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Goal of the Talk

Based on joint research with Jessica Sidman, Louis Theran, and
Cynthia Vinzant.

Goal– Try to compute two polynomials:

1. The “pure condition” of the triangular prism.
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2. The “circuit polynomial” of the triangular prism plus one edge.
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Outline of the Talk

1. Where do these polynomials come from?

2. Summarize several failed, and some partially successful,
computational strategies to write down these polynomials.
� Gröbner bases,
� Resultants,
� Numerical AG, and
� More Resultants.

Why discuss failed strategies?

� Failed attempts can still be educational.

� With so many experts in the audience, someone may have relevant
experience!
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Frameworks in the Plane

Points p1, . . . , pn.
Coordinates (x1, y1), . . . , (xn, yn).
Squared Edge lengths: dij = ||pi − pj ||2= (xi − xj)

2 + (yi − yj)
2.

Cayley-Menger determinant

For points p1, . . . , pk , the CM-determinant, denoted {12 · · · k},
computes a scaled volume of the (k − 1)-simplex spanned.

If the points lie in the plane, any set of four points span a
degenerate simplex ⇒ every 4-CM-determinant

{ijkl} = f (dij , dik , . . . , dkl) = 0.

We will also see conditions like {ijk} = 0. This implies that
pi , pj , pk are collinear (so the simplex degenerates).
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Rigidity of a Framework

� Every framework in the plane has a 3-dimensional space of rigid
motions: translations in the plane (2 d.o.f.) and rotation (1 d.o.f.).
While these change the point coordinates (xi , yi ), they do not
affect the squared distances (dij).

� If these are the only motions, the framework is said to be rigid. If
removing any edge from a rigid graph would introduce a motion,
the graph is said to be minimally rigid.

� A graph is said to be generically rigid if an assignment of generic
coordinates to the points yields a rigid graph.

Theorem (Pollaczek-Geiringer 1927, Laman 1970)

A graph G = (V ,E ) is generically minimally rigid if |E |= 2|V |−3
and for every subgraph with k vertices has at most 2k − 3 edges.
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Algebraic Interpretation

� We can interpret these as morphisms of varieties with
corresponding ring homomorphsims.

R2n/(rigid motions) −→ R|E |

(p1, . . . , pn) �→ ||pi − pj ||, (ij) ∈ E

R[x , y ]/�x1 = y1 = x2 = 0� ←− R[dij : (ij) ∈ E ]/�CM4�
(xi − xj)

2 + (yi − yj)
2 �→ dij

� In this setting, rigidity means that the fibers are finite.

� The framework is non-rigid when the Jacobian of this map (also
known as the rigidity matrix) drops rank.
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Example: K4 minus an edge

1 2

3 4




x1 x2 x3 x4 y1 y2 y3 y4
12 x1−x2 x2−x1 y1−y2 y2−y1
13 x1−x3 x3−x1 y1−y3 y3−y1
14 x1−x4 x4−x1 y1−y4 y4−y1
24 x2−x4 x4−x2 y2−y4 y4−y2
34 x3−x4 x4−x3 y3−y4 y4−y3




Result: x24y2y3−x3x4y2y4=x4y2(x4y3−x3y4)=[124][134].
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The Bracket Algebra

The bracket [ijk] is a polynomial which indicates when the points
pi , pj , pk are collinear.
The formula is straightforward:

[ijk ] =

������

1 1 1
xi xj xk
yi yj yk

������

These brackets are not independent, for example:

[135][245] = [145][235] + [125][345],

[135][246] = [124][356] + [146][235] + [126][345]

The brackets can be combined to give more complicated geometric
information.
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Geometric Interpretations

White & Whiteley “Algebraic Geometry of Stresses in
Frameworks,” 1983, combinatorial formulae along with geometric
interpretations:
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Translating Brackets into CM-determinants

Essential connection between brackets and CM-determinants:

4[ijk ]2 = {ijk}

For the prism example, the pure condition in vertex coordinates was

[123][456]([125][346]− [146][235]).

� the ideal generated by [123] has preimage in R[dij : (ij) ∈ G ]/CM4

generated by {123}.
� the ideal generated by [456] has preimage generated by {456}.
� the ideal generated by [125][346]− [146][235] includes

16([125][346]− [146][235])([125][346] + [146][235])

= (4[125]2)(4[346]2)−(4[146]2)(4[235]2) ∼ {125}{346}−{146}{235}.
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Pure Condition on Specified Support

The problem with {125}{346}− {146}{235} as an
edge-coordinate version of the pure condition is that its support
includes edges not in the prism.

We want to find the unique up-to-scalar polynomial pcprism in the
ideal �{125}{346}− {146}{235}�+ �CM4� whose support is the
prism.
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Circuit Polynomial

The vanishing of the pure condition implies that the Jacobian
drops rank. This does NOT mean that there is a true motion of
the underlying framework.

2

1

45
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Definition

A circuit polynomial is the unique up-to-scalar relation of minimal
support in a prime ideal.

For us, given a circuit graph (a 1-overconstrained graph, minimal
in this respect), there is a circuit polynomial in the Cayley-Menger
ideal on that support.
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The Motion Ideal

Let G be a Laman graph. Suppose that G ∪ {e} is a circuit graph
with associated circuit polynomial pG∪e .

Definition

motionIdeal(G , e) is the ideal given by the coefficients of powers of
de in the polynomial pG∪e .

If there exists a motion of the graph with de unconstrained, then
all of the coefficients of pG∪e with respect to de must be
identically zero.
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Example: Graph on 5 vertices

The graph G pictured is minimally rigid, but with the addition of
(35), it becomes a circuit.
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The circut polynomial pG∪(35) has degree four in each variable, so
motionIdeal(G, (35)) is generated by five polynomials.

motionIdeal(G, (35)) has six minimal primes. Only two correspond
to true motions:

�d13, d14 − d34, d12 − d23�, �d23 − d34, d12 − d14, d25 − d45�

Want: circuit polynomial associated to prism plus edge, to
understand configurations of prism with true motions.
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Gröbner Bases

Most obvious approach.

� Start with R = C[xi , yi , dij ].
� Let I be the ideal of R generated by dij − (xi − xj)

2 − (yi − yj)
2

together with p(xi , yi ), the pure condition associated to G .

� Compute a Gröbner basis under an elimination ordering prioritizing
the xi , yi coordinates and dij for (ij) /∈ G .

� Eventually obtain a polynomial in dij for (ij) ∈ G corresponding to
the pure condition.

Unfortunately, this is hopeless. Complexity of Buchberger’s
algorithm for constructing a Gröbner basis is O(22

n
).

Experimentally, these examples do not terminate.
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Sylvester Resultant

A more direct approach to eliminating variables.

� Let I = �f , g� ⊆ R[x ], where f (x) = amx
m + · · ·+ a1x + a0, and

g(x) = bnx
n + · · ·+ b1x + b0.

� The intersection I ∩ R is generated by the following determinant:

resx(f , g) :=

������������������

am am−1 · · · a0 0 · · · 0
0 am am−1 · · · a0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 am am−1 · · · a1 a0
bn bn−1 · · · b0 0 · · · 0
0 bn bn−1 · · · b0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 bn bn−1 · · · b1 b0

������������������
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Sylvester Resultant for Pure Condition

The resultant is implemented in Macaulay2 with the command
resultant(f,g,x).

We can take a resultant of one form of the pure condition with an
element of the Cayley-Menger ideal and eliminate a variable.

Example

The pure condition of the graph at right
has a factor [145]. In edge coordinates,
this maps to the CM determinant {145}.

Take res14({1234}, {145}) and obtain a
degree-6 polynomial with 316 terms in
the edges of the graph.
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Computational Roadblock

Resultants could theoretically
help us compute the pure con-
dition of the triangular prism as
well, as pictured at right.

Unfortunately, Macaulay2

crashed on the first step
of this series of resul-
tants: res24({125}{346} −
{136}{245}), {1234}).

[Malić-Streinu successfully imple-
mented similar computations in
Mathematica – more on this
later!]
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Numerical Algebraic Geometry

After roadblocks with symbolic computation, next plan: numerical
algebraic geometry.

� Consider a system of polynomials in n variables defining an
irreducible variety V of dimension k and degree d .

� Intersect the variety V with k general linear equations. The
resulting system will be dimension 0 and degree d , i.e. d points.

� Use homotopy continuation to compute the solutions to the
system, thus obtaining the number d .

In the case where the variety is not irreducible, monodromy allows
us to check which solution points are on the same component.
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Computing degrees

� The pure condition we want should be a polynomial in the 9 edges
of the triangular prism – the variety described is then a
hypersurface of C9.

� If we take a general line in that C9, then it should intersect the
variety in (deg pcprism) many points.

� Fix dij for some (ij) ∈ G . Choose generic values ckl for all other
variables dkl ∈ G . The resulting system will have degij pc.

We use the HomotopyContinuation.jl package in Julia to carry
out these computations. Many thanks to Paul Breiding for
answering numerous questions in the process.
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Degree of the Pure Condition

For our triangular prism, this method obtains deg pc = 40 and the
degree of each variables as labeled below:

24

24

24

20

20

20

20

20

20

The space of polynomials satisfying these degrees has dimension
362,557,602.
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Motion Ideal by Numerical AG

To understand the motion ideal, the first step is to compute the
circuit polynomial. This was not achievable with symbolic tools in
Macaulay2. Instead, we apply Julia again.

We find that the circuit polynomial has:

� degree 20,

� with degree 8 in each of the variables of the triangular prism, and

� degree 12 in the extra edge variable.

This implies that the motion ideal is generated by 13 polynomials
in 9 variables of degrees 8 through 20.
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Coefficient Polynomials

In order to understand the motion ideal better, we would like to
identify one or more of these coefficient polynomials.

Our general plan:

� Choose a coefficient polynomial of degree d .

� Compute the number N(d) of possible monomials of degree d in 9
variables.

� Use Julia to generate N(d)− 1 points on the corresponding
variety. Compute the N(d) monomials corresponding to each of
these points.

� Use linear algebra to compute a vector in the kernel of this matrix.

Given perfect data, the unique vector in the kernel would be the
coefficients of the desired polynomial.
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Which coefficient?

� The simplest coefficient polynomial to access would be the
“constant” one: just intersect the variety with the hyperplane
de = 0.

� However, the number of monomials of degree 20 in 9 variables
with degree of each variable bounded by 8 is 2,429,487. In my
implementation in Julia, the matrix computation never terminated.

� Instead, we will try to isolate the leading coefficient. Add in a new
variable z satisfying dez = 1, then project away from de .

� The resulting surface is defined by a polynomial in z whose
“constant term” is our old leading term.

� There are only 12,870 candidate monomials for this polynomial.
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Fitting Coefficients to the Samples

After computing 12,869 generic points in the variety, we obtained
a vector in the kernel. Its coordinates are plotted below:

Problems?

1. Computing the kernel of a matrix is highly unstable.

2. Passing from points to monomials will amplify errors.
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Return to Resultants

Posted Mar 15, 2021:

Important take-aways for us:

1. Construction of circuit polynomials using iterated resultants.

2. Wolfram Mathematica is much faster at resultants than
Macaulay2.
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Resultants for Pure Condition Computation

•irreducible
•hom degree 10
•most variables deg 4
•12,449 terms

•irreducible
•hom degree 4
•all variables deg 2
•70 terms

•irreducible
•hom degree 24
•most variables deg 8
•18,313,612 terms

•???
•???
•???
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16
16
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Polynomial Coefficients

Degree Degree in Each Variable Number of Terms Irreducible?
20 {8, 4, 8, 6, 4, 8, 4, 6, 8} 19,081 NO
19 {8, 5, 8, 7, 5, 8, 5, 7, 8} 65,184 NO
18 {8, 6, 8, 8, 6, 8, 6, 8, 8} 113,634 YES
17 {8, 7, 8, 8, 7, 8, 7, 8, 8} 130,377 YES
16 {8, 8, 8, 8, 8, 8, 8, 8, 8} 119,814 YES
15 {7, 8, 8, 8, 7, 8, 8, 8, 7} 92,763 YES
14 {6, 8, 8, 8, 6, 8, 8, 8, 6} 60,937 YES
13 {5, 8, 7, 7, 5, 7, 8, 7, 5} 33,772 YES
12 {4, 8, 6, 6, 4, 6, 8, 6, 4} 15,450 YES
11 {3, 7, 5, 5, 3, 5, 7, 5, 3} 5560 YES
10 {2, 6, 4, 4, 2, 4, 6, 4, 2} 1380 YES
9 {1, 5, 3, 3, 1, 3, 5, 3, 1} 211 NO
8 {0, 4, 2, 2, 0, 2, 4, 2, 0} 12 NO
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Computation of Minimal Primes

� Macaulay2 ran for several hours before crashing.

� Singular ran for about a day before crashing.

� The DynamicPolynomials package used by Julia does not
accept polynomials with more than 100,000 terms.

� Bertini did not complete a single path-tracking due to the large
number of terms in the polynomial.

Suggestions welcome!

(Based on a misreading
of an error message)
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Thank you for your attention!
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