Graph operator systems generated by a projection

Rupert Levene

University College Dublin

Joint work with Polona Oblak and Helena Šmigoc arXiv: 2012.12694 and 2103.04587

Canadian Operator Symposium May 2021

Graph operator systems

Let Γ be a connected graph with vertex set $\{1, 2, \dots, n\}$.

Graph operator system of Γ :

$$S(\Gamma) = Span \left\{ e_{\overline{j}} \middle| i = j \text{ or } ij \in E(\Gamma) \middle| \right\}$$

$$= \left\{ X \in M_n(C) \middle| X_{ij} = 0 \Rightarrow i \neq j \\ D_n - bimodule \\ \mathcal{R}(\Gamma) \subseteq S(\Gamma) \right\}$$

$$R(\Gamma) = \{x \in S(\Gamma) | ij \in E(\Gamma) = x_i \neq 0 \}$$

$$X \in \mathcal{R}(\Gamma) \iff \langle X, D_n \rangle = \mathcal{S}(\Gamma)$$
, as a D_n -bimodule.

(eg)

Question

For which graphs Γ does $\mathcal{R}(\Gamma)$ contain a projection?

IEPG

Some simple reformulations

Proposition

TFAE:

- 1. $\mathcal{R}(\Gamma)$ contains a projection;
- **2**. $\mathcal{R}(\Gamma)$ contains a Hermitian unitary;
- 3. $\mathcal{R}(\Gamma)$ contains a normal matrix with at most two distinct eigenvalues.

$$X \in \mathbb{R}(\Gamma) \Longrightarrow \alpha X + \beta I \in \mathbb{R}(\Gamma)$$

$$\alpha \times \phi = \beta \in \mathbb{C}$$

Paths

$$P_{N} = 0-2-\ldots-N$$

$$R(P_{n}) = \begin{pmatrix} *** & 0 \\ ** & \vdots \\ 0 & \vdots \end{pmatrix}$$

Proposition (folklore)

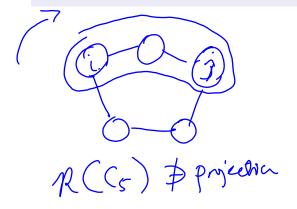
If $X \in \mathcal{R}(P_n)$ is normal, then X has n distinct eigenvalues.

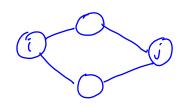
In particular, if $n \geq 3$, then $\mathcal{R}(P_n)$ is projectionless.

Unique shortest path obstruction

Proposition (Fallat et al. 2013)

If $\operatorname{dist}_{\Gamma}(i,j) \geq 2$ and this is attained by a unique path in Γ , then $\mathcal{R}(\Gamma)$ is projectionless.





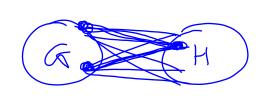
Example

If Γ has a cut edge and at least 3 vertices, then $\mathcal{R}(\Gamma)$ is projectionless.

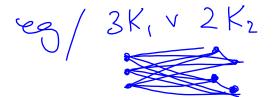
The join of two graphs

Let G, H be any graphs (possibly disconnected).

The join $G \vee H$ is connected and usually lacks the unique shortest path obstruction.



$$\mathcal{R}(G \vee H) = \left(\begin{array}{c} \mathcal{R}(G) \middle \times \\ \hline \times & \mathcal{R}(H) \end{array} \right)$$



Theorem (Monfared-Shader 2016)

If G and H are connected graphs with |G| = |H|, then $\mathcal{R}(G \vee H)$ contains a projection.

Key R(G) & R(H) admit makres with district eigenvalues, & no expenseurs with a O entry

Necessary condition (connected G, H)

Write $\sigma'(X) = \sigma(X) \setminus \{0, 1\}$.

Proposition (L-Oblak-Šmigoc 2020)

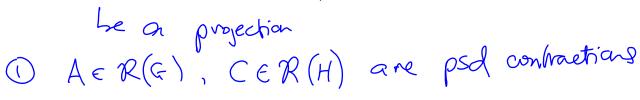
If G and H are connected and
$$\mathcal{R}(G \vee H)$$
 consemidefinite contractions $A \in \mathcal{R}(G)$ and $C \in \mathcal{R}(G)$

If G and H are connected and
$$\mathcal{R}(G \vee H)$$
 contains a projection, then there exist positive semidefinite contractions $A \in \mathcal{R}(G)$ and $C \in \mathcal{R}(H)$ so that $\emptyset \neq \sigma'(A) = \sigma'(C)$.

connected and
$$\mathcal{R}(\mathsf{G}\vee\mathsf{H})$$
 contactions $\mathsf{A}\in\mathcal{R}(\mathsf{G})$ and $\mathsf{C}\in$

If Let
$$P = \begin{pmatrix} A & B \\ B^* & I - C \end{pmatrix} \in R(G \vee H)$$

be a projection
$$-\infty(G)$$
 $-\infty(G)$



$$(\in \mathcal{R}(G), CER(H))$$

$$\&B \neq 0 \Rightarrow \sigma'(A), \sigma'(C) \neq \emptyset.$$

② Coupress blocks to eigenspaces for
$$\sigma'(A)$$
, $\sigma'(C)$

$$P \supseteq P_0 = \begin{pmatrix} A_0 & B_0 \\ B_0 & I - C_0 \end{pmatrix}, \text{ a pyretian, } k$$

$$\sigma'(A_0) = \sigma'(A), \sigma'(C) = \sigma'(A)$$

$$P_0^2 = P_0 \implies (a)B_0$$
 invertible $k \in (A_0), \sigma(C_0) \subseteq (0,1)$

$$\lambda(b) \quad A_{\circ} \beta_{\circ} = \beta_{\circ} C_{\circ}$$

$$=> \sigma(A_{\circ}) = \sigma(C_{\circ})$$

Necessary condition (arbitrary G, H)

Theorem (L-Oblak-Šmigoc 2020)

If $G = \bigcup G_i$ and $H = \bigcup H_j$ where G_i , H_j are connected, and $\mathcal{R}(G \vee H)$ contains a projection, then there exist positive semidefinite contractions $A \in \mathcal{R}(G)$ and $C \in \mathcal{R}(H)$ so that

$$\sigma'(A) = \sigma'(C)$$
 (counting multiplicities); and

2.
$$\emptyset \neq \sigma'(A_i) \cap \sigma'(C_j)$$
 for all i, j , where $A = \bigoplus A_i$ and $C = \bigoplus C_j$.

Say G and H are *compatible* when such $A \in \mathcal{R}(G)$, $C \in \mathcal{R}(H)$ exist.

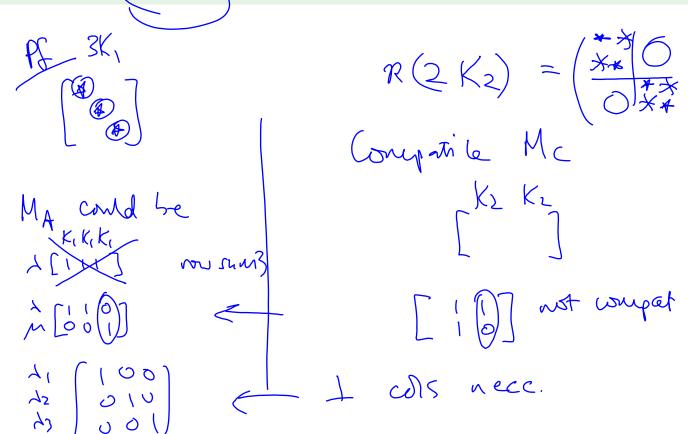
$$M_{A} = \frac{1}{2} \left[\begin{array}{c} A_{1} ... A_{k} \\ M_{G} & A_{k} \end{array} \right] ; \qquad M_{C} = \frac{1}{2} \left[\begin{array}{c} C_{1} ... C_{k} \\ M_{G} & A_{k} \end{array} \right]$$

Compath Lity. O row sums of

O row sums of MA, Mc are legnal D no col of MA I a col of Mc

Example

 $\mathcal{R}(3K_1 \vee 2K_2)$ is projectionless.



Converse for complete/path components

Theorem (L-Oblak-Šmigoc 2020, 2021) If $G = \bigcup_i G_i$ and $H = \bigcup_j H_j$ where each G_i , H_j is either a complete graph or a path, then $\mathcal{R}(G \vee H)$ contains a projection if and only if G and H are compatible. take compatible $A \in \mathcal{R}(G)$,

(A B) to a projection, B* II-c) where bij = 0. try to complete

Sufficient evecs f A,C can be chosen

Example

►
$$\mathcal{R}(2K_1 \vee 2K_2)$$
 ⇒ projection

 $K_2 \quad K_1$
 $M_A = \lambda \begin{bmatrix} 1 & 1 \end{bmatrix}$
 $M_C = \lambda \begin{bmatrix} 1 & 1 \end{bmatrix}$

►
$$\mathcal{R}(3K_1 \vee 2K_2)$$
 \Rightarrow projection

$$\begin{array}{c} R(4K_1 \vee 2K_2) & \Rightarrow \text{projechia} \\ \hline M_A & = 1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; & M_C = 1 \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{array}$$

Complete/path components as extreme cases

Theorem (L-Oblak-Šmigoc 2020, 2021)

Suppose $G = \bigcup_i G_i$ and $H = \bigcup_j H_j$ where G_i , H_j are connected.

- 1. Let $K_G = \bigcup_j K_{|G_j|}$ and $K_H = \bigcup_j K_{|H_j|}$.

 If $\mathcal{R}(K_G \vee K_H)$ is projectionless, then so is $\mathcal{R}(G \vee H)$.
- 2. Let $P_G = \bigcup_i P_{|G_i|}$ and $P_H = \bigcup_j P_{|H_j|}$.

 If $\mathcal{R}(P_G \vee P_H)$ contains a projection, then so does $\mathcal{R}(G \vee H)$.

Theorem (L-Oblak-Šmigoc 2020, 2021)

Suppose $G = \bigcup_i G_i$ and $H = \bigcup_j H_j$ where G_i , H_j are connected.

2. Let $P_G = \bigcup_i P_{|G_i|}$ and $P_H = \bigcup_j P_{|H_j|}$. If $\mathcal{R}(P_G \vee P_H)$ contains a projection, then so does $\mathcal{R}(G \vee H)$.

Corollary (generalized Monfared-Shader)

If G and H are connected with $|G| - |H| \le 2$, then $\mathcal{R}(G \vee H)$ contains a projection, and this inequality is sharp.

$$M_{\star} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
 $M_{\epsilon} = \begin{bmatrix} 1$

Complete components: combinatorial characterisation

Theorem (LOS 2020)

Suppose $k \leq \ell$ and

$$G = \bigcup_{i=1}^k K_{n_i}, \quad H = \bigcup_{j=1}^{\ell} K_{m_j},$$
 $\iota(G) := |\{i : n_i = 1\}|, \quad \iota(H) := |\{j : m_j = 1\}|.$

The following are equivalent:

- 1. $\mathcal{R}(G \vee H)$ is projectionless;
- 2. at least one of the following three conditions holds:
 - ightharpoonup $|G| < \ell$;
 - $ightharpoonup \iota(G) > 0 \text{ and } k + \ell > \min\{|G| + \iota(G), |H| + \iota(H)\};$
 - ▶ $\iota(G) = 0$ and $\iota(H) > 0$, and $k < \ell < 2k$ and |H| < 2k and $|G| < k + \ell$.

Problem

Characterise compatibility for unions of paths.

Generic realisability

Questions

- ▶ Does it make any difference if we work over \mathbb{R} or \mathbb{C} ?
- ▶ Is compatibility sufficient for $\mathcal{R}(G \vee H)$ to contain a projection?
- ► There is a combinatorial characterisation of compatibility for two unions of complete graphs [LOS 2020]. What about unions of paths?
- ▶ If Γ is not a join (i.e., its complement is connected) and does not have the unique shortest path obstruction, can we determine whether $\mathcal{R}(\Gamma)$ contains a projection?

Thank you!