

Semi doubly stochastic operators on $L^1(X)$ and its quantum application

Shirin Moein

Joint work with Dr. Seyed Mahmoud Manjegani, Isfahan University of Technology, Iran

Presentation Outline

- What is the Majorization?
- ② Why L^1 ? (Quantum Interpretation)
- 3 Majorization on L^1

Short History

• 1903: Muirhead

Muirhead's inequality

Let the components of $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n)$ be non-negative integer.

1.

$$\sum_{\pi} \alpha_{\pi(1)}^{x_1} \alpha_{\pi(2)}^{x_2} \cdots \alpha_{\pi(n)}^{x_n} \le \sum_{\pi} \alpha_{\pi(1)}^{y_1} \alpha_{\pi(2)}^{y_2} \cdots \alpha_{\pi(n)}^{y_n};$$

2. the sum of the k largest components of X is less than or equal to the sum of the k largest components of Y, $k = 1, 2, \ldots, n-1$ with equality when k = n.

Short History

• 1903: Muirhead

Muirhead's inequality

Let the components of $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n)$ be non-negative integer.

1.

$$\sum_{\pi} \alpha_{\pi(1)}^{x_1} \alpha_{\pi(2)}^{x_2} \cdots \alpha_{\pi(n)}^{x_n} \le \sum_{\pi} \alpha_{\pi(1)}^{y_1} \alpha_{\pi(2)}^{y_2} \cdots \alpha_{\pi(n)}^{y_n};$$

2. the sum of the k largest components of X is less than or equal to the sum of the k largest components of Y, $k = 1, 2, \ldots, n-1$ with equality when k = n.

Short History

• 1903: Muirhead

Muirhead's inequality

Let the components of $X = (x_1, x_2, ..., x_n)$ and $Y = (y_1, y_2, ..., y_n)$ be non-negative integer.

1.

$$\sum_{\pi} \alpha_{\pi(1)}^{x_1} \alpha_{\pi(2)}^{x_2} \cdots \alpha_{\pi(n)}^{x_n} \le \sum_{\pi} \alpha_{\pi(1)}^{y_1} \alpha_{\pi(2)}^{y_2} \cdots \alpha_{\pi(n)}^{y_n};$$

2. the sum of the k largest components of X is less than or equal to the sum of the k largest components of Y, k = 1, 2, ..., n-1 with equality when k = n.

• 1929: Hardy

• 1929: Hardy, Littlewood

• 1929: Hardy, Littlewood and Pólya

Let $X = (x_1, x_2, ..., x_n)$ be a real vector. X has been reordered so that $x_1^{\downarrow} \geq x_2^{\downarrow} \geq ... \geq x_n^{\downarrow}$.

Definition 1 (1929- Hardy, Littlewood and Pólya [3]

$$x_{1}^{\downarrow} \leq y_{1}^{\downarrow}$$

$$x_{1}^{\downarrow} + x_{2}^{\downarrow} \leq y_{1}^{\downarrow} + y_{2}^{\downarrow}$$

$$\vdots$$

$$\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}, \quad k \in \{1, \dots, n-1\}$$

$$\sum_{j=1}^{n} x_{j} = \sum_{j=1}^{n} y_{j}.$$

Let $X = (x_1, x_2, ..., x_n)$ be a real vector. X has been reordered so that $x_1^{\downarrow} \geq x_2^{\downarrow} \geq ... \geq x_n^{\downarrow}$.

Definition 1 (1929- Hardy, Littlewood and Pólya [3]

$$x_{1}^{\downarrow} \leq y_{1}^{\downarrow}$$

$$x_{1}^{\downarrow} + x_{2}^{\downarrow} \leq y_{1}^{\downarrow} + y_{2}^{\downarrow}$$

$$\vdots$$

$$\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}, \quad k \in \{1, \dots, n-1\}$$

$$\sum_{j=1}^{n} x_{j} = \sum_{j=1}^{n} y_{j}.$$

Let $X = (x_1, x_2, ..., x_n)$ be a real vector. X has been reordered so that $x_1^{\downarrow} \geq x_2^{\downarrow} \geq ... \geq x_n^{\downarrow}$.

Definition 1 (1929- Hardy, Littlewood and Pólya [3])

if $X, Y \in \mathbb{R}^n$, we say X is majorized by Y, dtenoted $X \prec Y$, if

$$x_{1}^{\downarrow} \leq y_{1}^{\downarrow}$$

$$x_{1}^{\downarrow} + x_{2}^{\downarrow} \leq y_{1}^{\downarrow} + y_{2}^{\downarrow}$$

$$\vdots$$

$$\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}, \quad k \in \{1, \dots, n-1\}$$

$$\sum_{j=1}^{n} x_{j} = \sum_{j=1}^{n} y_{j}.$$

200

Let $X = (x_1, x_2, ..., x_n)$ be a real vector. X has been reordered so that $x_1^{\downarrow} \geq x_2^{\downarrow} \geq ... \geq x_n^{\downarrow}$.

Definition 1 (1929- Hardy, Littlewood and Pólya [3])

$$x_{1}^{\downarrow} \leq y_{1}^{\downarrow}$$

$$x_{1}^{\downarrow} + x_{2}^{\downarrow} \leq y_{1}^{\downarrow} + y_{2}^{\downarrow}$$

$$\vdots$$

$$\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}, \quad k \in \{1, \dots, n-1\}$$

$$\sum_{j=1}^{n} x_{j} = \sum_{j=1}^{n} y_{j}.$$

Let $X = (x_1, x_2, ..., x_n)$ be a real vector. X has been reordered so that $x_1^{\downarrow} \geq x_2^{\downarrow} \geq ... \geq x_n^{\downarrow}$.

Definition 1 (1929- Hardy, Littlewood and Pólya [3])

$$x_{1}^{\downarrow} \leq y_{1}^{\downarrow}$$

$$x_{1}^{\downarrow} + x_{2}^{\downarrow} \leq y_{1}^{\downarrow} + y_{2}^{\downarrow}$$

$$\vdots$$

$$\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}, \quad k \in \{1, \dots, n-1\}$$

$$\sum_{j=1}^{n} x_{j} = \sum_{j=1}^{n} y_{j}.$$

Let $X = (x_1, x_2, ..., x_n)$ be a real vector. X has been reordered so that $x_1^{\downarrow} \geq x_2^{\downarrow} \geq ... \geq x_n^{\downarrow}$.

Definition 1 (1929- Hardy, Littlewood and Pólya [3])

$$x_{1}^{\downarrow} \leq y_{1}^{\downarrow}$$

$$x_{1}^{\downarrow} + x_{2}^{\downarrow} \leq y_{1}^{\downarrow} + y_{2}^{\downarrow}$$

$$\vdots$$

$$\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}, \quad k \in \{1, \dots, n-1\}$$

$$\sum_{j=1}^{n} x_{j} = \sum_{j=1}^{n} y_{j}.$$

Let $X = (x_1, x_2, ..., x_n)$ be a real vector. X has been reordered so that $x_1^{\downarrow} \geq x_2^{\downarrow} \geq ... \geq x_n^{\downarrow}$.

Definition 1 (1929- Hardy, Littlewood and Pólya [3])

$$x_{1}^{\downarrow} \leq y_{1}^{\downarrow}$$

$$x_{1}^{\downarrow} + x_{2}^{\downarrow} \leq y_{1}^{\downarrow} + y_{2}^{\downarrow}$$

$$\vdots$$

$$\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}, \quad k \in \{1, \dots, n-1\}$$

$$\sum_{j=1}^{n} x_{j} = \sum_{j=1}^{n} y_{j}.$$

and

Let $X = (x_1, x_2, ..., x_n)$ be a real vector. X has been reordered so that $x_1^{\downarrow} \geq x_2^{\downarrow} \geq ... \geq x_n^{\downarrow}$.

Definition 1 (1929- Hardy, Littlewood and Pólya [3])

$$x_{1}^{\downarrow} \leq y_{1}^{\downarrow}$$

$$x_{1}^{\downarrow} + x_{2}^{\downarrow} \leq y_{1}^{\downarrow} + y_{2}^{\downarrow}$$

$$\vdots$$

$$\sum_{j=1}^{k} x_{j}^{\downarrow} \leq \sum_{j=1}^{k} y_{j}^{\downarrow}, \quad k \in \{1, \dots, n-1\}$$

$$\sum_{j=1}^{n} x_{j} = \sum_{j=1}^{n} y_{j}.$$

Equivalent Conditions for Vector Majorization

Theorem 2 (1934- Hardy, Littlewood, and Pólya [3])

For $X, Y \in \mathbb{R}^n$ the followings are equivalent.

- (1) $X \prec Y$
- (2) There exists a doubly stochastic matrix $D_{n \times n}$ such that X = DY.

Equivalent Conditions for Vector Majorization

Theorem 2 (1934- Hardy, Littlewood, and Pólya [3])

For $X, Y \in \mathbb{R}^n$ the followings are equivalent.

- (1) $X \prec Y$,
- (2) There exists a doubly stochastic matrix $D_{n \times n}$ such that X = DY.

Equivalent Conditions for Vector Majorization

Theorem 2 (1934- Hardy, Littlewood, and Pólya [3])

For $X, Y \in \mathbb{R}^n$ the followings are equivalent.

- (1) $X \prec Y$,
- (2) There exists a doubly stochastic matrix $D_{n\times n}$ such that X = DY.

Why l^1 space?

$$l^1 = \{f: \mathbb{N} \to \mathbb{R}: \qquad \sum_{n \in \mathbb{N}} |f(n)| < +\infty\}.$$

Presentation Outline

- What is the Majorization?
- 2 Why L^1 ? (Quantum Interpretation)
- 3 Majorization on L^1

In 1999, Nielsen used vector majorization to link problem of state transformation with mathematics in a finite dimensional system.

The state space of a composite system is modelled by the tensor product of subsystems (see [6, section 2.2.8]).

The state space of a composite system is modelled by the tensor product of subsystems (see [6, section 2.2.8]).

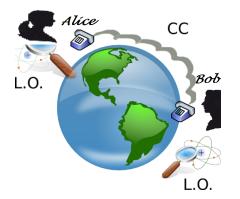
The state space of a composite system is modelled by the tensor product of subsystems (see [6, section 2.2.8]).

The state space of a composite system is modelled by the tensor product of subsystems (see [6, section 2.2.8]).

Local Operations and Classical Communication

The parties are not allowed to exchange particles coherently.

Only local operations and classical communication is allowed.



Local Operations and Classical Communication

The parties are not allowed to exchange particles coherently. Only local operations and classical communication is allowed.

Nielsen's Theorem in the finite dimensional

Theorem 3 (Nielsen's Theorem [6])

 $|\psi\rangle$ can be converted to $|\phi\rangle$ by LOCC channel if and only if $\lambda_{\psi} \prec \lambda_{\phi}$.

Theorem 4 (Schmidt decomposition; infinite case)

For every $|\psi\rangle \in H_a \otimes H_b$ there exist orthonormal Schmidt sets (not necessarily basis) $\{|e_i\rangle\}_{i=1}^{\infty} \subset H_a$ and $\{|f_i\rangle\}_{i=1}^{\infty} \subset H_b$ s.t

$$|\psi\rangle = \sum_{i=1}^{\infty} \sqrt{\lambda_i} |e_i\rangle \otimes |f_i\rangle,$$

where

$$\sum_{i=1}^{\infty} \lambda_i = 1.$$

Nielsen's Theorem in the finite dimensional

Theorem 3 (Nielsen's Theorem [6])

 $|\psi\rangle$ can be converted to $|\phi\rangle$ by LOCC channel if and only if $\lambda_{\psi} \prec \lambda_{\phi}$.

Theorem 4 (Schmidt decomposition; infinite case)

For every $|\psi\rangle \in H_a \otimes H_b$ there exist orthonormal Schmidt sets (not necessarily basis) $\{|e_i\rangle\}_{i=1}^{\infty} \subset H_a$ and $\{|f_i\rangle\}_{i=1}^{\infty} \subset H_b$ s.t

$$|\psi\rangle = \sum_{i=1}^{\infty} \sqrt{\lambda_i} |e_i\rangle \otimes |f_i\rangle,$$

where

$$\sum_{i=1}^{\infty} \lambda_i = 1.$$

Nielsen's Theorem in the finite dimensional

Theorem 3 (Nielsen's Theorem [6])

 $|\psi\rangle$ can be converted to $|\phi\rangle$ by LOCC channel if and only if $\lambda_{\psi} \prec \lambda_{\phi}$.

Theorem 4 (Schmidt decomposition; infinite case)

For every $|\psi\rangle \in H_a \otimes H_b$ there exist orthonormal Schmidt sets (not necessarily basis) $\{|e_i\rangle\}_{i=1}^{\infty} \subset H_a$ and $\{|f_i\rangle\}_{i=1}^{\infty} \subset H_b$ s.t

$$|\psi\rangle = \sum_{i=1}^{\infty} \sqrt{\lambda_i} |e_i\rangle \otimes |f_i\rangle,$$

where

$$\sum_{i=1}^{\infty} \lambda_i = 1$$

On

$$l^1 = \{ f : \mathbb{N} \to \mathbb{R} : \sum_{n \in \mathbb{N}} |f(n)| < +\infty \}$$

Since the space of all real-valued integrable functions $L^1(X, \mu)$ are used in the theoretical discussion of problems in various field of science such as finance, engineering, physics, statistics, and other disciplines, we prefer to work more generally on L^1 space. It is clear that for σ -finite measure space (\mathbb{N}, μ) , when μ is the counting measure, L^1 and l^1 coincide.

On

$$l^1 = \{ f : \mathbb{N} \to \mathbb{R} : \sum_{n \in \mathbb{N}} |f(n)| < +\infty \}$$

Since the space of all real-valued integrable functions $L^1(X, \mu)$ are used in the theoretical discussion of problems in various field of science such as finance, engineering, physics, statistics, and other disciplines,we prefer to work more generally on L^1 space. It is clear that for σ -finite measure space (\mathbb{N}, μ) , when μ is the counting measure, L^1 and l^1 coincide.

On

$$l^1 = \{ f : \mathbb{N} \to \mathbb{R} : \sum_{n \in \mathbb{N}} |f(n)| < +\infty \}$$

Since the space of all real-valued integrable functions $L^1(X, \mu)$ are used in the theoretical discussion of problems in various field of science such as finance, engineering, physics, statistics, and other disciplines,we prefer to work more generally on L^1 space. It is clear that for σ -finite measure space (\mathbb{N}, μ) , when μ is the counting measure, L^1 and l^1 coincide.

Presentation Outline

- What is the Majorization?
- ② Why L^1 ? (Quantum Interpretation)

for all
$$X, Y \in \mathbb{R}^n$$
,

$$X \prec Y \Leftrightarrow \exists D \ X = DY$$

$$Tf \prec f \quad \forall f \in L^1(X).$$

for all
$$X, Y \in \mathbb{R}^n$$
,

$$X \prec Y \Leftrightarrow \exists D \ X = DY$$

$$Tf \prec f \quad \forall f \in L^1(X).$$

Definition 5 (Chong-[2])

If f is any measurable function

$$f^{\downarrow}(s) = \inf\{t : d_f(t) \le s\}, \qquad 0 \le s \le \mu(X)$$
 (1)

Definition 5 (Chong-[2])

If f is any measurable function

$$f^{\downarrow}(s) = \inf\{t : d_f(t) \le s\}, \qquad 0 \le s \le \mu(X)$$
 (1)

Definition 5 (Chong-[2])

If f is any measurable function

$$f^{\downarrow}(s) = \inf\{t : d_f(t) \le s\}, \qquad 0 \le s \le \mu(X) \quad (1)$$

Definition 5 (Chong-[2])

If f is any measurable function

$$f^{\downarrow}(s) = \inf\{t : d_f(t) \le s\}, \qquad 0 \le s \le \mu(X) \quad (1)$$

Definition 6 (Chong-[2])

$$\int_0^s f^{\downarrow}dm \leq \int_0^s g^{\downarrow}dm \quad \forall \, 0 \leq s \leq \mu(X)$$
 and
$$\int_0^{\mu(X)} g^{\downarrow}dm = \int_0^{\mu(X)} f^{\downarrow}dm.$$

Definition 6 (Chong-[2])

$$\int_0^s f^{\downarrow} dm \leq \int_0^s g^{\downarrow} dm \quad \forall \, 0 \leq s \leq \mu(X)$$
 and
$$\int_0^{\mu(X)} g^{\downarrow} dm = \int_0^{\mu(X)} f^{\downarrow} dm.$$

Definition 6 (Chong-[2])

$$\int_0^s f^{\downarrow} dm \leq \int_0^s g^{\downarrow} dm \quad \forall \, 0 \leq s \leq \mu(X)$$
 and
$$\int_0^{\mu(X)} g^{\downarrow} dm = \int_0^{\mu(X)} f^{\downarrow} dm.$$

Definition 6 (Chong-[2])

$$\begin{split} &\int_0^s f^{\downarrow}dm &\leq &\int_0^s g^{\downarrow}dm \quad \forall\, 0\leq s \leq \mu(X) \\ \text{and } &\int_0^{\mu(X)} g^{\downarrow}dm &= &\int_0^{\mu(X)} f^{\downarrow}dm. \end{split}$$

Theorem 7 (Ryff-[7])

For a finite measure space (X, A, μ) , a bounded linear operator T on $L^1(X, \mu)$ satisfies $Tf \prec f$, for each $f \in L^1(X, \mu)$, if and only if

$$\int_X Tf \ d\mu = \int_X f \ d\mu \quad and \quad \int_X T^*g \ d\mu = \int_X g \ d\mu$$

for all $f \in L^1(X, \mu)$ and $g \in L^{\infty}(X, \mu)$, where $T^* : L^{\infty}(X, \mu) \to L^{\infty}(X, \mu)$ is the adjoint operator of T.

Theorem 7 (Ryff-[7])

For a finite measure space (X, A, μ) , a bounded linear operator T on $L^1(X, \mu)$ satisfies $Tf \prec f$, for each $f \in L^1(X, \mu)$, if and only if

$$\int_X Tf \ d\mu = \int_X f \ d\mu \quad and \quad \int_X T^*g \ d\mu = \int_X g \ d\mu$$

for all $f \in L^1(X, \mu)$ and $g \in L^{\infty}(X, \mu)$, where $T^* : L^{\infty}(X, \mu) \to L^{\infty}(X, \mu)$ is the adjoint operator of T.

Theorem 7 (Ryff-[7])

For a finite measure space (X, A, μ) , a bounded linear operator T on $L^1(X, \mu)$ satisfies $Tf \prec f$, for each $f \in L^1(X, \mu)$, if and only if

$$\int_X Tf \ d\mu = \int_X f \ d\mu \quad and \quad \int_X T^*g \ d\mu = \int_X g \ d\mu$$

for all $f \in L^1(X, \mu)$ and $g \in L^{\infty}(X, \mu)$, where $T^* : L^{\infty}(X, \mu) \to L^{\infty}(X, \mu)$ is the adjoint operator of T.

Theorem 7 (Ryff-[7])

For a finite measure space (X, A, μ) , a bounded linear operator T on $L^1(X, \mu)$ satisfies $Tf \prec f$, for each $f \in L^1(X, \mu)$, if and only if

$$\int_X Tf \ d\mu = \int_X f \ d\mu \quad and \quad \int_X T^*g \ d\mu = \int_X g \ d\mu$$

for all $f \in L^1(X,\mu)$ and $g \in L^\infty(X,\mu)$, where $T^*: L^\infty(X,\mu) \to L^\infty(X,\mu)$ is the adjoint operator of T.

Let $D: l^1 \to l^1$ be right shift operator, it is easily seen that

$$\forall f \in l^1 \ Df \prec f.$$

Now let

$$f := \sum_{n=1}^{\infty} \frac{1}{2^n} e_n$$
 then $Df = \sum_{n=1}^{\infty} \frac{1}{2^n} e_{n+1}$

Hence

$$0 = (Df)_1 = \sum_{n=1}^{\infty} \langle De_n, e_1 \rangle f_n = \sum_{n=1}^{\infty} \frac{\langle De_n, e_1 \rangle}{2^n}$$

So D is not a doubly stochastic.

Let $D: l^1 \to l^1$ be right shift operator, it is easily seen that

$$\forall f \in l^1 \ Df \prec f.$$

Now let

$$f := \sum_{n=1}^{\infty} \frac{1}{2^n} e_n$$
 then $Df = \sum_{n=1}^{\infty} \frac{1}{2^n} e_{n+1}$

Hence

$$0 = (Df)_1 = \sum_{n=1}^{\infty} \langle De_n, e_1 \rangle f_n = \sum_{n=1}^{\infty} \frac{\langle De_n, e_1 \rangle}{2^n}$$

$$\Rightarrow \forall n \in \mathbb{N}, \ \langle De_n, e_1 \rangle = 0$$

So D is not a doubly stochastic

Let $D: l^1 \to l^1$ be right shift operator, it is easily seen that

$$\forall f \in l^1 \ Df \prec f.$$

Now let

$$f := \sum_{n=1}^{\infty} \frac{1}{2^n} e_n$$
 then $Df = \sum_{n=1}^{\infty} \frac{1}{2^n} e_{n+1}$

Hence

$$0 = (Df)_1 = \sum_{n=1}^{\infty} \langle De_n, e_1 \rangle f_n = \sum_{n=1}^{\infty} \frac{\langle De_n, e_1 \rangle}{2^n}$$

$$\Rightarrow \forall n \in \mathbb{N}, \ \langle De_n, e_1 \rangle = 0$$

So D is not a doubly stochastic

Let $D: l^1 \to l^1$ be right shift operator, it is easily seen that

$$\forall f \in l^1 \ Df \prec f.$$

Now let

$$f := \sum_{n=1}^{\infty} \frac{1}{2^n} e_n$$
 then $Df = \sum_{n=1}^{\infty} \frac{1}{2^n} e_{n+1}$

Hence

$$0 = (Df)_1 = \sum_{n=1}^{\infty} \langle De_n, e_1 \rangle f_n = \sum_{n=1}^{\infty} \frac{\langle De_n, e_1 \rangle}{2^n}$$

$$\Rightarrow \forall n \in \mathbb{N}, \ \langle De_n, e_1 \rangle = 0$$

So D is not a doubly stochastic.

Let $D: l^1 \to l^1$ be right shift operator, it is easily seen that

$$\forall f \in l^1 \ Df \prec f.$$

Now let

$$f := \sum_{n=1}^{\infty} \frac{1}{2^n} e_n$$
 then $Df = \sum_{n=1}^{\infty} \frac{1}{2^n} e_{n+1}$

Hence

$$0 = (Df)_1 = \sum_{n=1}^{\infty} \langle De_n, e_1 \rangle f_n = \sum_{n=1}^{\infty} \frac{\langle De_n, e_1 \rangle}{2^n}$$

$$\Rightarrow \forall n \in \mathbb{N}, \ \langle De_n, e_1 \rangle = 0$$

So D is not a doubly stochastic.

Definition 9

Let (X, μ) be σ finite measure space. A positive operator T on $L^1(X)$ is called semi-doubly stochastic if

$$\int_X Tf \, d\mu = \int_X f \, d\mu, \quad \forall f \in L^1,$$

$$\int_X T^* \chi_E \, d\mu \le \mu(E) \quad \forall E \in \mathcal{A} \quad with \quad \mu(E) < \infty$$

The set of all semi-doubly stochastic operators on $L^1(X, \mu)$ is denoted by $s\mathcal{DS}(L^1)$).

Definition 9

Let (X, μ) be σ finite measure space. A positive operator T on $L^1(X)$ is called semi-doubly stochastic if

$$\int_X Tf \, d\mu = \int_X f \, d\mu, \quad \forall f \in L^1,$$

$$\int_X T^* \chi_E \, d\mu \le \mu(E) \quad \forall E \in \mathcal{A} \quad with \quad \mu(E) < \infty$$

The set of all semi-doubly stochastic operators on $L^1(X, \mu)$ is denoted by $s\mathcal{DS}(L^1)$).

Definition 9

Let (X, μ) be σ finite measure space. A positive operator T on $L^1(X)$ is called semi-doubly stochastic if

$$\int_X Tf \, d\mu = \int_X f \, d\mu, \quad \forall f \in L^1,$$

$$\int_X T^* \chi_E \, d\mu \le \mu(E) \quad \forall E \in \mathcal{A} \quad with \quad \mu(E) < \infty$$

The set of all semi-doubly stochastic operators on $L^1(X, \mu)$ is denoted by $s\mathcal{DS}(L^1)$).

Definition 9

Let (X, μ) be σ finite measure space. A positive operator T on $L^1(X)$ is called semi-doubly stochastic if

$$\int_X Tf \, d\mu = \int_X f \, d\mu, \quad \forall f \in L^1,$$

$$\int_X T^* \chi_E \, d\mu \le \mu(E) \quad \forall E \in \mathcal{A} \quad with \quad \mu(E) < \infty$$

The set of all semi-doubly stochastic operators on $L^1(X, \mu)$ is denoted by $s\mathcal{DS}(L^1)$).

Definition 9

Let (X, μ) be σ finite measure space. A positive operator T on $L^1(X)$ is called semi-doubly stochastic if

$$\int_X Tf \, d\mu = \int_X f \, d\mu, \quad \forall f \in L^1,$$

$$\int_X T^* \chi_E \, d\mu \le \mu(E) \quad \forall E \in \mathcal{A} \quad with \quad \mu(E) < \infty$$

The set of all semi-doubly stochastic operators on $L^1(X, \mu)$ is denoted by $s\mathcal{DS}(L^1)$).

Theorem 10

Let (X, \mathcal{A}, μ) be a finite measure space. Then

$$\mathcal{DS}(L^1(X,\mu)) = S\mathcal{DS}(L^1(X,\mu)).$$

Theorem 11

Let (X, \mathcal{A}, μ) be a σ -finite measure space and $T: L^1 \to L^1$ be a positive bounded linear operator. Then the following are equivalent:

- (1) For each $f \in L^1$, $Tf \prec f$.
- (2) T is semi doubly stochastic operators on L^1 .

For
$$f \in L^1(X, \mu)$$
, let $S_f := \{Sf; S \in SDS(L^1)\}$ and $\Omega_f := \{h \in L^1; h \geq 0 \text{ and } h \prec f\}.$

Theorem 12

Let (X, μ) be a σ -finite measure space. For $f \in L^1$, the set S_f is dense in Ω_f .

Hence the majorization relation on $L^1(X, \mu)$, for a σ -finite measure space, can be characterized as follows.

Corollary 13

$$g \prec f \Leftrightarrow \exists (S_n)_{n \in \mathbb{N}} \in SDS(L^1(X, \mu)) \quad s.t \quad S_n f \stackrel{L^1}{\to} g.$$

For
$$f \in L^1(X, \mu)$$
, let $S_f := \{Sf; S \in S\mathcal{D}S(L^1)\}$ and $\Omega_f := \{h \in L^1; h \geq 0 \text{ and } h \prec f\}.$

Theorem 12

Let (X, μ) be a σ -finite measure space. For $f \in L^1$, the set S_f is dense in Ω_f .

Hence the majorization relation on $L^1(X, \mu)$, for a σ -finite measure space, can be characterized as follows.

Corollary 13

$$g \prec f \Leftrightarrow \exists (S_n)_{n \in \mathbb{N}} \in SDS(L^1(X, \mu)) \quad s.t \quad S_n f \stackrel{L^1}{\to} g.$$

For
$$f \in L^1(X, \mu)$$
, let $S_f := \{Sf; S \in S\mathcal{D}S(L^1)\}$ and $\Omega_f := \{h \in L^1; h \geq 0 \text{ and } h \prec f\}.$

Theorem 12

Let (X, μ) be a σ -finite measure space. For $f \in L^1$, the set S_f is dense in Ω_f .

Hence the majorization relation on $L^1(X, \mu)$, for a σ -finite measure space, can be characterized as follows.

Corollary 13

$$g \prec f \Leftrightarrow \exists (S_n)_{n \in \mathbb{N}} \in SDS(L^1(X, \mu)) \quad s.t \quad S_n f \stackrel{L^1}{\to} g.$$

For
$$f \in L^1(X, \mu)$$
, let $S_f := \{Sf; S \in S\mathcal{D}S(L^1)\}$ and $\Omega_f := \{h \in L^1; h \geq 0 \text{ and } h \prec f\}.$

Theorem 12

Let (X, μ) be a σ -finite measure space. For $f \in L^1$, the set S_f is dense in Ω_f .

Hence the majorization relation on $L^1(X, \mu)$, for a σ -finite measure space, can be characterized as follows.

Corollary 13

$$g \prec f \Leftrightarrow \exists (S_n)_{n \in \mathbb{N}} \in SDS(L^1(X, \mu)) \quad s.t \quad S_n f \stackrel{L^1}{\to} g.$$

For
$$f \in L^1(X, \mu)$$
, let $S_f := \{Sf; S \in S\mathcal{D}S(L^1)\}$ and $\Omega_f := \{h \in L^1; h \geq 0 \text{ and } h \prec f\}.$

Theorem 12

Let (X, μ) be a σ -finite measure space. For $f \in L^1$, the set S_f is dense in Ω_f .

Hence the majorization relation on $L^1(X, \mu)$, for a σ -finite measure space, can be characterized as follows.

Corollary 13

$$g \prec f \Leftrightarrow \exists (S_n)_{n \in \mathbb{N}} \in SDS(L^1(X, \mu)) \quad s.t \quad S_n f \stackrel{L^1}{\to} g.$$

Extension of "only if" part of Nielsen's theorem

Theorem 14

If for some $S \in s\mathcal{DS}(l^1)$, $\lambda_{\psi} = S\lambda_{\phi}$, then $|\psi\rangle$ is convertible to $|\phi\rangle$ by LOCC.

If

$$|\phi\rangle = \sum_{i=1}^{\infty} \sqrt{(\lambda_{\phi})_i} \ e_i \otimes f_i$$

is target pure state, we can identify

$$\mathfrak{A} = \left\{ |\psi\rangle = \sum_{i=1}^{\infty} \sqrt{(S\lambda_{\phi})_i} \ e_i^* \otimes f_i^* : \ S \in \mathcal{SD}(l^1) \right\},\,$$

which

$$|\psi\rangle \hookrightarrow |\phi\rangle$$

Extension of "only if" part of Nielsen's theorem

Theorem 14

If for some $S \in s\mathcal{DS}(l^1)$, $\lambda_{\psi} = S\lambda_{\phi}$, then $|\psi\rangle$ is convertible to $|\phi\rangle$ by LOCC.

If

$$|\phi\rangle = \sum_{i=1}^{\infty} \sqrt{(\lambda_{\phi})_i} \ e_i \otimes f_i$$

is target pure state, we can identify

$$\mathfrak{A} = \left\{ |\psi\rangle = \sum_{i=1}^{\infty} \sqrt{(S\lambda_{\phi})_i} \ e_i^* \otimes f_i^* : \ S \in \mathcal{SD}(l^1) \right\},\,$$

which

$$|\psi\rangle \hookrightarrow |\phi\rangle$$

References I

- [1] F. Bahrami, S.M. Manjegani, and S. Moein. Semi-doubly stochastic operators and majorization of integrable functions, Bulletin of the Malaysian Mathematical Sciences Society series 2, doi:10.1007/s40840-020-00971-2, 2020.
- [2] K.M. Chong, Some extensions of a theorem of Hardy, Littlewood and Pólya and their applications, Canadian Journal of Mathematics, 26, (1974), 1321-1340.
- [3] G.H. Hardy, J.E. Littlewood, and G. Pólya, Some simple inequalities satisfied by convex functions, Messenger Math, 58 (1929), 145-152.

References II

- [4] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications. Academic Press, New York(1979).
- [5] S.M. Manjegani and S.Moein, Quasi doubly stochastic operator on l¹ and Nielsen's Theorem, Journal of Mathematical Physics, 2019.
- [6] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press. Cambridge, England, 2000.
- [7] J. V. Ryff, On the representation of doubly stochastic operators, Pacific J. Math. 13 (1963), 1379-1386.

References III

[8] ———, Orbits of L¹ functions under doubly stochastic trans formations, Trans. Amer. Math. Soc. 117 (1965), 92-100.

Thank You For Your Attention