
Massive C⇤
-algebras, Winter 2021, I. Farah, Lecture 12

Today we start the proof that in ZFC has a model, then it has a
model in which all automorphisms of the Calkin algebra are inner.
More precisely, we’ll prove that this follows from a certain
consequence, OCAT, of forcing axioms.

Here is the roadmap of the proof that � 2 Aut(Q(H)) is inner
(note that the unit ball B(H)1 is a Polish space with respect to the
strong operator topology, and that F [E] is a SOT-closed subspace):

1. OCAT implies that for every E 2 PartN some SOT-continuous
function f : F [E]1 ! B(H)1 lifts �.

2. The function f as in (1) can be implemented as conjugation
by a unitary uE. (Ulam-stability of ⇤-homomorphisms.)

3. OCAT implies that the ‘coherent family’ (E, uE) obtained in
(2) can be uniformized: a single unitary v implements the
restriction of � to F [E]1 for all E.
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Partitions of pairs

Def 8.6.1 For a set X let [X]2 := {s ✓ X : |s| = 2}.

The following two theorems are included only as an illustration;
they will be neither used nor proved here:

Thm (Ramsey) For every partition [N]2 = L0 t L1 there is an

infinite Y ✓ N such that [Y]2 ✓ L0 or [Y]2 ✓ L1.

Thm (Sierpiński) There is a partition [R]2 = L0 [ L1 such that for

every uncountable Y ✓ R we have [Y]2 6✓ L0 and [Y]2 6✓ L1,
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Some terminology

1. If X is a topological space, then L ✓ [X ]2 is called open if

{(x , y)|{x , y} 2 L}

is an open subset of X 2.

2. A partition [X ]2 = L0 [ L1 is open if L0 is open.

3. A set Y such that [Y]2 ✓ L is called L-homogeneous.
O



OCAT

OCAT Whenever X is a separable metrizable space and
[X]2 = L0 t L1 is an open colouring, one of the following
alternatives applies.

1 There exists an uncountable L0-homogeneous Y ✓ X.
2 There are L1-homogeneous sets Xn, for n 2 N, such thatS

n Xn = X.

Remark: In (2), each Xn can be replaced by its closure, hence we
may assume all Xn are closed.

A proof of the following requires Cohen’s method of forcing, and it
will be omitted.

Thm The axiom OCAT is relatively consistent with ZFC.

We’ll prove two consequences of OCAT as a warmup, but first,
let’s see examples of relevant separable metric topologies.
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Relevant separable metric spaces

(0) R, any separable C⇤-algebra/Hilbert space/Banach space.

(1) SOT on B(H)1: Fix dense ⇠n, for n 2 N, in H1, and let

d(a, b) :=
X

n

2�nk(a� b)⇠nk2.

(2) WOT on B(H)1: Fix dense ⇠n, for n 2 N, in H1, and let

d(a, b) :=
X

m,n

2�m�n|((a� b)⇠m|⇠n)|

(3) TN: d(u, v) := maxn
1

n+1 |u(n)� v(n)|.
(A similar metric is used on the product of any sequence of
bounded metric spaces, or any sequence of metric spaces.)
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(4) The Baire space, NN. Let

�(f , g) := inf{j |f (j) 6= g(j)}

and let
d(f , g) := 1/(�(f , g) + 1).

(d(f , f ) = 0, �(f , f ) = 1.)

(5) PartN: Identify PartN with a subspace of NN, by

PartN ! NN : E 7! fE,

where for E = hEj |j 2 Ni we let fE(j) := minEj , for j 2 N.

8 f

Ar

O
fix

dffhlemcfdlf.tl
44941



(4) The Baire space, NN. Let

�(f , g) := inf{j |f (j) 6= g(j)}

and let
d(f , g) := 1/(�(f , g) + 1).

(d(f , f ) = 0, �(f , f ) = 1.)
(5) PartN: Identify PartN with a subspace of NN, by

PartN ! NN : E 7! fE,

where for E = hEj |j 2 Ni we let fE(j) := minEj , for j 2 N.

i

E f s II it AT



(6) If X and Y are separable metric and F : X ! Y , refine the
topology on X by identifying x 2 X with (x ,F (x)) 2 X ⇥ Y .



If X has a natural linear ordering <, then {x , y}< stands for
{x , y} 2 [X ]2, and it is understood that x < y .

Prop 8.6.3 Assume OCAT. If X ✓ R is uncountable and

g : X ! R, then there exists an uncountable Y ✓ X such that the

restriction of g to Y is continuous.

Proof: As in (6), refine the topology on X by identifying x 2 X

with (x , g(x)) 2 X ⇥ Y . Let

{x , x 0}< 2 L0 if g(x) < g(x 0)

hence {x , x 0}< 2 L1 if g(x) � g(x 0).

Exercise. Prove that CH implies there is g : R ! R such that the
restriction of g to Y is discontinuous for any uncountable Y .

Coro 8.6.4 OCAT and the Continuum Hypothesis are

incompatible.

(Remark: The exercise has little to do with the CH. To see this,
prove (in ZFC) that there is g : R ! R such that the restriction of
g to Y is discontinuous, for any Y of cardinality 2@0 .)
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Prop 8.6.5 Assume OCAT. If X and Y are uncountable subsets of

R, then there exists an uncountable X
0 ✓ X and an increasing

f : X 0 ! Y .

Proof: Let {(x , y), (x 0, y 0)} 2 L0 if (a) x < x
0 and y < y

0 or (b)
x > x

0 and y > y
0.

From an uncountable L0-homogeneous Z ✓ X ⇥Y we can define f

as required.

Claim. X ⇥ Y cannot be covered by countably many

L1-homogeneous sets.

Exercise. Prove that CH implies there are uncountable subsets X
and Y of R such that there are no uncountable X

0 and an
increasing f : X 0 ! Y (or a decreasing f : X 0 ! Y ).

(Again, this has little to do with the CH: drop CH and replace
‘uncountable’ with ‘of cardinality 2@0 ’.)
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Prop ⇡9.5.7 OCAT implies that every E ✓ PartN of cardinality @1

is ⇤
-bounded.

The proof of this Proposition will require some preparations.
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