CIRCLE PATTERNS ON SURFACES WITH COMPLEX PROJECTIVE STRUCTURES: COTANGENT LAPLACIAN

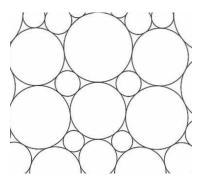
Wai Yeung Lam

Beijing Institute of Mathematical Sciences and Applications
Tsinghua University

16 April 2021

CIRCLE PATTERNS

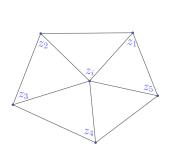
- Circle pattern is
 - 1 realization of a planar graph in $\mathbb{C}\cup\infty$ such that the vertices of each face lie on a circle
 - neighbouring circles intersect with prescribed intersection angle $\Theta: E \to [0,2\pi)$
- Circle packing + dual packing
 - \leftrightarrow Circle pattern with intersection angles $\Theta_{ij} \in \{$ 0, $\pi/2\}$

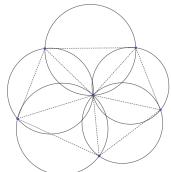


Cross ratios of 4 points z_1 , z_2 , z_3 , $z_4 \in \mathbb{C}$:

$$X(z_1, z_2, z_3, z_4) := -\frac{(z_1 - z_2)(z_3 - z_4)}{(z_2 - z_3)(z_4 - z_1)} \in \mathbb{C}$$

Subdividing mesh into triangulation, cross ratio for every interior edge $X:E o\mathbb{C}$





Around each interior vertex i

$$1 = \prod_{i=1}^n X_{ij} \tag{1}$$

$$0 = (X_{i1}) + (X_{i1}X_{i2}) + \cdots + (X_{i1}X_{i2}...X_{in})$$
 (2)

WAI YEUNG LAM (BIMSA) CIRCLE PATTERNS 16 APRIL 2021 3 / 27

DELAUNAY CROSS RATIO SYSTEM

DEFINITION

Given M=(V,E,F) a triangulation of a closed surface, a cross ratio system is a map $X:E\to\mathbb{C}$ such that for every vertex i

$$1 = \Pi_{j=1}^{n} X_{ij}$$

$$0 = (X_{i1}) + (X_{i1} X_{i2}) + \dots + (X_{i1} X_{i2} \dots X_{in})$$

DEFINITION

A Delaunay angle structure is an assignment $\Theta: {\it E}
ightarrow [{\it 0},\pi)$ satisfying

- 1 For every vertex i, $\sum_{i} \Theta_{ij} = 2\pi$.
- 2 $\sum_{i=1}^{n} \Theta_{ij} > 2\pi$ for any closed loop on the dual graph bounding more than one face.
- $P(\Theta)$ space of all cross ratio systems X with $Arg X \equiv \Theta = Im \log X$.
- \leftrightarrow space of circle patterns with prescribed angle Θ on complex projective surfaces.

P(M) space of complex projective structures.

 $\mathcal{T}(\mathit{M})$ Teichmüller space.

THEOREM (A)

Fixing any triangulation and Delaunay angle structure Θ on a torus,

- f 1 $P(\Theta)$ is a real analytic surface homeomorphic to $\Bbb R^2.$
- f 2 $f:P(\Theta) o P(M)$ is embedding
- 3 The holonomy map is embedding

$$\mathsf{hol}: P(\Theta) \to \mathsf{Hom}(\pi_1(M), \mathit{PSL}(2, \mathbb{C})) \ /\!\!/ \ \mathit{PSL}(2, \mathbb{C})$$

THEOREM (B)

The projection $\pi \circ \mathit{f} : \mathit{P}(\Theta) \to \mathcal{T}(\mathit{M})$ is a homeomorphism.

It proved Kojima-Mizushima-Tan conjecture for torus (g=1).

Discrete conformality far from Classical conformality.

Remain conjecture for g > 1

OUTLINE

- Main result: Kojima-Mizushima-Tan conjecture for torus
- lacksquare $P(\Theta)$ real analytic surface
- lacksquare $P(\Theta)$ homeomorphic to \mathbb{R}^2 , Affine structure
- $lacksquare \pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ proper map
- lacksquare $\pi \circ \mathit{f} : \mathit{P}(\Theta) o \mathcal{T}(\mathit{M})$ local homeomorphism, Cotangent Laplacian
- lacksquare $\pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ is homeomorphism

$P(\Theta)$ REAL ANALYTIC SURFACE

 X_t family of cross ratios, $\operatorname{Im} \log X_t = \Theta \implies q := rac{d}{dt} \log X_t |_{t=0} = rac{\dot{X}}{X} \in \mathbb{R}$

LEMMA

We have $q: E \to \mathbb{R}$ and for every vertex i

$$0 = \sum_{j} q_{ij} \tag{3}$$

$$0 = q_{i1}X_{i1} + (q_{i1} + q_{i2})X_{i1}X_{i2} + \dots + (q_{i1} + \dots + q_{im})X_{i1}X_{i2} \dots X_{im}$$
 (4)

Note: q is in the kernel of the Jacobian of the algebraic system (1)(2).

Remark: q ia called a discrete quadratic differential, which is a self-stress in the setting of circle patterns.

Discrete harmonic function $\implies \dim\{q: E \to \mathbb{R} | (3)(4)\} = 2$

Constant rank theorem $\implies P(\Theta)$ real analytic surface

WAI YEUNG LAM (BIMSA) CIRCLE PATTERNS 16 APRIL 2021 7 / 27

OUTLINE

- Main result: Kojima-Mizushima-Tan conjecture for torus
- lacksquare $P(\Theta)$ real analytic surface
- $lacksquare P(\Theta)$ homeomorphic to \mathbb{R}^2 , Affine structure
- $lacksquare \pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ proper map
- lacksquare $\pi \circ \mathit{f} : \mathit{P}(\Theta) o \mathcal{T}(\mathit{M})$ local homeomorphism, Cotangent Laplacian
- lacksquare $\pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ is homeomorphism

COMPLEX AFFINE STRUCTURES ON TORI

DEFINITION

An affine structure is a maximal atlas of charts to $\mathbb C$ such that the transition functions are affine maps $z\mapsto az+b$ for some $a,b\in\mathbb C$.

Euclidean torus: $\mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z})$ where $\tau\in\mathbb{C}$, $\operatorname{Im} au>0$

Developing map of affine torus $d:z\mapsto e^{cz}$ for some $c\in\mathbb{C}-\{0\}$

Affine structures on a torus are parameterized by (τ, c) .

(Note: $c = 0 \leftrightarrow$ Euclidean torus.)

Write γ_1 , γ_2 generators of $\pi_1(M)$.

Affine holonomy:

$$d(z \circ \gamma_1) = d(z+1) = e^c d(z) = \rho_1 \circ d(z)$$

$$d(z \circ \gamma_2) = d(z+\tau) = e^{c\tau} d(z) = \rho_2 \circ d(z)$$

REDUCE $\mathbb{C}P^1$ -STRUCTURE TO AFFINE STRUCTURE

- $\pi_{1}(\mathit{M})$ is abeliean: $\gamma_{1}\circ\gamma_{2}=\gamma_{2}\circ\gamma_{1}$
- \implies Holonomy of $\mathbb{C}P^1$ -structures $ilde{
 ho}_1$, $ilde{
 ho}_2$ share same eigenvectors
- $\implies \tilde{\rho}_1, \tilde{\rho}_2$ share 1 fixed point or 2 fixed points
- ⇒ Euclidean structure or Non-Euclidean affine structure

Proposition (Gunning)

Every complex projective structure on a torus can be reduced to an affine structure.

Complex projective structure \iff Affine structures $(au, \pm c)$

Theorem (B) in terms of affine structures \implies 2-1 projection to Teichmüller space.

Circle patterns on affine tori are parametized by the scaling part of the holonomy.

Proposition (Rivin 1994)

Let Θ be Delaunay angle and A_1 , $A_2 \in \mathbb{R}$. Then there exists unique affine structure with holonomy $\rho_r(z) = \alpha_r z + \beta_r$ such that

- scaling part of the holonomy $\operatorname{Re} \log \alpha_r = A_r$
- lacktriangledown exist circle pattern X with $\operatorname{Arg} X \equiv \Theta$

Moreover, $A_1 = A_2 = 0$ gives the Euclidean torus.

We can assume $\beta_r = 0$ for non-Euclidean torus.

It proves the rest of Theorem (A):

- lacksquare $P(\Theta)$ is homeomorphic to \mathbb{R}^2
- $\mathbf{P}(\Theta) \rightarrow P(M)$ is embedding
- 3 The holonomy map is embedding

 $\mathsf{hol}: P(\Theta) \to \mathsf{Hom}(\pi_1(M), PSL(2, \mathbb{C})) \ /\!\!/ \ PSL(2, \mathbb{C})$

OUTLINE

- Main result: Kojima-Mizushima-Tan conjecture for torus
- lacksquare $P(\Theta)$ real analytic surface
- lacksquare $P(\Theta)$ homeomorphic to \mathbb{R}^2 , Affine structure
- $lacksquare \pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ proper map
- lacksquare $\pi \circ f: P(\Theta) o \mathcal{T}(extbf{ extit{M}})$ local homeomorphism, Cotangent Laplacian
- $lacksquare \pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ is homeomorphism

$\pi \circ f : P(\Theta) \to \mathcal{T}(M)$ is proper

Rotation part of holonomy $\operatorname{Im}(\log \alpha_i)$ is determined by walking along γ_i . It is bounded by a constant depending on the triangulation only.

LEMMA

$$\operatorname{Im}(\log \alpha_i) \leq |\gamma_i|\pi$$

where $|\gamma_i|$ is the number of faces crossed by γ_i .

Recall:

$$\begin{split} \log \alpha_1 &= c \\ \log \alpha_2 &= \tau c = \tau \log \alpha_1 \\ \operatorname{Im} \log \alpha_2 &= (\operatorname{Im} \tau) (\operatorname{Re} \log \alpha_1) + (\operatorname{Re} \tau) (\operatorname{Im} \log \alpha_1) \end{split}$$

au in compact set \Longrightarrow Re $\log \alpha_1$, Re $\log \alpha_2$ in compact set. $\Longrightarrow \pi \circ f : P(\Theta) \to \mathcal{T}(M)$ is proper.

WAI YEUNG LAM (BIMSA) CIRCLE PATTE

OUTLINE

- Main result: Kojima-Mizushima-Tan conjecture for torus
- lacksquare $P(\Theta)$ real analytic surface
- lacksquare $P(\Theta)$ homeomorphic to \mathbb{R}^2 , Affine structure
- $lacksquare \pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ proper map
- $m\pi \circ \mathit{f} : \mathit{P}(\Theta) o \mathcal{T}(\mathit{M})$ local homeomorphism, Cotangent Laplacian
- $lacksquare \pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ is homeomorphism

COTANGENT LAPLACIAN

DEFINITION

Given $z:V\to\mathbb{C}$ a realization of a triangle mesh M=(V,E,F), a function $u:V\to\mathbb{R}$ is harmonic if for every vertex i

$$\sum_{j} c_{ij}(u_j - u_i) = 0$$

where $c_{ij} = c_{ji} := \cot \angle jki + \cot \angle ilj$ is called the cotangent weight.

PROPOSITION

If M simply connected, then a function $u:V\to\mathbb{R}$ is harmonic if and only if there exists $u^*:F\to\mathbb{R}$ such that for every edge $\{ij\}$

$$u_{ijk}^* - u_{jil}^* = \frac{1}{2}(\cot \angle jki + \cot \angle ilj)(u_j - u_i)$$

Here u^* is called the conjugate harmonic function and is unique up to an additive constant.

PROPOSITION

Discrete harmonic functions \leftrightarrow infinitesimal deformation of circle patterns

1 Change of radii

$$u^* = \frac{\dot{R}}{R}.$$

2 Change of vertex position

$$\frac{\dot{z}_j - \dot{z}_i}{z_j - z_i} = \left(\frac{u_{ijk}^* \cot \angle ilj + u_{ilj}^* \cot \angle jki}{\cot \angle ilj + \cot \angle jki} + \mathbf{i} \frac{u_i + u_j}{2}\right)$$

3 Change of cross ratio

$$q_{ij} = \frac{\dot{X}_{ij}}{X_{ij}} = \frac{\dot{z}_i - \dot{z}_k}{z_i - z_k} - \frac{\dot{z}_l - \dot{z}_i}{z_l - z_i} + \frac{\dot{z}_j - \dot{z}_l}{z_j - z_l} - \frac{\dot{z}_k - \dot{z}_j}{z_k - z_j}$$

COTANGENT LAPLACIAN ON AFFINE TORI

PROPOSITION

Suppose $z: ilde{V} o \mathbb{C}$ developing map of affine torus. Then

- 1 cotangent weights are invariant under deck transformations, i.e. $c_{\gamma(ij)}=c_{ij}$ for any deck transformation γ
- $c_{ii} \geq 0$ (Delaunay condition)
- 3 the maximum principle holds: a discrete harmonic function $u: \tilde{V} \to \mathbb{R}$ achieving a local minimum or maximum at an interior vertex must be constant.

WAI YEUNG LAM (BIMSA) CIRCLE PATTERNS 16 APRIL 2021 17 / 27

Infinitesimal deformation of circle patterns \implies change in holonomy

$$\begin{split} \rho_1(z) &= \mathrm{e}^c z, \quad \rho_2(z) = \mathrm{e}^{c\tau} z \\ \dot{\rho}_1(z) &= \dot{c} \mathrm{e}^c z, \quad \dot{\rho}_2(z) = (\dot{c} \tau + c \dot{\tau}) \mathrm{e}^{c\tau} z \\ \frac{\dot{\rho}_1}{\rho_1} &= \dot{c}, \quad \frac{\dot{\rho}_2}{\rho_2} = \dot{c} \tau + c \dot{\tau} \end{split}$$

PROPOSITION

The corresponding discrete harmonic function $u: ilde{ extsf{V}}
ightarrow \mathbb{R}$ satisfies

$$(u \circ \gamma_1) = u + \operatorname{Im}(\dot{c})$$

 $(u \circ \gamma_2) = u + \operatorname{Im}(\dot{c}\tau + c\dot{\tau}).$

while the conguate $u^*:F o\mathbb{R}$ satisfies

$$(u^* \circ \gamma_1) = u^* - \operatorname{Re}(\dot{c})$$

 $(u^* \circ \gamma_2) = u^* - \operatorname{Re}(\dot{c}\tau + c\dot{\tau}).$

u integral of harmonic 1-form on torus,

DIRICHLET ENERGY

Given $u: ilde{\mathcal{V}}
ightarrow \mathbb{R}$

 \implies Piecewise linear extension over faces $u: ilde{\mathit{M}}
ightarrow \mathbb{R}$

 \implies grad $u: ilde{\mathcal{F}}
ightarrow \mathbb{C}$ piecewise constant

⇒ Dirichlet energy over a fundamental domain

$$\mathcal{E}(u) := \iint_{M} |\operatorname{grad} u|^{2} dA = \frac{1}{2} \sum_{ij \in E} (\cot \angle jkl + \cot \angle jil) (u_{j} - u_{i})^{2}$$

Note: $u_i - u_i$ is well defined on torus

 $\implies \mathcal{E}(u)$ independent of fundamental domain chosen.

If u is harmonic with conjugate u^* , then

$$\mathcal{E}(u) := \sum_{ij \in E} (u^*_{ijk} - u^*_{jil})(u_j - u_i) = -\operatorname{Im}(\dot{c}(\overline{\dot{c}\tau + c\dot{\tau}}))$$

LOCAL HOMEOMORPHISM

Suppose there exists an infinitesimal deformation of circle pattern that preserves conformal structure $\dot{\tau}=0$

← There exists harmonic

$$(u \circ \gamma_1) = u + \operatorname{Im}(\dot{c})$$

 $(u \circ \gamma_2) = u + \operatorname{Im}(\dot{c}\tau).$

while the conguate $u^*:F\to\mathbb{R}$ satisfies

$$(u^* \circ \gamma_1) = u^* - \operatorname{Re}(\dot{c})$$
$$(u^* \circ \gamma_2) = u^* - \operatorname{Re}(\dot{c}\tau).$$

Moreover

$$\mathcal{E}(u) = |\dot{c}|^2 \operatorname{Im}(\tau)$$

Q: Is this energy really achievable by a discrete harmonic function?

If $\dot{c} \neq \mathtt{0}$, consider smooth harmonic function on the universal cover of $\mathbb{C} - \{\mathtt{0}\}$

$$u^{\dagger} := \operatorname{Re}(-i\frac{\dot{c}}{c}\log z)$$

Pulled back by the affine developing map, we have

$$(u^{\dagger} \circ \gamma_1) = u^{\dagger} + \operatorname{Im}(\dot{c})$$

 $(u^{\dagger} \circ \gamma_2) = u^{\dagger} + \operatorname{Im}(\dot{c}\tau).$

and Dirichlet energy

$$\mathcal{E}(u^{\dagger}) = |\dot{c}|^2 \operatorname{Im}(\tau) = \mathcal{E}(u)$$

which is impossible since u^{\dagger} is the unique minimizer and smooth.

If $\dot{c}=0$, then u, u^* are constant by maximum principle and thus the deformation is trivial.

We have $\pi \circ f : P(\Theta) \to \mathcal{T}(M)$ local homeomorphism for non-Euclidean affine torus.

⇒ Altogether, Covering map with at most 1 branch point at Euclidean torus.

Wai Yeung Lam (BIMSA) Circle patterns 16 April 2021 21 / 27

OUTLINE

- Main result: Kojima-Mizushima-Tan conjecture for torus
- lacksquare $P(\Theta)$ real analytic surface
- lacksquare $P(\Theta)$ homeomorphic to \mathbb{R}^2 , Affine structure
- $lacksquare \pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ proper map
- lacksquare $\pi \circ \mathit{f} : \mathit{P}(\Theta) o \mathcal{T}(\mathit{M})$ local homeomorphism, Cotangent Laplacian
- $lacksquare \pi \circ \mathit{f} : \mathit{P}(\Theta)
 ightarrow \mathcal{T}(\mathit{M})$ is homeomorphism

NO BRANCHING AT EUCLIDEAN TORUS

Circle patterns on affine tori parametrized by scaling part of holonomy A_1 , $A_2 \in \mathbb{R}$.

$$\pi \circ f(A_1, A_2) = \frac{c\tau}{c} = \frac{A_1 + i \operatorname{Im}(c\tau)}{A_2 + i \operatorname{Im}(c)} \in \mathbb{H}$$

Given R > 0, consider the loop $(A_1(t), A_2(t)) = (R \cos t, R \sin t)$ where $t \in [0, \pi]$. It is a generator of $\pi_1(P(\Theta) - \{(0, 0)\})$.

Map the upper half-plane to the unit disk $g(z)=rac{z-i}{z+i}$.

Note: $|\operatorname{Im}(c)|$, $|\operatorname{Im}(c\tau)| < \infty$. For R >> 1,

$$g\circ\pi\circ f(A_1(t),A_2(t))=\frac{R\cos t-iR\sin t+O(1)}{R\cos t+iR\sin t+O(1)}\sim e^{-2t\,i}.$$

Thus $\pi \circ f : P(\Theta) - \{(0,0)\} \to \mathcal{T}(M) - \{\tau_0\}$ is a degree-1 map.

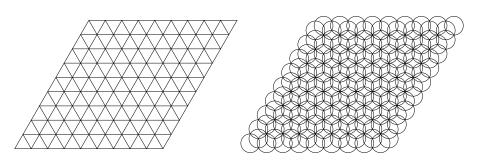
Hence $\pi \circ f : P(\Theta) \to \mathcal{T}(M)$ is a homeomorphism.

(Credit: Tianqi Wu)

Wai Yeung Lam (BIMSA) Circle patterns 16 April 2021 23 / 27

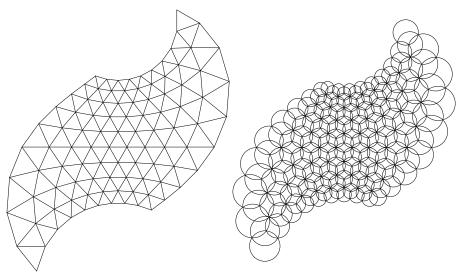
Elements of $P(\Theta)$

 $\Theta \equiv \pi/3$ on a triangulated torus.



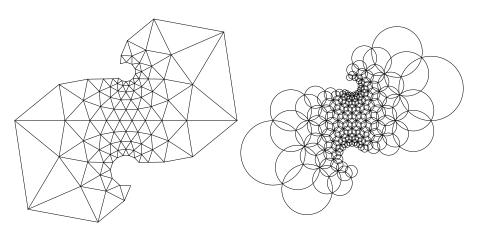
Elements of $P(\Theta)$

 $\Theta \equiv \pi/3$ on a triangulated torus.



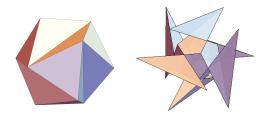
Elements of $P(\Theta)$

 $\Theta \equiv \pi/3$ on a triangulated torus.



WAI YEUNG LAM (BIMSA) CIRCLE PATTERNS 16 APRIL 2021 26 / 27

Thank you!



W.Y. Lam. Quadratic differentials and circle patterns on complex projective tori. Geom. Topol. (2019)

WAI YEUNG LAM (BIMSA) 16 APRIL 2021 27 / 27