
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Example: Circle − decomposition visualisation
Cell 1: x < −1, y free
Cell 2: x = −1, y < 0
Cell 3: x = −1, y = 0
Cell 4: x = −1, y > 0
Cell 5: −1 < x < 1,

y 2 + x2 − 1 > 0, y < 0
Cell 6: −1 < x < 1,

y 2 + x2 − 1 = 0, y < 0
Cell 7: −1 < x < 1,

y 2 + x2 − 1 < 0
Cell 8: −1 < x < 1,

y 2 + x2 − 1 = 0, y > 0
Cell 9: −1 < x < 1,

y 2 + x2 − 1 > 0, y > 0
Cell 10: x = 1, y < 0
Cell 11: x = 1, y = 0
Cell 12: x = 1, y > 0
Cell 13: x > 1, y free
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Example: Circle − cylindrical tree
The cylindricity means we can think of CAD as a tree branching by
variable restriction.
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Motivation: Real QE

Real Quantifier Elimination (Real QE)
Given: Quantified formulae in prenex form with atoms integral
polynomial constraints.
Produce: quantifier free formula logically equivalent over R.

Fully quantified

Input: ∀x , x2 + 1 ≤ 0
Output: False

Input: ∃x , x2 + 3x + 1 ≤ 0
Output: True

Partially quantified

Input: ∃x , x2 + bx + 1 ≤ 0
Output: (b ≤ −2) ∨ (b > 2)

When partially quantified
answer depends on free
(unquantified) variables.
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QE via CAD Example
How to determine with CAD?

∃x , x2 + bx + 1 ≤ 0

To solve we:
Build a sign-invariant CAD for
f = x2 + bx + 1.
Tag each cell true or false
according to f ≤ 0.
Take disjunction of projections of
true cells:

b < −2 ∨ b = −2
∨b = 2 ∨ b > −2
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To solve we:
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Take disjunction of projections of
true cells:

=⇒
b ≤ −2 ∨ b ≥ 2

M. England New Directions in CAD



Cylindrical Algebraic Decomposition
New Direction: Adapting and Relaxing CAD
New Direction: Machine Learning for CAD

Definition
Motivation: Quantifier Elimination
Applications and Complexity

Outline

1 Cylindrical Algebraic Decomposition
Definition
Motivation: Quantifier Elimination
Applications and Complexity

2 New Direction: Adapting and Relaxing CAD
CAD for SMT
Coverings not Decompositions
Other and Future Work

3 New Direction: Machine Learning for CAD
CAD Variable Ordering
Our Previous Attempts
Other and Future Work

M. England New Directions in CAD



Cylindrical Algebraic Decomposition
New Direction: Adapting and Relaxing CAD
New Direction: Machine Learning for CAD

Definition
Motivation: Quantifier Elimination
Applications and Complexity

QE Implementations and Applications
So existential QE via projection of true CAD cells onto free
variables. Universal QE via ∀xF (x) = ¬∃x¬F (x).
QE and CAD implementations are traditionally found in Computer
Algebra Systems, e.g. Maple (RegularChains, SyNRAC),
Mathematica, Reduce (Redlog), Qepcad-B.
CAD also in the SMT-solvers, SMT-RAT, Yices, Z3 and cvc5.
QE can solve problems throughout engineering & science. E.g.

derivation of optimal numerical schemes (Erascu-Hong, 2014)
automated theorem proving (Paulson, 2012)
automated loop parellisation (Grösslinger et al. 2006)
analysis of economic hypotheses (Mulligan et al., 2018)

Also CAD applications independent of QE, e.g. multi-stationarity
identification in chemical reaction networks (Bradford et al. 2017).
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CAD Complexity
To build a CAD we repeatedly project polynomials to encode key
geometric information. This is followed by repeated use of real
root isolation and the substitution of sample points to render
multivariate polynomials univariate. We can isolate at sample
points and infer properties throughout a cell due as the information
tracked by projection ensures the relevant cell boundaries.

By the end of projection you have doubly exponentially many
polynomials of doubly exponential degree (in the number of
projections, i.e. variables). Hence also the number of real roots,
cells and time to compute them grows doubly exponentially.

C. Brown and J.H. Davenport.
The complexity of quantifier elimination and cylindrical
algebraic decomposition.
In Proc. ISSAC ’07, pages 54–60. ACM, 2007.
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Satisfiability in NRA
We now consider the problem of determining the satisfiability of a
formula in Non-linear Real Arithmetic (NRA). I.e. to evaluate

∃x1, ∃x2, . . . ,∃xnF (x1, x2, . . . , xn)

as either True (SAT) or False (UNSAT) where F is a formula in
Boolean logic (atoms connected by ∧,∨,¬) whose atoms are sign
constraints on non-linear multivariate polynomials with integer
coefficients. (Usually assume F is in conjunctive normal form.)

This is a sub-problem of Real QE and thus can be solved by CAD.
But as a problem it has lower (single exponential) complexity.

A sign-invariant CAD for the polynomials in F can be used to solve
any such problem, regardless of the particular Boolean structure
involved. How to adapt CAD to take note of the logic?

M. England New Directions in CAD



Cylindrical Algebraic Decomposition
New Direction: Adapting and Relaxing CAD
New Direction: Machine Learning for CAD

CAD for SMT
Coverings not Decompositions
Other and Future Work

Satisfiability in NRA
We now consider the problem of determining the satisfiability of a
formula in Non-linear Real Arithmetic (NRA). I.e. to evaluate

∃x1, ∃x2, . . . ,∃xnF (x1, x2, . . . , xn)

as either True (SAT) or False (UNSAT) where F is a formula in
Boolean logic (atoms connected by ∧,∨,¬) whose atoms are sign
constraints on non-linear multivariate polynomials with integer
coefficients. (Usually assume F is in conjunctive normal form.)

This is a sub-problem of Real QE and thus can be solved by CAD.
But as a problem it has lower (single exponential) complexity.

A sign-invariant CAD for the polynomials in F can be used to solve
any such problem, regardless of the particular Boolean structure
involved. How to adapt CAD to take note of the logic?

M. England New Directions in CAD



Cylindrical Algebraic Decomposition
New Direction: Adapting and Relaxing CAD
New Direction: Machine Learning for CAD

CAD for SMT
Coverings not Decompositions
Other and Future Work

The SMT Approach

One approach to such satisfiability problems is to separate out the
logic from the arithmetic theory.

Allow the logical structure to be explored by a SAT Solver.
Have the solutions proposed be tested in the theory of interest
by relevant software for that domain: a Theory Solver.

The Theory Solver need only test the consistency of a set of
constraints (no Boolean logic).

This approach is called Satisfiability Modulo Theories (SMT).
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Why the SMT Approach?
To take advantage of the incredible progress in SAT solvers!
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CAD as NRA Theory Solver
We can use CAD as SMT NRA theory solver but it must be
adapted for this use:

Incrementality: Add a constraint and divide cells.
Backtracking: Remove a constraint and merge cells.
Explanations: When no cell satisfies constraints identify
minimal subset of constraints which are mutually unsatisfiable.

G. Kremer and E. Ábrahám.
Fully incremental cylindrical algebraic decomposition.
J. of Symbolic Computation, 100, pages 11–37. Elsevier, 2020.
https://doi.org/10.1016/j.jsc.2019.07.018

(Q) Why is SAT solver + CAD better than CAD alone?
(A) Because in SMT a theory solver commonly only addresses a
small subset of the total constraints.
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How good is this approach?

For problems where the solution is SAT this approach tends to
determine the solution much faster than CAD alone as it can
terminate earlier when a satisfying witness is discovered.

For UNSAT problems this approach can still be faster if it allows to
reach the conclusion by studying multiple smaller problems; but it
may still require the computation of some very large
decompositions.

How to adapt CAD further to avoid this?
The following approaches try to success of SAT-solvers which
search the sample spaces by: making guesses, propagating, and
generalising conflicts to avoid similar parts of the search space.
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The NLSAT Algorithm
D. Jovanović and L. de Moura.
Solving Non-linear Arithmetic.
Proc. IJCAR 2012, LNCS 7364, pp. 339-354. Springer, 2012.
https://doi.org/10.1007/978-3-642-31365-3_27

The NLSAT used an alternative to the SMT framework (called
MCSAT) which does not separate SAT-solver and Theory solver.

Partial model solutions for the Boolean skeleton and the
algebraic theory are built in parallel.
Boolean conflicts generalised using the CDCL approach of
modern SAT solvers (Marques-Silva and Sakallah).
Theory conflicts generalised through the creation of a single
CAD cell: the cell around the theory model point where the
polynomials involved in the conflict are sign invariant.
The learnt clause is the negation of the cell description.
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NLSAT Implications
Less projection (only polynomials in the conflict) and less root
isolation (only once per level). Other optimisations in cell
production have also been found (Brown, 2013).

The cells are produced independently of each other:
When UNSAT is concluded it usually means we have
produced a covering of the theory space.
I.e. ⋃

i Ci = Rn but Ci ∩ Cj need not be empty.
The cells are locally cylindrical (projections trivial via
description) but do not stack up in global cylinders.

NLSAT outperforms SAT+CAD in the SMT framework. But
because it is a different framework it cannot be easily combined
with other SMT modules for problems in multiple theories.

Can we produce a covering based algorithm that fits in the SMT
framework?
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Conflict Driven Cylindrical Algebraic Covering (CDCAC)
E. Ábrahám, J.H. Davenport, M. England and G. Kremer.
Deciding the consistency of non-linear real arithmetic
constraints with a conflict driven search using cylindrical
algebraic coverings.
JLAMP 119, pages 2352-2208. Elsevier, 2021.
https://doi.org/10.1016/j.jlamp.2020.100633

Similar to NLSAT:
Builds covering not decomposition.
Conflict Driven so search guided away from past conflicts.

Unlike NLSAT:
May be used as traditional SMT Theory Solver .
Cells are arranged cylindrically.
Structured guidance of search as part of the algebraic
procedure.
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CDCAC: Basic Idea

Pick sample for lowest variable in ordering.
Extend to increasingly higher dimensions in reference to those
constraints made univariate.
If all constraints satisfied then conclude SAT.
If a constraint cannot be satisfied generalise to CAD cell in
current dimension.
Search outside the cell in that dimension.
If entire dimension covered by cells then generalise to rule out
cell in dimension below using CAD projection.
Conclude UNSAT when covering for lowest dimension
obtained.

Following slides by Gereon Kremer show simple example.
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CDCAC Experimental Results

An initial implementation was made in SMT-RAT and experiments
on the SMTLIB were described in the JLAMP paper:

Showed CDCAC much more efficient as theory solver that
incremental CAD.
But did not outperform NLSAT routine in SMT-RAT overall.
Did outperform NLSAT on substantial example subsets:

555 problems where CDCAC times out and NLSAT completes.
358 problems where NLSAT times out and CDCAC completes.

So algorithms are clearly different - potential for meta-solver?

A new implementation of CDCAC in CVC5 outperforms the winner
of the 2020 SMT Competition (which was based on NLSAT).
These experiments still to be published (paper under review).
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NuCAD

Recall that CDCAC an alternative to NLSAT which also produces
cylindrical coverings instead of decompositions.
Non-uniformly cylindrical CAD (NuCAD) was also inspired by
NLSAT. This produces a decomposition (not covering) but with
the cells not arranged cylindrically. Proposed by Brown in 2015
although only for open cells. In 2017 its potential use for
Quantifier Elimination was outlined.

C. Brown.
Open non-uniform cylindrical algebraic decompositions.
Proc. ISSAC 2015 pages 85-92. ACM, 2015.
https://doi.org/10.1145/2755996.2756654
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Future Work: DEWCAD

The author has recently started work on a new project at Coventry
University and the University of Bath, funded by the UK
Engineering and Physical Science Research Council (EPSRC).

DEWCAD: Pushing Back the Doubly Exponential Walls of
Cylindrical Algebraic Decomposition
https://matthewengland.coventry.domains/dewcad/

The first deliverable is a Maple package for QE and Satisfiability in
NRA which implements incremental CAD, NLSAT, NuCAD and
CDCAC to allow for meaningful comparison of the algorithms.
This will be followed by further theory development and
applications work in chemical reaction networks and automated
economics reasoning.
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CAD Variable Ordering

CADs are defined with respect to an ordering on variables (for
cylindricity, projection etc.) For QE one must order variables as
they are quantified; but there is no restriction on free variables and
adjacent quantifiers of the same type may be swapped. Thus for
SMT on NRA with n real variables we have n! choices.

Any choices leads to a mathematically valid answer. But it is well
observed that choice of variable ordering can dramatically affect
both the number of cells in the decomposition and the time
required to compute them, often to the point of feasibility.

Can such choices be made by Machine Learning?
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CAD Variable Ordering Example

CAD for polynomial y − 3x5 + 20x4 − 10x3 − 240x2 − 250x + 200.
With y � x a sign-invariant CAD has 3 cells, with y ≺ x it is 59.
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Some Human Designed Heuristics

C. Brown.
Tutorial Notes: Cylindrical algebraic decomposition.
Presented at ISSAC 2004.

A. Dolzmann, A. Seidl and T. Sturm . In: Proc.
Efficient projection orders for CAD.
Proc. ISSAC 2004, pp.111-118, ACM (2004).

R. Bradford, M. England, J.H. Davenport and D. Wilson.
Optimising problem formulations for cylindrical algebraic decomposition.
Proc. CICM 2013, LNCS 7961, pp. 19-34. Springer 2013.

D. Wilson, M. England, R. Bradford and J.H. Davenport.
Using the distribution of cells by dimension in a cylindrical algebraic
decomposition.
Proc. SYNASC 2014, pp. 53-60. IEEE 2014.

Summary: Increasingly expensive; none of them are perfect.
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Recent Development: Chordality Based Heuristic

H. Li, B. Xia, H. Zhang and T. Zheng.
Choosing the Variable Ordering for Cylindrical Algebraic
Decomposition via Exploiting Chordal Structure.
To Appear: Proc. ISSAC 2021. ACM 2021.
Preprint: https://arxiv.org/abs/2102.00823

When variables sparsely distributed can find ordering which
preserves this: essentially projections sent polynomials down more
than one level, in turn reducing the double exponent of the growth
in degree and number of polynomials.

However, even then there are instances where a heuristic based on
this is misled, or where it cannot discriminate.
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Huang et al. (CICM 2014)

Z. Huang, M. England, D. Wilson, J.H. Davenport, L.C.
Paulson and J. Bridge.
Applying machine learning to the problem of choosing a
heuristic to select the variable ordering for cylindrical
algebraic decomposition.
Proc. CICM 2014, LNAI 8543, pp. 92-107. Springer 2014.

Used a Support Vector Machine (SVM) to choose which of three
human made heuristics to follow when picking an ordering.

Experiments on 7000 problems identified substantial
subclasses on which each made a better decision.
Trained three SVMs and used relative magnitude of their
margin values to pick which heuristic to follow.
ML choice did significantly better than any one heuristic.
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With Florescu at CICM 2019

Repeated Huang et al.’s experiments but this time:
Choose variable ordering directly.

Many examples where no human-made heuristic had a good
choice: greater savings but harder to scale for larger n.

Experimented with different ML classifiers
Support Vector Machine (SVM) classifier with RBF kernel.
K−Nearest Neighbours (KNN) classifier.
Multi-Layer Perceptron (MLP) classifier.
Decision Tree (DT) classifier.

All did better than human-made heuristics but SVM actually
beaten significantly by the other three.
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ML Features

The ML classifiers are trained not on the input polynomials but
vectors of real numbers derived from them. Each of these numbers
corresponds to a feature of the input.

Work above used 11 features inspired by Brown’s heuristic, e.g.:
Degree of a variable in the input.
Proportion of input polynomials which contact a variable.
Proportion of input monomials which contact a variable.

(Q) Are there more / better features we can extract from the input
polynomials without resorting to expensive projection operations?
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With Florescu at SC2 2019 Paper
Presented a framework to enumerate (all appropriate)
combinations of some (basic) functions on a set of polynomials.
This encompasses all previously used features but also many more.

Basic functions: sign, max, sum, average. All cheap!
All appropriate combinations: i.e. taking care of the different
dimensions being applied to.

All possibilities in 3 variables gave 1728 features. But:
Many easily seen as mathematically identical.
Some others are certainly identical for the dataset in question.
A handful were constant (evaluate to the same number) for
the whole dataset (making them useless for ML).

After this: 78 features for 3-variable problems, compared to 11
previously: seven times more! 105 features for 4-variable problems.
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SC2 2019 Paper Results I

Accuracy: the percentage of problems in the testing set for which
a heuristic picked the optimal ordering.
Time: the computation time if all the testing set had CADs
computed with that heuristic’s suggested orderings.
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SC2 2019 Paper Results II

The human made heuristics achieved times that are 27% above the
minimum possible. ML with similar features reduced that to 14%
above. The additional features reduced it to only 6% above. All
ML classifiers improved performance with extra features.
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SC2 2019 Paper Results III

Quickest computation times achieved by KNN, although MLP had
slightly higher accuracy. I.e. MLP makes best choice more often
but the occasions it makes a poor choice drag its times down
considerably.
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With Florescu at MACIS 2019
Prior work defined accuracy as standard for ML classification:
Accuracy: the percentage of problems in the testing set for which
a heuristic picked the optimal ordering.
No difference between “almost optimal” and “very bad” ordering.
Redefined testing accuracy to percentage within 20% of instance
optimum. Redesigned hyperparameter selection function to
maximise CAD times instead of classification F1-score.
Experiments on a 4 variable dataset.

All ML models improved by new hyper parameter selection.
All ML classifiers outperform human-made heuristics.
All heuristics further away from optimum than on 3–variable
dataset (choosing from 24 instead of 6 orderings).
Best performing ML model achieves timings 67% greater than
the minimum; best human-made heuristic is 98% greater.
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With Florescu at MACIS 2019
Prior work defined accuracy as standard for ML classification:
Accuracy: the percentage of problems in the testing set for which
a heuristic picked the optimal ordering.
No difference between “almost optimal” and “very bad” ordering.
Redefined testing accuracy to percentage within 20% of instance
optimum. Redesigned hyperparameter selection function to
maximise CAD times instead of classification F1-score.
Experiments on a 4 variable dataset.

All ML models improved by new hyper parameter selection.
All ML classifiers outperform human-made heuristics.
All heuristics further away from optimum than on 3–variable
dataset (choosing from 24 instead of 6 orderings).
Best performing ML model achieves timings 67% greater than
the minimum; best human-made heuristic is 98% greater.
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MACIS 2019 Paper Results (4 variables)

−O uses original cross validation and −N the new one.

DT-O DT-N KNN-O KNN-N
Acc. 51.7% 54.3% 53.9% 54.5%
Time 4, 022 3, 627 3, 808 3, 748

MLP-O MLP-N SVM-O SVM-N
Acc. 53.6% 56.9% 53.9% 54.9%
Time 3, 972 3, 784 3, 795 3, 672

VirtualBest VirtualWorst random Brown sotd
Acc. 100% 0% 17.0% 20.1% 47.8%
Time 2, 177 22, 735 8, 291 8, 292 4, 348
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General Thesis

There is scope to apply Machine Learning to CAD because there is
a choice to be made (variable ordering) that does not affect the
correctness of the output but does effect efficiency. CAD is not
special here: many other algorithms in Computer Algebra Systems
(CASs) have similar choices to be made.
At the moment most such choices are taken by either the user, by
a magic constant (educated choices picked by the developers) or
perhaps a human written heuristic.
Our general thesis is that many could be better taken by a
Machine Learning classifier.
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Other Heuristic Choices from Topics in This Talk

Whether to precondition CAD with Groebner Bases:
Z. Huang, M. England, J.H. Davenport and L.C. Paulson.
Using Machine Learning to decide when to Precondition Cylindrical
Algebraic Decomposition with Groebner Bases.
Proc. SYNASC 2016, pp. 45–52. IEEE, 2016.
https://doi.org/10.1109/SYNASC.2016.020

The order to study polynomials in NuCAD:
C.W. Brown and G.C. Daves.
Applying Machine Learning to Heuristics for Real Polynomial Constraint
Solving.
Proc. ICMS 2020, LNCS 12097, pages 292-301. Springer, 2021.
https://doi.org/10.1007/978-3-030-52200-1_29

Which cells to use for covering in CDCAC.
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Future Work

Have demonstrated that ML may be trained to do well on a
standard community dataset for a fixed number of variables. But
key questions remain:

How to react to different numbers of variables?
How to adapt to new example classes?
How to make use of deep learning?

The latter point requires far greater quantities of data than exist.
Of course, one can cheaply produce random polynomials to train
on but how to ensure they are useful and representative?

Random perturbations of existing data?
Randomly generate to fit the distribution of existing data?

PhD student Tereso del Rio (Coventry U.) working on this now.
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Contact Details and Advert

Contact Details
Matthew.England@coventry.ac.uk

https://matthewengland.coventry.domains/

Advert
Fully Funded PhD Position available at Coventry to work on
Machine Learning to Improve Symbolic Integration and Symbolic
Simplification. Sponsored by Maplesoft.
https://tinyurl.com/3exmk9vk
Deadline to Apply: 13th September 2021
Interviews and Decision: End September
PhD Start: Jan 2022
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