A discrete spherical Laplacian

Ivan Izmestiev

TU Wien

Workshop on the geometry of circle packings

Fields Institute, April 12-16

Motivation

 $\text{Circle packings/patterns} \qquad \rightarrow \qquad \text{Polyhedra in } \mathbb{H}^3 \cup \mathrm{d}\mathbb{S}^3$

 $\hbox{Combinatorics} + \hbox{angles} \qquad \rightarrow \qquad \hbox{(Dual) boundary metrics}$

Circles \rightarrow faces of $P \subset \mathbb{H}^3 \rightarrow$ vertices of $P^* \subset d\mathbb{S}^3$.

Angles between faces \rightarrow distances between vertices.

Alexandrov theorem, discrete analog of the Weyl problem: a sphere with a metric of positive curvature embeds isometrically into \mathbb{R}^3 . In the polyhedral case the boundary metric determines the combinatorics.

Rivin–Hodgson'93: a generalization of Andreev's theorem.

Fillastre–I.'11: a similar result for the torus, variational proof.

Variational methods: convexity/nondegeneracy of the functional.

The discrete Hilbert-Einstein functional

A Euclidean simplicial complex has cone angles around the edges.

The discrete Hilbert-Einstein functional:

$$\begin{split} F(\ell) &= \sum \ell_e (2\pi - \theta_e) \\ \frac{\partial F}{\partial \ell_e} &= 2\pi - \theta_e \quad \text{because of } \sum \ell_e d\theta_e = 0 \end{split}$$

 ℓ_e

Critical points \leftrightarrow metrics without singularities.

There are versions for hyperbolic and spherical metrics:

$$F(\ell) = \pm 2 \operatorname{vol}(M) + \sum \ell_e (2\pi - \theta_e).$$

If there are interior vertices, then *F* is neither convex nor concave.

Discrete Laplacians

The smooth Hilbert-Einstein functional tends to be convex on conformal deformations and concave on anticonformal ones. Hidden behind this: Laplacian of the conformal factor and Laplacian of a tensor field, respectively.

We need discrete Laplacians and discrete conformal deformations, also in higher dimensions.

In this talk:

- Review of discrete Euclidean Laplacians.
- Definition of a discrete spherical Laplacian.

Discrete Euclidean Laplacians

The graph Laplacian

Let (V, E) be an abstract graph. Consider a function $f: V \to \mathbb{R}$. Notation: $f(i) =: f_i$. Define a new function $\Delta f: V \to \mathbb{R}$ by

$$(\Delta f)_i = \sum_{\{i,j\}\in E} (f_i - f_j).$$

- f harmonic $\Leftrightarrow f_i$ is the average of its neighbors.
- The linear operator $\Delta \colon \mathbb{R}^V \to \mathbb{R}^V$ is self-adjoint and positive semidefinite: $\langle \Delta f, f \rangle = \sum_{ij} (f_i f_j)^2$.

The spectrum of Δ reflects combinatorial properties of the graph:

- The number of spanning trees is $\frac{1}{n} \prod_{\lambda_i > 0} \lambda_i$.
- λ_1 is related to the expansion properties of the graph (Cheeger's inequality).

The cotangent Laplacian

Our graphs come from geometric objects: they are graphs of geometric triangulations. Geometry should be reflected in

$$(\Delta f)_i = \sum_{\{i,j\} \in E} w_{ij} (f_i - f_j).$$

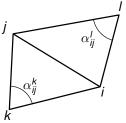
If $w_{ij} \geq 0$, then harmonic functions satisfy the maximum principle, and Δ is positive semidefinite: $\langle \Delta f, f \rangle = \sum_{ij} w_{ij} (f_i - f_j)^2$.

For a Euclidean triangulation put $w_{ij} = \cot \alpha_{ij}^k + \cot \alpha_{ij}^l$.

Because of
$$\cot \alpha + \cot \beta = \frac{\sin(\alpha+\beta)}{\sin \alpha \sin \beta}$$
,

$$\mathbf{w}_{ij} \geq \mathbf{0} \Leftrightarrow \alpha_{ij}^{k} + \alpha_{ij}^{l} \leq \pi,$$

the triangulation is Delaunay.



Why these weights?

A function f on the vertices of a triangle extends to a piecewise linear function \tilde{f} on the triangle. $\Delta \tilde{f}$ does not make much sense, but $\nabla \tilde{f}$ does. We may recast the formula

$$\int_{M} (\Delta f) h \, \operatorname{dvol} = \int_{M} \langle \nabla f, \nabla h \rangle \, \operatorname{dvol} \qquad (f, M \, \operatorname{smooth})$$

into a definition

$$\langle \Delta f, h \rangle := \int_M \langle \nabla \tilde{f}, \nabla \tilde{h} \rangle$$
 dvol (*M* polyhedral)

This turns out to be $\sum_{ij} w_{ij}(f_i - f_j)(h_i - h_j)$ with our cotangent weights.

What is $\langle \Delta f, h \rangle$? It may but need not be $\sum_{i \in V} (\Delta f)_i h_i$.

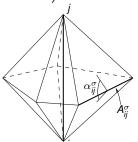
Duffin'59, Pinkall-Polthier'93

Higher dimensions, Dodziuk-Whitney Laplacians

The same approach in higher dimensions leads to

$$\langle \Delta f, h \rangle = \frac{1}{n(n-1)} \sum_{\{i,j\}} \left(\sum_{\sigma \supset \{i,j\}} A_{ij}^{\sigma} \cot \alpha_{ij}^{\sigma} \right) (f_i - f_j)(h_i - h_j).$$

Here α_{ij}^{σ} is a dihedral angle opposite to the edge ij, and A_{ij}^{σ} is the volume of the corresponding codimension-2 face.

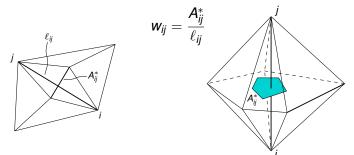


The approach also leads to the discrete Hodge Laplacian on simplicial cochains: simplex $\sigma \mapsto$ Whitney form W_{σ} . Eckmann'45, Dodziuk'76, Forman'03

The Discrete Exterior Calculus Laplacian

Let together with a triangulation a dual decomposition be given (e. g. Voronoi diagram or power diagram).

Denote by A_{ii}^* the volume of the cell dual to the edge ij. DEC weights:



(Weighted) Delaunay + (Power) Voronoi $\Rightarrow w_{ii} \ge 0$.

Dodziuk-Whitney and DEC Laplacians coincide in dimension 2 but are different in higher dimensions.

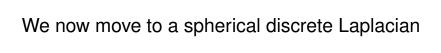
Do we need positive weights?

On a Delaunay triangulation, the weights of DEC Laplacian are ≥ 0 , but the weights of the Dodziuk-Whitney Laplacian may be negative (in higher dimensions).

Still, the Dodziuk-Whitney Laplacian is positive semidefinite, for any triangulation:

$$\langle \Delta f, f \rangle = \int_M \|\nabla \tilde{f}\|^2 \ \mathrm{dvol} \geq 0.$$

If one wants to keep the maximum principle, one has to choose triangulations carefully.



Two old theorems and two new ones

Theorem

For every infinitesimal isometric deformation (IID) of the paraboloid the vertical component of the deformation is a harmonic function.

Theorem

The vertical components of IIDs of convex polyhedra inscribed into the paraboloid are discrete harmonic functions.

Theorem

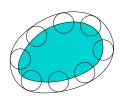
For every IID of a subset of the sphere the radial component of the deformation is an eigenfunction of $\Delta^{\mathbb{S}^2}$ to the eigenvalue 2.

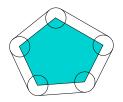
Theorem

The vertical components of IIDs of convex inscribed polyhedra are eigenfunctions of the discrete spherical Laplacian to the eigenvalue 2.

The Steiner formula: smooth and polyhedral

M: body with smooth boundary, *P*: convex polyhedron. Compute the volumes of their *t*-neighborhoods.





$$vol(M_t) = vol(M) + t \cdot area(\partial M) + t^2 \int_{\partial M} \frac{\kappa_1 + \kappa_2}{2} dx + t^3 \int_{\partial M} \frac{\kappa_1 \kappa_2}{3} dx$$

$$\operatorname{vol}(P_t) = \operatorname{vol}(P) + t \cdot \operatorname{area}(\partial P) + t^2 \sum_{\text{edges}} \ell_e \frac{\pi - \theta_e}{2} + t^3 \sum_{\text{vertices}} \frac{\varphi_v}{3}$$

The total mean curvature is related to the sum of lengths times angles.

The Steiner formula: general

The coefficients in the Steiner formula depend continuously on the body (wrt the Hausdorff metric).

For an arbitrary convex body K one has

$$vol(K_t) = W_0(K) + 3tW_1(K) + 3t^2W_2(K) + t^3W_3(K).$$

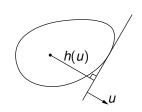
$$W_0(K) = \text{vol}(K), \quad W_1(K) = \frac{1}{3} \operatorname{area}(\partial K), \quad W_2(K) = ?, \quad W_3(K) = \frac{4\pi}{3}$$

 W_i are called *i*-th *quermassintegral*, it is proportional to the average projection volume to (3 - i)-dimensional subspaces.

For example, the surface area is twice the average projection area (Cauchy), and the total mean curvature is 2π times the average width.

The support function

A convex body is determined by its support function $h: \mathbb{S}^2 \to \mathbb{R}$.



Smooth boundary \Rightarrow smooth h, and

$$W_2(M)=rac{1}{3}\int_{\mathbb{S}^2}h\; ext{darea}_{\mathbb{S}^2}$$
 $W_1(M)=rac{1}{6}\int_{\mathbb{S}^2}h(2h-\Delta h)\; ext{darea}_{\mathbb{S}^2}$

Theorem

 $W_2^2 \geq W_1 W_3$

Claim

These two theorems tell the same.

Theorem

For the spherical Laplacian, $\lambda_1 = 2$.

Proof of the claim

$$W_2^2 \geq W_1 W_3 \qquad \Leftrightarrow \qquad \lambda_1 = 2$$

$$W_3={
m vol}(\mathbb{B}^3)=rac{1}{3}\,{
m area}(\mathbb{S}^2)$$
 $W_2=rac{1}{3}\int_{\mathbb{S}^2}h\ {
m darea}=rac{1}{3}\langle h,1
angle_{L^2}=rac{{
m area}(\mathbb{S}^2)}{3}ar{h}$

Put
$$f=h-ar{h}$$
. Then $\langle f,1 \rangle_{L^2}=0 \Rightarrow \langle \Delta f,f \rangle_{L^2} \geq 2\|f\|_{L^2}^2$ and

$$egin{aligned} W_1 &= rac{1}{6} \langle h, 2h - \Delta h
angle_{L^2} = rac{1}{6} \left(2 \operatorname{area}(\mathbb{S}^2) ar{h}^2 + \langle f, 2f - \Delta f
angle_{L^2}
ight) \ &\leq rac{1}{3} \operatorname{area}(\mathbb{S}^2) ar{h}^2 = rac{W_2^2}{W_3} \end{aligned}$$

Polyhedra with fixed directions of normals

Let u_1, \ldots, u_n be points on \mathbb{S}^2 such that every open hemisphere contains at least one of them. Then for every $h \in \mathbb{R}^n$ the polyhedron

$$P(h) = \{x \in \mathbb{R}^3 \mid \langle u_i, x \rangle \leq h_i\}$$

is bounded, and for some h it has exactly n faces with unit normals u_i .

Generically P(h) is simple (three edges at every vertex), but its combinatorics usually depends on h.

A canonical choice: $h_i = 1$ for all i, circumscribed about the sphere. The adjacency graph of the faces is then the Delaunay tesselation.

All possible combinatorics: weighted Delaunay/regular/coherent triangulations.

P. McMullen'73, Gelfand-Kapranov-Zelevinsky'94, Fillastre-I.'17

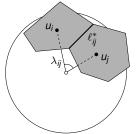
A discrete spherical Laplacian

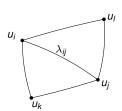
The discrete Laplacian associated with a non-negative spanning finite point set $U \subset \mathbb{S}^2$ is defined in a weak sense as

$$\langle 2f - \Delta f, f \rangle = 2 \operatorname{Area}(f),$$

where Area(f) is the quadratic form computing the surface area of the polyhedron P(f) under assumption of the circumscribed combinatorics.

$$\langle \Delta f - 2f, f
angle = \sum_{ii} rac{\ell_{ij}^*}{ an \lambda_{ij}} ((f_i^2 + f_j^2) - 2 \sec \lambda_{ij} f_i f_j)$$





Ivan Izmestiev (TU Wien)

A discrete spherical Laplacian

Good things about this Laplacian

Theorem

If the sequence $U_n \subset \mathbb{S}^2$ fills the sphere, then the corresponding Laplacians converge to the spherical Laplacian in the weak sense. Proof.

Continuity of the area of convex surfaces wrt the Hausdorff distance.

Theorem

The spectral gap is equal to 2, as in the smooth case. That is, the quadratic form Area(f) has signature $(+, 0, 0, 0, -, \dots, -)$.

Proof.

Follows from $W_2^2 \geq W_1 W_3$.

Lorentzian signature... The "space of shapes" of convex polyhedra with fixed face normals carries a natural hyperbolic metric: Thurston'98, Bavard-Ghys'92, Fillastre-I.'17.