Massive C^* -algebras, Winter 2021, I. Farah, Lecture 12

Today we start the proof that in ZFC has a model, then it has a model in which all automorphisms of the Calkin algebra are inner. More precisely, we'll prove that this follows from a certain consequence, OCA_T , of forcing axioms.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□

Massive C^* -algebras, Winter 2021, I. Farah, Lecture 12

Today we start the proof that in ZFC has a model, then it has a model in which all automorphisms of the Calkin algebra are inner. More precisely, we'll prove that this follows from a certain Stadle consequence, OCA_T , of forcing axioms. Here is the roadmap of the proof that $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ is inner (note that the unit ball $\mathcal{B}(H)_1$ is a Polish space with respect to the strong operator topology, and that $\mathcal{F}[E]$ is a SOT-closed subspace): OCA_T implies that for every $E \in Part_{\mathbb{N}}$ some SOT-continuous function $f : \mathcal{F}[E]_1 \to \mathcal{B}(H)_1$ lifts Φ . 2. The function f as in (1) can be implemented as conjugation by a unitary $u_{\rm E}$. (Ulam-stability of *-homomorphisms.) 3. OCA_T implies that the 'coherent family' (E, u_E) obtained in (2) can be uniformized: a single unitary v implements the restriction of Φ to $\mathcal{F}[\mathsf{E}]_1$ for all E .

X

Def 8.6.1 For a set X let $[X]^2 := \{s \subseteq X : |s| = 2\}.$

Def 8.6.1 For a set X let $[X]^2 := \{s \subseteq X : |s| = 2\}.$

The following two theorems are included only as an illustration; they will be neither used nor proved here:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Def 8.6.1 For a set X let $[X]^2 := \{s \subseteq X : |s| = 2\}.$

The following two theorems are included only as an illustration; they will be neither used nor proved here:

Thm (Ramsey) For every partition $[\mathbb{N}]^2 = L_0 \sqcup L_1$ there is an infinite $\mathbb{Y} \subseteq \mathbb{N}$ such that $[\mathbb{Y}]^2 \subseteq L_0$ or $[\mathbb{Y}]^2 \subseteq L_1$.

Def 8.6.1 For a set X let $[X]^2 := \{s \subseteq X : |s| = 2\}.$

The following two theorems are included only as an illustration; they will be neither used nor proved here:

Thm (Ramsey) For every partition $[\mathbb{N}]^2 = L_0 \sqcup L_1$ there is an infinite $Y \subseteq \mathbb{N}$ such that $[Y]^2 \subseteq L_0$ or $[Y]^2 \subseteq L_1$.

Thm (Sierpiński) There is a partition $[\mathbb{R}]^2 = L_0 \bigcup L_1$ such that for every uncountable $Y \subseteq \mathbb{R}$ we have $[Y]^2 \not\subseteq L_0$ and $[Y]^2 \not\subseteq L_1$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQ@

Some terminology

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで

1. If X is a topological space, then $L \subseteq [X]^2$ is called *open* if

 $\{(\underline{x,y})|\{\underline{x,y}\}\in L\}$

is an open subset of X^2 .

- 2. A partition $[X]^2 \neq L_0 \cup L_1$ is open if L_0 is open.
- 3. A set Y such that $[Y]^2 \subseteq L$ is called *L*-homogeneous.

OCAT

OCA_T Whenever X is a separable metrizable space and $[X]^2 = \bigcup L_1$ is an open colouring, one of the following alternatives applies.

1 There exists an uncountable L_0 -homogeneous $Y \subseteq X$. 2 There are L_1 -homogeneous sets X_n , for $n \in \mathbb{N}$, such that $\bigcup_n X_n = X$.

Remark: In (2), each X_n can be replaced by its closure, hence we may assume all X_n are closed. $\begin{bmatrix} X_n \end{bmatrix}^2 \subseteq L_1$ $\begin{cases} \chi_1 \chi' \zeta \in \begin{bmatrix} X_n \end{bmatrix}^2 = 2\zeta \chi \chi' \zeta d' \zeta \chi'$

OCAT

OCA_T Whenever X is a separable metrizable space and $[X]^2 = L_0 \sqcup L_1$ is an open colouring, one of the following alternatives applies.

1 There exists an uncountable L_0 -homogeneous $Y \subseteq X$.

2 There are L_1 -homogeneous sets X_n , for $n \in \mathbb{N}$, such that $\bigcup_n X_n = X$.

Remark: In (2), each X_n can be replaced by its closure, hence we may assume all X_n are closed.

A proof of the following requires Cohen's method of forcing, and it will be omitted. $\rho \not = \rho O C A_T$

Thm The axiom OCA_T is relatively consistent with ZFC.

2FC+0(A- ->

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

OCA_T

OCA_T Whenever X is a separable metrizable space and $[X]^2 = L_0 \sqcup L_1$ is an open colouring, one of the following alternatives applies.

- 1 There exists an uncountable L_0 -homogeneous $Y \subseteq X$.
- 2 There are L_1 -homogeneous sets X_n , for $n \in \mathbb{N}$, such that $\bigcup_n X_n = X$.

Remark: In (2), each X_n can be replaced by its closure, hence we may assume all X_n are closed.

A proof of the following requires Cohen's method of forcing, and it will be omitted.

Thm The axiom OCA_T is relatively consistent with ZFC.

We'll prove two consequences of OCA_T as a warmup, but first, let's see examples of relevant separable metric topologies.

(0) \mathbb{R} , any separable C*-algebra/Hilbert space/Banach space.

(0) \mathbb{R} , any separable C*-algebra/Hilbert space/Banach space. (1) SOT on $\mathcal{B}(H)_1$: Fix dense ξ_n , for $n \in \mathbb{N}$, in H_1 , and let

$$d(a,b) := \sum_{n} 2^{-n} ||(a-b)\xi_n||_2.$$

(0) \mathbb{R} , any separable C*-algebra/Hilbert space/Banach space. (1) SOT on $\mathcal{B}(H)_1$: Fix dense ξ_n , for $n \in \mathbb{N}$, in H_1 , and let

$$d(a,b) := \sum_{n} 2^{-n} ||(a-b)\xi_{n}||_{2}.$$
(2) WOT on $\mathcal{B}(H)_{1}$: Fix dense ξ_{n} , for $n \in \mathbb{N}$, in H_{1} , and let
$$d(a,b) := \sum_{m,n} 2^{-m-n} |((a-b)\xi_{m}|\xi_{n})|$$

$$\mathcal{M}_{u}(b)$$

(0) \mathbb{R} , any separable C*-algebra/Hilbert space/Banach space. (1) SOT on $\mathcal{B}(H)_1$: Fix dense ξ_n , for $n \in \mathbb{N}$, in H_1 , and let

$$d(a,b) := \sum_{n} 2^{-n} ||(a-b)\xi_{n}||_{2}.$$

(2) WOT on $\mathcal{B}(H)_1$: Fix dense ξ_n , for $n \in \mathbb{N}$, in H_1 , and let

$$d(a,b) := \sum_{m,n} 2^{-m-n} |((a-b)\xi_m |\xi_n)|$$

(3) $\mathbb{T}^{\mathbb{N}} d(u, v) := \max_{n \to 1} \frac{1}{n+1} |u(n) - v(n)|.$ (A similar metric is used on the product of any sequence of bounded metric spaces, or any sequence of metric spaces.) (4) The Baire space, $\mathbb{N}^{\mathbb{N}}$. Let

$$\Delta(f,g) := \inf\{j|f(j) \neq g(j)\}$$

and let

$$d(f,g) := 1/(\Delta(f,g)+1).$$

$$(d(f,f) = 0, \Delta(f,f) = \infty.)$$

$$\int (f,h) \leq u c d \delta(f,g)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

(4) The Baire space, $\mathbb{N}^{\mathbb{N}}$. Let

$$\Delta(f,g) := \inf\{j | f(j)
eq g(j)\}$$

and let

$$d(f,g) := 1/(\Delta(f,g) + 1).$$

$$(d(f,f) = 0, \Delta(f,f) = \infty.)$$
(5) Part_N: Identify Part_N with a subspace of N^N, by
Part_N \rightarrow N^N: E \mapsto f_E,

where for
$$\mathbf{E} = \langle E_j | j \in \mathbb{N} \rangle$$
 we let $f_{\mathbf{E}}(j) := \min E_j$, for $j \in \mathbb{N}$.

$$F_j = \left(f_{\mathbf{E}}(j), f_{\mathbf{E}}(j+1) \right)$$

(6) If X and Y are separable metric and $F: X \to Y$, refine the topology on X by identifying $x \in X$ with $(x, F(x)) \in X \times Y$.

If X has a natural linear ordering <, then $\{x, y\}_{\leq}$ stands for $\{x, y\} \in [X]^2$, and it is understood that x < y.

Prop 8.6.3 Assume OCA_T. If $X \subseteq \mathbb{R}$ is uncountable and $g: X \to \mathbb{R}$, then there exists an uncountable $Y \subseteq X$ such that the restriction of g to Y is continuous.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

If X has a natural linear ordering <, then $\{x, y\}_<$ stands for $\{x, y\} \in [X]^2$, and it is understood that x < y.

Prop 8.6.3 Assume OCA_T. If $X \subseteq \mathbb{R}$ is uncountable and $g: X \to \mathbb{R}$, then there exists an uncountable $Y \subseteq X$ such that the restriction of g to Y is continuous.

Proof: As in (6), refine the topology on X by identifying $x \in X$ with $(x, g(x)) \in X \times Y$. Let

$$\begin{cases} \{x, x'\}_{<} \in L_{0} \text{ if } g(x) < g(x') \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } \{x, x'\}_{<} \in L_{1} \text{ if } g(x) \ge g(x'). \\ \text{Hence } g(x') \ge g(x'). \\$$

2, 121 5/50 $(e) \quad X = \bigcup X_{u}, \quad [X_{u}] \leq L_{1}, \forall L_{u}$ Thomas u, IXala, SI, JIX is h-u-is creesiz, hence it hos Elso descoutoruifier, and FIERNZH, o ctu, fe banne E, 121 5/60.

If X has a natural linear ordering <, then $\{x, y\}_{<}$ stands for $\{x, y\} \in [X]^2$, and it is understood that x < y.

Prop 8.6.3 Assume OCA_T. If $X \subseteq \mathbb{R}$ is uncountable and $g: X \to \mathbb{R}$, then there exists an uncountable $Y \subseteq X$ such that the restriction of g to Y is continuous.

Proof: As in (6), refine the topology on X by identifying $x \in X$ with $(x, g(x)) \in X \times Y$. Let

$$\{x, x'\}_{<} \in L_0 \text{ if } g(x) < g(x')$$

hence $\{x, x'\}_{<} \in L_1$ if $g(x) \ge g(x')$.

Exercise. Prove that CH implies there is $g : \mathbb{R} \to \mathbb{R}$ such that the restriction of g to Y is discontinuous for any uncountable Y.

Coro 8.6.4 OCA_T and the Continuum Hypothesis are incompatible.

(YOK

If X has a natural linear ordering <, then $\{x, y\}_{<}$ stands for $\{x, y\} \in [X]^2$, and it is understood that x < y.

Prop 8.6.3 Assume OCA_T. If $X \subseteq \mathbb{R}$ is uncountable and $g: X \to \mathbb{R}$, then there exists an uncountable $Y \subseteq X$ such that the restriction of g to Y is continuous.

Proof: As in (6), refine the topology on X by identifying $x \in X$ with $(x, g(x)) \in X \times Y$. Let

 $\{x, x'\}_{<} \in L_0 \text{ if } g(x) < g(x')$

hence $\{x, x'\}_{<} \in L_1$ if $g(x) \ge g(x')$.

Exercise. Prove that CH implies there is $g : \mathbb{R} \to \mathbb{R}$ such that the restriction of g to Y is discontinuous for any uncountable Y.

Coro 8.6.4 OCA_T and the Continuum Hypothesis are incompatible.

(Remark: The exercise has little to do with the CH. To see this, prove (in ZFC) that there is $g : \mathbb{R} \to \mathbb{R}$ such that the restriction of g to Y is discontinuous, for any Y of cardinality 2^{\aleph_0} .)

Prop 8.6.5 Assume OCA_T. If X and Y are uncountable subsets of \mathbb{R} , then there exists an uncountable $X' \subseteq X$ and an increasing $f: X' \to Y$.

Prop 8.6.5 Assume OCA_T. If X and Y are uncountable subsets of \mathbb{R} , then there exists an uncountable $X' \subseteq X$ and an increasing $f: X' \to Y$.

Proof: Let $\{(x, y), (x', y')\} \in L_0$ if (a) x < x' and y < y' or (b) x > x' and y > y'.

From an uncountable L_0 -homogeneous $Z \subseteq X \times Y$ we can define f as required.

2 = srdl(f)

 $(a) \stackrel{\tau}{\cdot} \quad [e($

Prop 8.6.5 Assume OCA_T. If X and Y are uncountable subsets of \mathbb{R} , then there exists an uncountable $X' \subseteq X$ and an increasing $f: X' \to Y \cdot (\langle x, y \rangle, \langle x', y' \rangle) \in \mathcal{L}$, if $\langle x \neq x' \circ y \neq y' \rangle \subset_{n} \mathcal{L} \langle x \neq x' \rangle$ Proof: Let $\{(x, y), (x', y')\} \in L_0$ if (a) x < x' and y < y' or (b) $(x' \neq y') = y'$. From an uncountable L_0 -homogeneous $Z \subseteq X \times Y$ we can define f as required.

Claim. $X \times Y$ cannot be covered by countably many L_1 -homogeneous sets.

ASJUM, XXY = Utn, [tn] CL, th, Fix XEX. [X]XY SUtn F[X]XY/NTn F[X] Fix u(X) Such that ([x]XY/NTn f[X]XY/NTTN XX is unathly. Fix Px ER such that I are a par

 $(\exists Y, Y') \quad (X,Y) \in \mathcal{Z}_{u(X)}, (X,Y') \in$

Fix h, 1 5 flot $X_{,}=\{x \mid u(x)=h, P_{x}=7\}$ U uccHile

((x,5), (x', Y')) EL, if (x=x' or Y=Y') Cud (X=x' ~y=y') Fix X < x' in X_1 × × $Fix \forall > P_X$ $(X, \forall) \in Euler$ $\gamma < P_X$ $(x', \gamma') \in \mathcal{Z}_{\mathcal{U}}(x)$ 50 ((X,4),(X', Y'))EL

Prop 8.6.5 Assume OCA_T. If X and Y are uncountable subsets of \mathbb{R} , then there exists an uncountable $X' \subseteq X$ and an increasing $f: X' \to Y$.

Proof: Let $\{(x, y), (x', y')\} \in L_0$ if (a) x < x' and y < y' or (b) x > x' and y > y'.

From an uncountable L_0 -homogeneous $Z \subseteq X \times Y$ we can define f as required.

Claim. $X \times Y$ cannot be covered by countably many L_1 -homogeneous sets.

Exercise. Prove that CH implies there are uncountable subsets X and Y of \mathbb{R} such that there are no uncountable $X' \stackrel{c}{\rightarrow} M$ an increasing $f: X' \to Y$ (or a decreasing $f: X' \to Y$).

(Again, this has little to do with the CH: drop CH and replace 'uncountable' with 'of cardinality 2^{\aleph_0} '.)

$$\partial C \overline{H}_T = 7 \overline{H} = 1 \overline{N}_2$$

Prop $\approx 9.5.7$ OCA_T implies that every $\mathcal{E} \subseteq \operatorname{Part}_{\mathbb{N}}$ of cardinality \aleph_1 is \leq^* -bounded.

 $E \leq F = \mathcal{F}[E] \subseteq \mathcal{F}[F] + \mathcal{K}(H)$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

The proof of this Proposition will require some preparations.