Introduction

Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball

Satish K. Pandey

Faculty of Mathematics Technion-Israel Institute of Technology

June 3, 2021

The 49th Canadian Operator Symposium May 31 - June 4, 2021 University of Guelph (online)

Quantitative approach

Based on: Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball (with Danny Ofek and Orr Shalit), Journal of Mathematical Analysis and Applications (2021)

Based on: Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball (with Danny Ofek and Orr Shalit), Journal of Mathematical Analysis and Applications (2021)

Notations

- \blacksquare \mathcal{H} a reproducing kernel Hilbert space (RKHS) on a set X;
- K the reproducing kernel for H;
- Mult $\mathcal{H} = \{f : X \to \mathbb{C} | fh \in \mathcal{H} \text{ for every } h \in \mathcal{H} \}$ the multiplier algebra of \mathcal{H} .
- Goal : Present, quantitatively, the relationship between an RKHS, its multiplier algebra, and the geometry of the underlying set.

2/13

Based on: Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball (with Danny Ofek and Orr Shalit), Journal of Mathematical Analysis and Applications (2021)

Notations

- \blacksquare \mathcal{H} a reproducing kernel Hilbert space (RKHS) on a set X;
- K the reproducing kernel for H;
- Mult $\mathcal{H} = \{f : X \to \mathbb{C} | fh \in \mathcal{H} \text{ for every } h \in \mathcal{H} \}$ the multiplier algebra of \mathcal{H} .
- Goal: Present, quantitatively, the relationship between an RKHS, its multiplier algebra, and the geometry of the underlying set.
- We will restrict our attention to finite-dimensional complete Pick spaces.

2/13

Notions of isomorphism for RKHSs

Introduction

000

For i = 1, 2, let \mathcal{H}_i be reproducing kernel Hilbert spaces respectively on sets X_i with reproducing kernels $K_i(x, y) = k_v^i(x)$.

3/13

Notions of isomorphism for RKHSs

For i = 1, 2, let \mathcal{H}_i be reproducing kernel Hilbert spaces respectively on sets X_i with reproducing kernels $K_i(x, y) = k_v^i(x)$.

Definition

An isomorphism of RKHSs from \mathcal{H}_1 to \mathcal{H}_2 (or simply, an RKHS isomorphism) is a bijective bounded linear map $T:\mathcal{H}_1\to\mathcal{H}_2$ defined by

$$T(k_x^1) = \lambda_x k_{F(x)}^2$$
 for all $x \in X_1$,

where $x \mapsto \lambda_x$ is a nowhere-vanishing complex valued function defined on X_1 and $F: X_1 \to X_2$ is a bijection.

3/13

For i = 1, 2, let \mathcal{H}_i be reproducing kernel Hilbert spaces respectively on sets X_i with reproducing kernels $K_i(x, y) = k_v^i(x)$.

Definition

Introduction

000

An isomorphism of RKHSs from \mathcal{H}_1 to \mathcal{H}_2 (or simply, an RKHS isomorphism) is a bijective bounded linear map $T: \mathcal{H}_1 \to \mathcal{H}_2$ defined by

$$T(k_x^1) = \lambda_x k_{F(x)}^2$$
 for all $x \in X_1$,

where $x \mapsto \lambda_x$ is a nowhere-vanishing complex valued function defined on X_1 and $F: X_1 \to X_2$ is a bijection. We then say that \mathcal{H}_1 and \mathcal{H}_2 are isomorphic as RKHSs.

3/13

Notions of isomorphism for RKHSs

For i = 1, 2, let \mathcal{H}_i be reproducing kernel Hilbert spaces respectively on sets X_i with reproducing kernels $K_i(x, y) = k_v^i(x)$.

Definition

An isomorphism of RKHSs from \mathcal{H}_1 to \mathcal{H}_2 (or simply, an RKHS isomorphism) is a bijective bounded linear map $T: \mathcal{H}_1 \to \mathcal{H}_2$ defined by

$$T(k_x^1) = \lambda_x k_{F(x)}^2$$
 for all $x \in X_1$,

where $x\mapsto \lambda_x$ is a nowhere-vanishing complex valued function defined on X_1 and $F:X_1\to X_2$ is a bijection. We then say that \mathcal{H}_1 and \mathcal{H}_2 are isomorphic as RKHSs.

Definition

We say that \mathcal{H}_1 and \mathcal{H}_2 are isometrically isomorphic as RKHSs if the map

$$k_x^1 \mapsto \lambda_x k_{F(x)}^2$$
 for all $x \in X_1$,

extends to a unitary $U: \mathcal{H}_1 \to \mathcal{H}_2$.

FECHNION Israel Institute of Technology

3/13

Notions of isomorphism for RKHSs

For i = 1, 2, let \mathcal{H}_i be reproducing kernel Hilbert spaces respectively on sets X_i with reproducing kernels $K_i(x, y) = k_v^i(x)$.

Definition

An isomorphism of RKHSs from \mathcal{H}_1 to \mathcal{H}_2 (or simply, an RKHS isomorphism) is a bijective bounded linear map $T:\mathcal{H}_1\to\mathcal{H}_2$ defined by

$$T(k_x^1) = \lambda_x k_{F(x)}^2 \text{ for all } x \in X_1,$$

where $x \mapsto \lambda_x$ is a nowhere-vanishing complex valued function defined on X_1 and $F: X_1 \to X_2$ is a bijection. We then say that \mathcal{H}_1 and \mathcal{H}_2 are isomorphic as RKHSs.

Definition

We say that \mathcal{H}_1 and \mathcal{H}_2 are isometrically isomorphic as RKHSs if the map

$$k_x^1 \mapsto \lambda_x k_{F(x)}^2$$
 for all $x \in X_1$,

extends to a unitary $U: \mathcal{H}_1 \to \mathcal{H}_2$. This is often referred to as rescaling.

FECHNION Israel Institute of Technology

3/13

Notions of isomorphism for multiplier algebras

Introduction

000

For i=1,2, let \mathcal{H}_i be reproducing kernel Hilbert spaces respectively on sets X_i with reproducing kernels $K_i(x,y)=k_y^i(x)$, and let $\mathcal{M}_i=\operatorname{Mult}(\mathcal{H}_i)$ be their multiplier algebras.

4/13

Notions of isomorphism for multiplier algebras

For i = 1, 2, let \mathcal{H}_i be reproducing kernel Hilbert spaces respectively on sets X_i with reproducing kernels $K_i(x,y) = k_v^i(x)$, and let $\mathcal{M}_i = \text{Mult}(\mathcal{H}_i)$ be their multiplier algebras.

Definition

A multiplier algebra isomorphism between multiplier algebras \mathcal{M}_1 and \mathcal{M}_2 to be a complete isomorphism $\varphi: \mathcal{M}_1 \to \mathcal{M}_2$ that is implemented as

$$\varphi(f) = f \circ G \text{ for all } f \in \mathcal{M}_1,$$

where $G: X_2 \to X_1$ is a bijection. If such an isomorphism exists then we say that \mathcal{M}_1 and \mathcal{M}_2 are isomorphic as multiplier algebras.

4/13

Notions of isomorphism for multiplier algebras

For i=1,2, let \mathcal{H}_i be reproducing kernel Hilbert spaces respectively on sets X_i with reproducing kernels $K_i(x,y)=k_y^i(x)$, and let $\mathcal{M}_i=\operatorname{Mult}(\mathcal{H}_i)$ be their multiplier algebras.

Definition

Introduction

000

A multiplier algebra isomorphism between multiplier algebras \mathcal{M}_1 and \mathcal{M}_2 to be a complete isomorphism $\varphi: \mathcal{M}_1 \to \mathcal{M}_2$ that is implemented as

$$\varphi(f) = f \circ G \text{ for all } f \in \mathcal{M}_1,$$

where $G: X_2 \to X_1$ is a bijection. If such an isomorphism exists then we say that \mathcal{M}_1 and \mathcal{M}_2 are isomorphic as multiplier algebras.

If φ is completely isometric then we say that \mathcal{M}_1 and \mathcal{M}_2 are completely isometrically isomorphic as multiplier algebras.

4/13

For i = 1, 2, let \mathcal{H}_i be reproducing kernel Hilbert spaces respectively on sets X_i with reproducing kernels $K_i(x,y) = k_v^i(x)$, and let $\mathcal{M}_i = \text{Mult}(\mathcal{H}_i)$ be their multiplier algebras.

Definition

Introduction 000

> A multiplier algebra isomorphism between multiplier algebras \mathcal{M}_1 and \mathcal{M}_2 to be a complete isomorphism $\varphi: \mathcal{M}_1 \to \mathcal{M}_2$ that is implemented as

$$\varphi(f) = f \circ G \text{ for all } f \in \mathcal{M}_1,$$

where $G: X_2 \to X_1$ is a bijection. If such an isomorphism exists then we say that \mathcal{M}_1 and \mathcal{M}_2 are isomorphic as multiplier algebras.

If φ is completely isometric then we say that \mathcal{M}_1 and \mathcal{M}_2 are completely isometrically isomorphic as multiplier algebras.

$$(T:\mathcal{H}_1\to\mathcal{H}_2)$$
 induces $(M_f\mapsto (T^*)^{-1}M_fT^*)$

4/13

■ Recall : we restrict our attention to finite-dimensional complete Pick spaces.

Introduction

- Recall : we restrict our attention to finite-dimensional complete Pick spaces.
- $\blacksquare \mathbb{B}_d = \{z \in \mathbb{C}^d | |z| < 1\}$ and $H_d^2 = H^2(\mathbb{B}_d)$ the Drury-Arveson space.

5/13

Introduction

- Recall : we restrict our attention to finite-dimensional complete Pick spaces.
- \blacksquare $\mathbb{B}_d = \{z \in \mathbb{C}^d | |z| < 1\}$ and $H_d^2 = H^2(\mathbb{B}_d)$ the Drury-Arveson space.
- H_d^2 is the RKHS on \mathbb{B}_d with reproducing kernel $K(z, w) = \frac{1}{1 \langle z, w \rangle}$, and \mathcal{M}_d denotes the multiplier algebra $\text{Mult}(H_d^2)$ of H_d^2 .

- Recall : we restrict our attention to finite-dimensional complete Pick spaces.
- $\blacksquare \mathbb{B}_d = \{z \in \mathbb{C}^d | |z| < 1\}$ and $H_d^2 = H^2(\mathbb{B}_d)$ the Drury-Arveson space.
- H_d^2 is the RKHS on \mathbb{B}_d with reproducing kernel $K(z, w) = \frac{1}{1 \langle z, w \rangle}$, and \mathcal{M}_d denotes the multiplier algebra $\text{Mult}(H_d^2)$ of H_d^2 .
- (Agler-McCarthy) Every complete Pick RKHS is isometrically isomorphic as an RKHS to a quotient of the Drury-Arveson space H²_d.

5/13

- Recall : we restrict our attention to finite-dimensional complete Pick spaces.
- $\blacksquare \mathbb{B}_d = \{z \in \mathbb{C}^d | |z| < 1\}$ and $H_d^2 = H^2(\mathbb{B}_d)$ the Drury-Arveson space.
- H_d^2 is the RKHS on \mathbb{B}_d with reproducing kernel $K(z, w) = \frac{1}{1 \langle z, w \rangle}$, and \mathcal{M}_d denotes the multiplier algebra $\text{Mult}(H_d^2)$ of H_d^2 .
- (Agler-McCarthy) Every complete Pick RKHS is isometrically isomorphic as an RKHS to a quotient of the Drury-Arveson space H²_d.

Suffices to study quotients of H_d^2 .

5/13

- Recall : we restrict our attention to finite-dimensional complete Pick spaces.
- \blacksquare $\mathbb{B}_d = \{z \in \mathbb{C}^d | \ |z| < 1\}$ and $H^2_d = H^2(\mathbb{B}_d)$ the Drury-Arveson space.
- H_d^2 is the RKHS on \mathbb{B}_d with reproducing kernel $K(z, w) = \frac{1}{1 \langle z, w \rangle}$, and \mathcal{M}_d denotes the multiplier algebra $\text{Mult}(H_d^2)$ of H_d^2 .
- (Agler-McCarthy) Every complete Pick RKHS is isometrically isomorphic as an RKHS to a quotient of the Drury-Arveson space H_d^2 .

Suffices to study quotients of H_d^2 .

■ Let $X \subseteq \mathbb{B}_d$. Then $\mathcal{H}_X := \overline{\operatorname{span}}\{k_\lambda : x \in X\} = H_d^2|_X$, is called a quotient of H_d^2 .

5/13

- Recall : we restrict our attention to finite-dimensional complete Pick spaces.
- \blacksquare $\mathbb{B}_d = \{z \in \mathbb{C}^d | \ |z| < 1\}$ and $H^2_d = H^2(\mathbb{B}_d)$ the Drury-Arveson space.
- H_d^2 is the RKHS on \mathbb{B}_d with reproducing kernel $K(z, w) = \frac{1}{1 \langle z, w \rangle}$, and \mathcal{M}_d denotes the multiplier algebra $\text{Mult}(H_d^2)$ of H_d^2 .
- (Agler-McCarthy) Every complete Pick RKHS is isometrically isomorphic as an RKHS to a quotient of the Drury-Arveson space H_d^2 .

Suffices to study quotients of H_d^2 .

- Let $X \subseteq \mathbb{B}_d$. Then $\mathcal{H}_X := \overline{\operatorname{span}}\{k_\lambda : x \in X\} = H_d^2\big|_X$, is called a quotient of H_d^2 .
- $M_X := \mathsf{Mult}(\mathcal{H}_X) = \mathcal{M}_d|_X.$

5/13

- Recall: we restrict our attention to finite-dimensional complete Pick spaces.
- $\mathbb{B}_d = \{z \in \mathbb{C}^d | |z| < 1\}$ and $H_d^2 = H^2(\mathbb{B}_d)$ the Drury-Arveson space.
- H_d^2 is the RKHS on \mathbb{B}_d with reproducing kernel $K(z, w) = \frac{1}{1 \langle z, w \rangle}$, and \mathcal{M}_d denotes the multiplier algebra $Mult(H_d^2)$ of H_d^2 .
- (Agler-McCarthy) Every complete Pick RKHS is isometrically isomorphic as an RKHS to a quotient of the Drury-Arveson space H_d^2 .

Suffices to study quotients of H_a^2 .

- Let $X \subseteq \mathbb{B}_d$. Then $\mathcal{H}_X := \overline{\operatorname{span}}\{k_\lambda : x \in X\} = H_d^2|_X$, is called a quotient of H_d^2 .
- $M_X := Mult(\mathcal{H}_X) = \mathcal{M}_d|_{Y}.$

5/13

Satish K. Pandey Distance between RKHS's Isomorphism problem

Even more,

Background contd...

Even more, it suffices to study quotients of H_d^2 that arise from multiplier varieties, (i.e. quotients of H_d^2 that arise from X that is the joint zero set of an ideal of multipliers in \mathcal{M}_d).

6/13

Even more, it suffices to study quotients of H_d^2 that arise from multiplier varieties, (i.e. quotients of H_d^2 that arise from X that is the joint zero set of an ideal of multipliers in \mathcal{M}_d).

Theorem (Davidson-Ramsey-Shalit; 2015 (see also Rochberg; 2019))

Let $V, W \subseteq \mathbb{B}_d$ be multiplier varieties. Then TFSAE.

- \blacksquare \mathcal{M}_V is isometrically isomorphic to \mathcal{M}_W .
- V and W are congruent (i.e., \exists a biholo auto $\Phi \in \operatorname{Aut}(\mathbb{B}_d)$ s.t $\Phi(V) = W$)
- \blacksquare \mathcal{H}_V is isometrically isomorphic as an RKHS to \mathcal{H}_W .
- lacksquare \mathcal{M}_V is completely isometrically isomorphic to \mathcal{M}_W .

6/13

Isomorphism problem

OO

Quantitative approach

OO

OO

Our problem

Introduction

Question: Let X_1 and X_2 be finite sets of points in \mathbb{B}_d considered as metric spaces.

■ What happens when X_1 and X_2 are not congruent, but are "close" to being so?

7/13

Our problem

Introduction

Question: Let X_1 and X_2 be finite sets of points in \mathbb{B}_d considered as metric spaces.

- What happens when X_1 and X_2 are not congruent, but are "close" to being so?
- Are then \mathcal{H}_{X_1} and \mathcal{H}_{X_2} , in some sense, "close" to being isometrically isomorphic as RKHSs?

Our problem

Introduction

Question: Let X_1 and X_2 be finite sets of points in \mathbb{B}_d considered as metric spaces.

- What happens when X_1 and X_2 are not congruent, but are "close" to being so?
- Are then \mathcal{H}_{X_1} and \mathcal{H}_{X_2} , in some sense, "close" to being isometrically isomorphic as RKHSs?
- And conversely, if the function spaces are "close" to being isometrically isomorphic in some sense, are the sets then "close" to be being biholomorphic images one of the other?

Our problem

Introduction

Question: Let X_1 and X_2 be finite sets of points in \mathbb{B}_d considered as metric spaces.

- What happens when X_1 and X_2 are not congruent, but are "close" to being so?
- Are then \mathcal{H}_{X_1} and \mathcal{H}_{X_2} , in some sense, "close" to being isometrically isomorphic as RKHSs?
- And conversely, if the function spaces are "close" to being isometrically isomorphic in some sense, are the sets then "close" to be being biholomorphic images one of the other?
- What about the multiplier algebras? How are they determined by the underlying sets and their geometry?

7/13

Introduction

Suppose that the unit ball \mathbb{B}_d is equipped with the pseudohyperbolic metric ρ_{ph} .

■ Let $X, Y \subseteq \mathbb{B}_d$ are finite subsets of the same cardinality.

Suppose that the unit ball \mathbb{B}_d is equipped with the pseudohyperbolic metric ρ_{ph} .

- Let $X, Y \subseteq \mathbb{B}_d$ are finite subsets of the same cardinality.
- The symmetric distance between X and Y is given by

$$\rho_{\mathcal{S}}(X,Y) = \min \max \{ \rho_{ph}(x_i,y_{\sigma(i)}) : i = 1,\ldots,n \}.$$

Suppose that the unit ball \mathbb{B}_d is equipped with the pseudohyperbolic metric ρ_{ph} .

- Let $X, Y \subseteq \mathbb{B}_d$ are finite subsets of the same cardinality.
- The symmetric distance between X and Y is given by

$$\rho_{\mathcal{S}}(X,Y) = \min \max \{ \rho_{ph}(x_i, y_{\sigma(i)}) : i = 1, \dots, n \}.$$

Need a measure of distance between sets that is blind to automorphisms.

8/13

Introduction

Suppose that the unit ball \mathbb{B}_d is equipped with the pseudohyperbolic metric ρ_{ph} .

- Let $X, Y \subseteq \mathbb{B}_d$ are finite subsets of the same cardinality.
- The symmetric distance between X and Y is given by

$$\rho_{\mathcal{S}}(X,Y) = \min \max \{ \rho_{ph}(x_i, y_{\sigma(i)}) : i = 1, \dots, n \}.$$

- Need a measure of distance between sets that is blind to automorphisms.
- The automorphism invariant symmetric distance between subsets of B_d.

$$\tilde{\rho}_{s}(X, Y) = \inf \left\{ \rho_{s}(X, \Phi(Y)) : \Phi \in \operatorname{Aut}(\mathbb{B}_{d}) \right\}.$$

8/13

Suppose that the unit ball \mathbb{B}_d is equipped with the pseudohyperbolic metric ρ_{ph} .

- Let $X, Y \subseteq \mathbb{B}_d$ are finite subsets of the same cardinality.
- The symmetric distance between X and Y is given by

$$\rho_{s}(X,Y) = \min \max \{\rho_{ph}(x_i,y_{\sigma(i)}) : i = 1,\ldots,n\}.$$

- Need a measure of distance between sets that is blind to automorphisms.
- The automorphism invariant symmetric distance between subsets of B_d.

$$\tilde{\rho}_{s}(X, Y) = \inf \left\{ \rho_{s}(X, \Phi(Y)) : \Phi \in \operatorname{Aut}(\mathbb{B}_{d}) \right\}.$$

• 'quantifies' how far these two sets are from being congruent to each other.

8/13

Suppose that the unit ball \mathbb{B}_d is equipped with the pseudohyperbolic metric ρ_{ph} .

- Let $X, Y \subseteq \mathbb{B}_d$ are finite subsets of the same cardinality.
- The symmetric distance between X and Y is given by

$$\rho_{s}(X,Y) = \min \max \{\rho_{ph}(x_i,y_{\sigma(i)}) : i = 1,\ldots,n\}.$$

- Need a measure of distance between sets that is blind to automorphisms.
- The automorphism invariant symmetric distance between subsets of B_d.

$$\tilde{\rho}_{s}(X, Y) = \inf \left\{ \rho_{s}(X, \Phi(Y)) : \Phi \in \operatorname{Aut}(\mathbb{B}_{d}) \right\}.$$

• 'quantifies' how far these two sets are from being congruent to each other.

8/13

Banach-Mazur analog

Introduction

For the spaces:

■ The reproducing kernel Banach-Mazur distance ρ_{RK} - how far two spaces are from being isometrically isomorphic as RKHSs.

$$\rho_{RK}(\mathcal{H}_1,\mathcal{H}_2) = \log \left(\inf \left\{ \|T\| \|T^{-1}\| : T: \mathcal{H}_1 \to \mathcal{H}_2 \text{ is an RKHS isomorphism} \right\} \right)$$

9/13

Banach-Mazur analog

For the spaces :

■ The reproducing kernel Banach-Mazur distance ρ_{RK} - how far two spaces are from being isometrically isomorphic as RKHSs.

$$\rho_{\mathit{RK}}(\mathcal{H}_1,\mathcal{H}_2) = \log \left(\inf \left\{ \|T\| \|T^{-1}\| : T : \mathcal{H}_1 \to \mathcal{H}_2 \text{ is an RKHS isomorphism} \right\} \right)$$

For the multiplier algebras:

■ Multiplier Banach-Mazur distance ρ_M - how far two multiplier alebras are from being completely isometrically isomorphic as multiplier algebras

$$\rho_{M}(\mathcal{M}_{1},\mathcal{M}_{2}) = \log \left(\inf \left\{ \|\varphi\|_{\mathcal{C}b} \|\varphi^{-1}\|_{\mathcal{C}b} : \varphi : \mathcal{M}_{1} \to \mathcal{M}_{2} \text{ a mult alg isom} \right\} \right).$$

9/13

Main result

Let
$$X = \{x_1, \dots, x_n\}$$
 and $Y = \{y_1, \dots, y_n\}$ be subsets of \mathbb{B}_d . Then

Satish K. Pandey Distance between RKHS's June 3, 2021 10 / 13

Main result

Introduction

Let
$$X = \{x_1, \dots, x_n\}$$
 and $Y = \{y_1, \dots, y_n\}$ be subsets of \mathbb{B}_d . Then

$$\tilde{\rho}_s(X,Y)$$
 is small $\iff \rho_{BK}(\mathcal{H}_X,\mathcal{H}_Y)$ is small $\iff \rho_M(\mathcal{M}_X,\mathcal{M}_Y)$ is small.

Main result

Introduction

Let
$$X = \{x_1, \dots, x_n\}$$
 and $Y = \{y_1, \dots, y_n\}$ be subsets of \mathbb{B}_d . Then $\tilde{\rho}_{\mathbf{S}}(X, Y)$ is small $\iff \rho_{K}(\mathcal{H}_X, \mathcal{H}_Y)$ is small $\iff \rho_{M}(\mathcal{M}_X, \mathcal{M}_Y)$ is small.

Theorem (Ofek-P.-Shalit: 2021)

Fix $n \ge 2$. Let $X = \{x_1, \dots, x_n\} \subset \mathbb{B}_d$ and let $Y^{(k)} = \{y_1^{(k)}, \dots, y_n^{(k)}\}$ be a sequence of subsets of \mathbb{B}_d . Let $\tilde{\rho}_s$ be the automorphism invariant symmetric distance induced by the pseudohyperbolic metric $\rho_{\rm ph}$. Put $\mathcal{H} = H_d^2|_{\mathcal{N}}$, $\mathcal{M} = \text{Mult}(\mathcal{H})$, $\mathcal{H}_k = H_d^2|_{\mathcal{N}(k)}$ and $\mathcal{M}_k = \text{Mult}(\mathcal{H}_k)$. Then, the following statements are equivalent.

- $\tilde{\rho}_s(X,Y^{(k)}) \xrightarrow{k\to\infty} 0.$
- $\rho_{BK}(\mathcal{H},\mathcal{H}_k) \xrightarrow{k\to\infty} 0.$
- $\rho_{\mathcal{M}}(\mathcal{M}, \mathcal{M}_{k}) \xrightarrow{k \to \infty} 0$

10 / 13

Satish K. Pandey Distance between RKHS's June 3, 2021

Introduction

Theorem (Ofek-P.-Shalit; 2021)

Fix
$$n \ge 2$$
. $X = \{x_1, \dots, x_n\} \subset \mathbb{B}_d$, $Y^{(k)} = \{y_1^{(k)}, \dots, y_n^{(k)}\}$.

$$\tilde{\rho}_{s}(X, Y^{(k)}) \xrightarrow{k \to \infty} 0 \iff \rho_{RK}(\mathcal{H}, \mathcal{H}_{k}) \xrightarrow{k \to \infty} 0 \iff \rho_{M}(\mathcal{M}, \mathcal{M}_{k}) \xrightarrow{k \to \infty} 0.$$

Satish K. Pandey

Distance between RKHS's

Introduction

Theorem (Ofek-P.-Shalit; 2021)

Fix
$$n \ge 2$$
. $X = \{x_1, \dots, x_n\} \subset \mathbb{B}_d$, $Y^{(k)} = \{y_1^{(k)}, \dots, y_n^{(k)}\}$.

$$\tilde{\rho}_{\mathcal{S}}(X, Y^{(k)}) \xrightarrow{k \to \infty} 0 \iff \rho_{RK}(\mathcal{H}, \mathcal{H}_k) \xrightarrow{k \to \infty} 0 \iff \rho_{M}(\mathcal{M}, \mathcal{M}_k) \xrightarrow{k \to \infty} 0.$$

$$1 \implies 2; \delta_{RK}(\mathcal{H}_X, \mathcal{H}_Y) \leq \left(1 + \frac{4nr(1-r^2)^{-2}}{\min\{\lambda_{\min}(A), \lambda_{\min}(B)\}} \rho_s(X, Y)\right)^2,$$

Introduction

Theorem (Ofek-P.-Shalit; 2021)

$$\begin{aligned} \text{\it Fix } n \geq 2. & \ \ X = \{x_1, \dots, x_n\} \subset \mathbb{B}_d, \ \ Y^{(k)} = \{y_1^{(k)}, \dots, y_n^{(k)}\}. \\ & \ \ \tilde{\rho}_{s}(X, Y^{(k)}) \xrightarrow{k \to \infty} 0 \iff \rho_{RK}(\mathcal{H}, \mathcal{H}_k) \xrightarrow{k \to \infty} 0 \iff \rho_{M}(\mathcal{M}, \mathcal{M}_k) \xrightarrow{k \to \infty} 0. \end{aligned}$$

■ 1 ⇒ 2;
$$\delta_{RK}(\mathcal{H}_X, \mathcal{H}_Y) \le \left(1 + \frac{4nr(1-r^2)^{-2}}{\min\{\lambda_{\min}(A), \lambda_{\min}(B)\}} \rho_s(X, Y)\right)^2$$
, where $r = \max\{\|z\| : z \in X \cup Y\}$ and $A = [K_1(x_i, x_j)]$ and $B = [K_2(y_i, y_j)]$.

Introduction

Theorem (Ofek-P.-Shalit; 2021)

$$\begin{aligned} \textit{Fix } n \geq 2. \quad & X = \{x_1, \dots, x_n\} \subset \mathbb{B}_d, \quad & Y^{(k)} = \{y_1^{(k)}, \dots, y_n^{(k)}\}. \\ & \tilde{\rho}_s(X, Y^{(k)}) \xrightarrow{k \to \infty} 0 \iff \rho_{RK}(\mathcal{H}, \mathcal{H}_k) \xrightarrow{k \to \infty} 0 \iff \rho_{M}(\mathcal{M}, \mathcal{M}_k) \xrightarrow{k \to \infty} 0. \end{aligned}$$

- 1 ⇒ 2; $\delta_{RK}(\mathcal{H}_X, \mathcal{H}_Y) \le \left(1 + \frac{4nr(1-r^2)^{-2}}{\min\{\lambda_{\min}(A), \lambda_{\min}(B)\}} \rho_s(X, Y)\right)^2$, where $r = \max\{\|z\| : z \in X \cup Y\}$ and $A = [K_1(x_i, x_j)]$ and $B = [K_2(y_i, y_j)]$.
- 2 ⇒ 1: The kernels are close to each other.

Introduction

Theorem (Ofek-P.-Shalit; 2021)

$$\begin{aligned} \text{\it Fix } n &\geq 2. \quad X = \{x_1, \dots, x_n\} \subset \mathbb{B}_d, \quad Y^{(k)} = \{y_1^{(k)}, \dots, y_n^{(k)}\}. \\ & \qquad \qquad \tilde{\rho}_s(X, Y^{(k)}) \xrightarrow{k \to \infty} 0 \iff \rho_{RK}(\mathcal{H}, \mathcal{H}_k) \xrightarrow{k \to \infty} 0 \iff \rho_M(\mathcal{M}, \mathcal{M}_k) \xrightarrow{k \to \infty} 0. \end{aligned}$$

- 1 ⇒ 2; $\delta_{RK}(\mathcal{H}_X, \mathcal{H}_Y) \le \left(1 + \frac{4nr(1-r^2)^{-2}}{\min\{\lambda_{\min}(A), \lambda_{\min}(B)\}} \rho_s(X, Y)\right)^2$, where $r = \max\{\|z\| : z \in X \cup Y\}$ and $A = [K_1(x_i, x_j)]$ and $B = [K_2(y_i, y_j)]$.
- 2 ⇒ 1; The kernels are close to each other, and hence the inner products are close.

Introduction

Theorem (Ofek-P.-Shalit; 2021)

$$\begin{aligned} \text{\it Fix } n \geq 2. \quad X &= \{x_1, \dots, x_n\} \subset \mathbb{B}_d, \quad Y^{(k)} &= \{y_1^{(k)}, \dots, y_n^{(k)}\}. \\ \\ \tilde{\rho}_s(X, Y^{(k)}) &\xrightarrow{k \to \infty} 0 \iff \rho_{RK}(\mathcal{H}, \mathcal{H}_k) \xrightarrow{k \to \infty} 0 \iff \rho_M(\mathcal{M}, \mathcal{M}_k) \xrightarrow{k \to \infty} 0. \end{aligned}$$

- 1 \implies 2; $\delta_{RK}(\mathcal{H}_X, \mathcal{H}_Y) \le \left(1 + \frac{4nr(1-r^2)^{-2}}{\min\{\lambda_{\min}(A), \lambda_{\min}(B)\}} \rho_s(X, Y)\right)^2$, where $r = \max\{\|z\| : z \in X \cup Y\}$ and $A = [K_1(x_i, x_i)]$ and $B = [K_2(y_i, y_i)]$.
- 2 \Longrightarrow 1; The kernels are close to each other, and hence the inner products are close.consequently, $||A^*A B^*B||_2$ is small.

Theorem (Ofek-P.-Shalit; 2021)

Fix
$$n \ge 2$$
. $X = \{x_1, \dots, x_n\} \subset \mathbb{B}_d$, $Y^{(k)} = \{y_1^{(k)}, \dots, y_n^{(k)}\}$.

$$\tilde{\rho}_s(X, Y^{(k)}) \xrightarrow{k \to \infty} 0 \iff \rho_{HK}(\mathcal{H}, \mathcal{H}_k) \xrightarrow{k \to \infty} 0 \iff \rho_M(\mathcal{M}, \mathcal{M}_k) \xrightarrow{k \to \infty} 0.$$

- 1 ⇒ 2; $\delta_{RK}(\mathcal{H}_X, \mathcal{H}_Y) \le \left(1 + \frac{4nr(1-r^2)^{-2}}{\min\{\lambda_{\min}(A), \lambda_{\min}(B)\}} \rho_s(X, Y)\right)^2$, where $r = \max\{\|z\| : z \in X \cup Y\}$ and $A = [K_1(x_i, x_i)]$ and $B = [K_2(y_i, y_i)]$.
- 2 ⇒ 1; The kernels are close to each other, and hence the inner products are close.consequently, $||A^*A B^*B||_2$ is small. Then we use the following lemma: Let $A, B \in M_{d \times n}(\mathbb{C})$ such that $||A^*A B^*B||_2 < \varepsilon$. Then we have:

$$\min_{W\in\mathcal{U}(d)}\|A-WB\|_2^2\leq d(2\|A\|_2\varepsilon^{1/2}+\varepsilon).$$

Theorem (Ofek-P.-Shalit; 2021)

Fix
$$n \ge 2$$
. $X = \{x_1, \dots, x_n\} \subset \mathbb{B}_d$, $Y^{(k)} = \{y_1^{(k)}, \dots, y_n^{(k)}\}$.

$$\tilde{\rho}_s(X, Y^{(k)}) \xrightarrow{k \to \infty} 0 \iff \rho_{HK}(\mathcal{H}, \mathcal{H}_k) \xrightarrow{k \to \infty} 0 \iff \rho_M(\mathcal{M}, \mathcal{M}_k) \xrightarrow{k \to \infty} 0.$$

- 1 \implies 2; $\delta_{RK}(\mathcal{H}_X, \mathcal{H}_Y) \le \left(1 + \frac{4nr(1-r^2)^{-2}}{\min\{\lambda_{\min}(A), \lambda_{\min}(B)\}} \rho_s(X, Y)\right)^2$, where $r = \max\{\|z\| : z \in X \cup Y\}$ and $A = [K_1(x_i, x_i)]$ and $B = [K_2(y_i, y_i)]$.
- 2 ⇒ 1; The kernels are close to each other, and hence the inner products are close.consequently, $||A^*A B^*B||_2$ is small. Then we use the following lemma: Let $A, B \in M_{d \times n}(\mathbb{C})$ such that $||A^*A B^*B||_2 < \varepsilon$. Then we have:

$$\min_{W \in \mathcal{U}(d)} \|A - WB\|_2^2 \le d(2\|A\|_2 \varepsilon^{1/2} + \varepsilon).$$

■ 2 \Longrightarrow 3; $\rho_M(\mathcal{M}_1, \mathcal{M}_2) \leq \rho_{RK}(\mathcal{H}_1, \mathcal{H}_2)^2$.

11 / 13

Satish K. Pandey Distance between RKHS's June 3, 2021

A few words on the significance of our result

Introduction

■ Let d be a positive integer and $t \in (0, \infty)$. Then there exists an RKHS H_d^t on \mathbb{B}_d with the reproducing kernel

$$K(x,y) = \frac{1}{(1 - \langle x, y \rangle)^t}.$$

■ When d = 1, H_d^t is a weighted Hardy space.

Satish K. Pandey Distance between RKHS's June 3, 2021 12 / 13

A few words on the significance of our result

■ Let d be a positive integer and $t \in (0, \infty)$. Then there exists an RKHS H_d^t on \mathbb{B}_d with the reproducing kernel

$$K(x,y) = \frac{1}{(1 - \langle x, y \rangle)^t}.$$

■ When d = 1, H_d^t is a weighted Hardy space.

Theorem (Ofek-Sofer; 2021)

Let $\mathcal{H} = H_d^t$.

Introduction

■ If $t \in (0,2]$, then for every $A, B \subseteq \mathbb{B}_d$, we have

 \mathcal{H}_A is isometrically isomorphic as an RKHS to $\mathcal{H}_B \iff A$ is congruent to B

■ If $t \in (2, \infty)$, then there exist non congruent subsets of \mathbb{B}_d that yield isometrically isomorphic RKHSs.

Satish K. Pandey Distance between RKHS's June 3, 2021 12 / 13

Thank you for your time.

