Colorings of Quantum Graphs, Correlations and Operator Algebras

Michael Brannan Texas A&M University

(Joint with P. Ganesan, L. Gao, S. Harris, I. Todorov, L. Turowska, J. Weeks)

COSy June 4, 2021

Motivation for Today's Talk

- In recent years, we have learned that the theory of non-local games provides ways of constructing interesting examples of operator algebras.
- ► The work of [Ji-Natarajan-Vidick-Wright-Yuen] on MIP* = RE provides a synchronous non-local game whose game algebra is not Connes Embeddable.
- ► However, the construction from MIP* = RE is highly non-explicit and poorly understood.
- In previous talks, we have seen that non-local games with quantum inputs/outputs show promise to provide new examples of operator algebras in the quest for an explicit counter-example to Connes.
- ► This talk is about quantum graphs and the quantum homomorphism games associated to them.
- These examples provide a natural motivation for the study of quantum games, and give interesting examples of quantum correlations and related operator algebras.

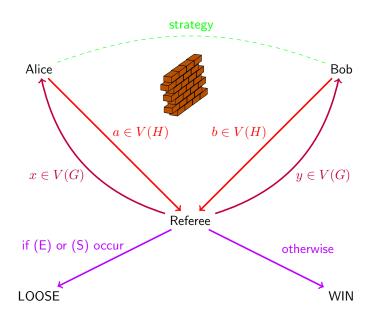
The Graph Homomorphism Game, Hom(G, H)

Let G,H be finite simple graphs. The graph homomorphism game ${\rm Hom}(G,H)$ is the non-local game given by

- ▶ Inputs: X = Y = V(G).
- **Ouptuts**: A = B = V(H).
- ▶ Rule Function λ : If, in a given round, (Alice, Bob) receive $(x,y) \in V(G) \times V(G)$ and reply with $(a,b) \in V(H) \times V(H)$, then $\lambda(x,y,a,b) = 1$ unless
 - (E) $(x,y) \in E(G)$ and $(a,b) \notin E(H)$ (Edge Preservation Requirement), or
 - (S) x = y and $a \neq b$ (Synchronicity Requirement)
- Non-locality: Alice and Bob devise a strategy to play cooperatively to win each round. But they are unable to communicate while the game is played.
- Alice and Bob are trying to convince the referee that there is a graph homomorphism $G \to H$.

Note: When $H = K_c$, the complete graph with c vertices, this is the c-coloring game for G.

Schematic for a round of Hom(G, H)



Winning Strategies for Hom(G, H)

- ▶ In general, Alice and Bob's strategy is described by a bipartite probabilistic correlation $p = (p(a, b|x, y))_{x,y \in V(G), a, b \in V(H)}$.
- A strategy p = (p(a, b|x, y)) is called winning (or perfect) if

$$p(a,b|x,y) = 0$$
 whenever $\lambda(x,y,a,b) = 0$.

- Here we will only consider "physically realizable" winning strategies, which are split into two main classes: classical (or local) strategies and quantum strategies.
- Classical strategies are probabilistic mixtures of deterministic strategies. Quantum strategies are more general, and are achieved by Alice and Bob performing local measurements on a shared quantum state.
- Since $\mathsf{Hom}(G,H)$ is synchronous, we can completely characterize the existence of a winning strategy (classical/quantum) in terms of operator algebras!

Winning Strategies for Hom(G, H) via operator algebras

Let G,H be graphs. Define $\mathcal{A}(\mathsf{Hom}(G,H))$ to be the universal unital *-algebra with generators $(p_{xa})_{x\in V(G),a\in V(H)}$ subject to the relations

1. For each $x \in V(G)$, $(p_{xa})_{a \in V(H)}$ is a PVM:

$$p_{xa} = p_{xa}^* = p_{xa}^2$$
 & $\sum_a p_{xa} = 1$.

2. For each $(x,y) \in E(G)$ and $(a,b) \notin E(H)$,

$$p_{xa}p_{yb}=0.$$

Theorem (Ortiz-Paulsen, Helton-Meyer-Paulsen-Satriano)

There exists a winning (quantum commuting) strategy for $\mathsf{Hom}(G,H)$ (written $G \to_{qc} H$) if and only if there exists a non-zero tracial C^* -algebra (B,τ) and a unital *-homomorphism $\pi: \mathcal{A}(\mathsf{Hom}(G,H)) \to B$. The associated winning correlation is given by $p(a,b|x,y) = \tau \circ \pi(p_{xa}p_{yb})$.

LOC, Q, and QA Strategies

Theorem (Ortiz-Paulsen, Helton-Meyer-Paulsen-Satriano)

 $G \to_{qc} H$ if and only if $\mathcal{A}(\mathsf{Hom}(G,H))$ has a non-zero representation in some tracial C^* -algebra (B,τ) .

We say that the game $\operatorname{Hom}(G,H)$ has a

- ▶ winning Local Strategy $(G \rightarrow_{loc} H)$ if we can take B to be abelian.
- winning Quantum Strategy $(G \rightarrow_q H)$ if we can take B to be finite dimensional.
- winning Quantum Approximate Strategy $(G \rightarrow_{qa} H)$ if we can take $B = R^{\omega}$.

Intuition: $\mathcal{A}(\mathsf{Hom}(G,H))$ is a free analogue of the algebra of coordinate functions on the set of graph homomorphisms $G \to H$.

Note that

$$(G \to H) \iff (\to_{loc}) \implies (\to_q) \implies (\to_{qa}) \implies (\to_{qc}).$$

Quantum Chromatic and Independence Numbers

For $t \in \{loc, q, qa, qc\}$, can define quantum analogues of analogues chromatic numbers and independence numbers $\chi(G)$ and $\alpha(G)$:

lacktriangle The t-chromatic number of a graph G is

$$\chi_t(G) = \min_c \{ \exists G \to_t K_c \}.$$

ightharpoonup The *t*-independence number of a graph G is

$$\alpha_t(G) = \max_c \{ \exists K_c \to_t \overline{G} \}.$$

$$\chi(G) = \chi_{loc}(G) \ge \chi_q(G) \ge \chi_{qa}(G) \ge \chi_{qc}(G),$$

$$\alpha(G) = \alpha_{loc}(G) \le \alpha_q(G) \le \alpha_{qa}(G) \le \alpha_{qc}(G).$$

Theorem (Mancinska-Roberson-Varvitsiotis)

Using MIP*=RE, \exists a graph G such that $\alpha_{qc}(G) > \alpha_{qa}(G)$.

Good news: The algebras $\mathcal{A}(\mathsf{Hom}(G,H))$ are rich enough to witness the failure of Connes!

 ${\bf Bad\ news}:$ The M-R-V graph G is non-explicit, and likely enormous.

Quantum Graphs and Quantum Games

- We'd really like a tractable and explicit example of a game algebra $\mathcal{A}(\mathsf{Hom}(G,H))$ that witnesses the failure of the Connes embedding property.
- One approach (already suggested in Ivan Todorov's talk) is to replace classical input/output games by more general quantum input/quantum output games.
- I want to promote this idea by discussing quantum versions of the graph homomorphism game $\mathsf{Hom}(G,H)$, involving quantum graphs.

From Graphs to Quantum Graphs

Given a graph G, we can associate the following algebraic data:

- ▶ The finite dimensional C*-algebra M = C(V(G))
- A Hilbert space $L^2(M) = \ell^2(V(G))$, on which M = M' is represented as the **diagonal algebra**.
- ► A self-adjoint subspace

$$S=S_G=\operatorname{span}\{e_{xy}:(x,y)\in E(G)\}\subset B(L^2(M)).$$

The pair $(S, M \subset B(L^2(M)))$ has the following properties:

- ▶ $S_G \subset B(L^2(M))$ is an M' M'-bimodule.
- $\triangleright S_G \subset (M')^{\perp}$.
- ightharpoonup G can be recovered from S_G because

$$(x,y) \in E(G) \iff \exists e_{xx} T e_{yy} \neq 0 \text{ for some } T \in S_G$$

Theorem (Weaver)

Let V be a finite set and $M=C(V)\subset B(\ell^2(V))$. There is a 1-1 correspondence between (1) Self-adjoint M'-M'-bimodules $S\subseteq (M')^\perp\subset B(\ell^2(V))$ and (2) graph structures G=(V,E).

Quantum Graphs

Definition (Weaver, Duan-Severini-Winter, Stahlke)

Let $M\subset B(L^2(M))$ be a (standardly represented) finite-dimensional C*-algebra. A (simple, undirected) Quantum Graph on M is a pair $\mathbb{G}=(S,M)$ where

- $ightharpoonup S=S^*\subseteq B(L^2(M))$ is an M'-M'-bimodule, and
- $ightharpoonup S \subseteq (M')^{\perp}.$

Basic Quantum Examples:

- ▶ Trivial quantum graph: $S = \{0\} \subset B(L^2(M))$.
- ▶ Complete quantum graph: $S = (M')^{\perp} \subset B(L^2(M))$.
- $lackbox{ Quantum graphs on } M_2\cong \operatorname{span}\{\operatorname{some Pauli matr. } \sigma_x,\sigma_y,\sigma_z\}$

Quantum Graph Homomorphism Game, $\mathsf{Hom}(\mathbb{G}_1,\mathbb{G}_2)$

Let $\mathbb{G}_i=(S_i,M_i\subseteq B(L^2(M_i)))$ be quantum graphs on M_i (i=1,2). We want to define a quantum input-quantum output nonlocal game $\operatorname{Hom}(\mathbb{G}_1,\mathbb{G}_2)$, generalizing the classical graph homomorphism game $\operatorname{Hom}(G,H).$

Classically:

- ▶ Inputs: $=V(G) \times V(G)$, Outputs: $=V(H) \times V(H)$.
- Alice and Bob's joint **input-output behavior** is described by a correlation/strategy p=(p(a,b|x,y)), or equivalently by a classical noisy bipartite channel

$$\Gamma_p: \ell^1(V(G) \times V(G)) \to \ell^1(V(H) \times V(H));$$
$$\delta_x \otimes \delta_y \mapsto \sum_{a,b} p(a,b|x,y) \delta_a \otimes \delta_b$$

- ▶ Winning Requirement 1: $\Gamma_p(C(V(G))) \subseteq C(V(H))$.

Quantum Graph Homomorphism Game

Let $\mathbb{G}_i = (S_i, M_i \subseteq B(L^2(M_i)))$ be quantum graphs on M_i (i = 1, 2). The quantum game $\operatorname{Hom}(\mathbb{G}_1, \mathbb{G}_2)$, is given by

- ▶ Inputs: Mixed quantum states in $B(L^2(M_1) \otimes \overline{L^2(M_1)})$
- ▶ Outputs: Mixed quantum states in $B(L^2(M_2) \otimes \overline{L^2(M_2)})$.
- Alice and Bob's joint input-output behavior: A no-signalling quantum correlation! I.e., a quantum channel

$$\begin{split} \Gamma: B(L^2(M_1) \otimes \overline{L^2(M_1)}) &\to B(L^2(M_2) \otimes \overline{L^2(M_2)}); \\ (\operatorname{Tr} \otimes \operatorname{id}) \Gamma(\rho_1 \otimes \rho_2) &= 0 \quad \forall \operatorname{Tr}(\rho_1) = 0 \\ (\operatorname{id} \otimes \operatorname{Tr}) \Gamma(\rho_1 \otimes \rho_2) &= 0 \quad \forall \operatorname{Tr}(\rho_2) = 0 \end{split}$$

- ▶ With the usual identification $L^2(M_i) \otimes \overline{L^2(M_i)} \cong B(L^2(M_i))$, we can identify $M_i, M_i', S_i \subseteq L^2(M_i) \otimes \overline{L^2(M_i)}$
- ▶ Winning Requirement 1: $\langle \Gamma(\xi\xi^*)|\eta\eta^*\rangle = 0 \ \forall \xi \in M_1', \ \eta \in (M_2')^{\perp}.$
- ▶ Winning Requirement 2: $\langle \Gamma(\xi \xi^*) | \eta \eta^* \rangle = 0 \ \forall \xi \in S_1, \ \eta \in (S_2)^{\perp}.$

Perfect Strategies and Operator Algebras

A perfect strategy for $\mathsf{Hom}(\mathbb{G}_1,\mathbb{G}_2)$ is a channel Γ satisfying requirements 1 and 2 above.

Theorem (Harris-Todorov-Turowska-B, Ganesan-Harris-B, Bochniak-Kasprzak-Soltan)

There exists a unital *-algebra $\mathcal{A}(\mathsf{Hom}(\mathbb{G}_1,\mathbb{G}_2))$ whose non-zero representations in tracial C^* -algebras (B,τ) encode the winning quantum commuting strategies for $\mathsf{Hom}(\mathbb{G}_1,\mathbb{G}_2)$.

Special Case: Quantum-to-Classical Homomorphisms

Let $\mathbb{G} = (S, M)$ be any quantum graph and let H be a classical graph.

Theorem (Ganesan-Harris-B)

The game ${\sf Hom}(\mathbb{G},H)$ has a perfect qc-strategy if and only if there exists a tracial ${\sf C^*}$ -algebra (B,τ) and a unital *-homomorphism

$$\rho: C(V(H)) \to M \otimes B; \quad \rho(e_{aa}) = P_a \qquad (a \in V(H))$$

satisfying

$$P_a(S \otimes 1)P_b = 0 \quad \forall (a,b) \notin E(H).$$

- The game algebra $\mathcal{A}(\mathsf{Hom}(\mathbb{G},H))$ is the "universal B" generated by the coefficients of ρ .
- When $\mathbb{G}=G$ is classical, we recover the original game algebra $\mathcal{A}(\mathsf{Hom}(G,H)).$
- Can talk about various classes of quantum homomomorphisms $\mathbb{G} \to_t H$, $t \in \{loc, q, qa, qc\}$.

Quantum Colorings of Complete Quantum Graphs

Here's a simple example showing how potentially interesting these algebras can be:

- ▶ Denote by QK_n the complete quantum graph on M_n , with $S = (M'_n)^{\perp} \subset B(L^2(M_n))$.
- **Problem**: What's the *t*-chromatic number of QK_n ? $\chi_t(QK_n) = \min_c\{\exists QK_n \rightarrow_t K_c\}$? $t \in \{loc, q\}$

Theorem (Ganesan-Harris-B)

$$\chi_{loc}(QK_n) = \infty \text{ and } \chi_q(QK_n) = n^2.$$

Proof: Study representations of the game algebra $\mathcal{A}(\mathsf{Hom}(QK_n,K_{n^2}))$, which has generators $(p_{ij}^{(a)})_{1\leq a\leq n^2, 1\leq i, j\leq n}$ with relations

$$\begin{split} &(p_{ij}^{(a)})^* = p_{ji}^{(a)}, \quad p_{ij}^{(a)} p_{kl}^{(a)} = \delta_{jk} n^{-1} p_{il}^{(a)}, \quad \sum_j p_{ij}^{(a)} p_{jk}^{(b)} = \delta_{ab} p_{ik}^{(a)}, \\ &\sum_i p_{ii}^{(a)} = n^{-1} 1, \quad \sum_j p_{ij}^{(a)} = \delta_{ij} 1. \end{split}$$

Small representations of $\mathcal{A}(\mathsf{Hom}(QK_n,K_{n^2}))$

Can find representations $\pi: \mathcal{A} = \mathcal{A}(\mathsf{Hom}(QK_n, K_{n^2})) \to M_n$ using unitary error bases

$$\mathcal{B} = \{u_a\}_{1 \leq a \leq n^2} \subset \mathcal{U}(M_n) \quad \text{s.t.} \quad \operatorname{tr}(u_a^* u_b) = \delta_{ab}.$$

lacktriangle Every unitary error basis ${\cal B}$ gives a (non-abelian) representation

$$\pi: \mathcal{A} \to M_n; \quad \pi(p_{ij}^{(a)}) = \frac{1}{n} (u_a^* e_{ij} u_a).$$

- $\implies \chi_q(QK_n) \le n^2.$
- $\chi_q(QK_n) \geq n^2$ follows from a quantum Hoffman spectral bound on χ_q (Ganesan '21).

Big representations of $\mathcal{A}(\mathsf{Hom}(QK_n,K_{n^2}))$

What else can we say about the algebra $\mathcal{A}(\mathsf{Hom}(QK_n,K_{n^2}))$ and its traces?

- ▶ Is $A = A(Hom(QK_n, K_{n^2}))$ residually finite-dimensional?
- ls every trace on A amenable?

Theorem (Gao-Weeks-B)

If $n \geq 3$, there exists a faithful trace τ on \mathcal{A} whose GNS von Neumann algebra $M = \pi_{\tau}(\mathcal{A})''$ is a strongly solid, non-injective II_1 -factor.

This says that the coloring game algebra $\mathcal{A}(\operatorname{Hom}(QK_n,K_{n^2}))$ is very "wild".

Question

Let Γ_{τ} be the QNS correlation (winning strategy for $\operatorname{Hom}(QK_n,K_{n^2})$) associated to the faithful trace τ above. Is Γ_{τ} a q/qa/qc-correlation? Is $M=\pi_{\tau}(\mathcal{A})''$ Connes embeddable?

Very simple quantum games give very interesting, yet poorly understood operator algebras! **THANKS!**