Massive C*-algebras, Winter 2021, |. Farah, Lecture 12

Today we start the proof that iquFC has a model, then it has a
model in which all automorphisms of the Calkin algebra are inner.
More precisely, we'll prove that this follows from a certain
consequence, OCAT, of forcing axioms.
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Today we start the proof that in ZFC has a model, then it has a
model in which all automorphisms of the Calkin algebra are inner.
More precisely, we'll prove that this follows from a certagln
consequence, OCAT, of forcing axioms. (fo.Lle
Here is the roadmap of the proof that ¢ € Aut(Q(H% is inner
(note that the unit ball B(H)1 is a Polish space with respect to the
strong operator topology, and that_]_—lETTs a SOT-closed subspace):

CAt implies that for every E € Party some SOT continuous
function f: .7-"[E]1 — B( )1 lifts @.

qm function f as in (1) can be implemented as conjugation
b

y a unitary UE . (Ulam-stability of *-homomorphisms.)

3. OCAT implies that the ‘coherent family’ L@j) obtained in

. (2) can be uniformized: a single unitary v implements the

restriction of ® to F|[E]; for all E. a
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Def 8.6.1 For a set X let [X]? := {s C X : |s| = 2}. X
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Partitions of pairs

Def 8.6.1 For a set X let [X]? := {s C X : |s| = 2}.

The following two theorems are included only as an illustration;
they will be neither used nor proved here:

Thm (Ramsey) For every partition [N]? = Lo LI L1 there is an
infinite Y C N such that [Y]?> C Lg or [Y]? C L;.

Thm (Sierpifiski) There is a partition [R]? = Lo kJ L1 such that for
every uncountable Y C R we have [Y]?> € Lg and [Y]* € Ly,
L
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Some terminology ;</‘ F

%

1. If X is a topological space, then L C [X]? is called open if

{5 y)ix,y) e L}

is an open subset of X?.
2. A partition [X]? @ L1 is open if Ly is open.
3. A set Y such that [Y]? C L is called L-homogeneous.
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OCAT Whenever X is a separable metrizable space and

[X]? =/Eg/LI L1 is an open colouring, one of the following
alternatives applies.

1 There exists an uncountable Ly-homogeneous Y C X.
-7'.32 There are L;-homogeneous sets X,,, for n € N, such that
U, X = X.
Remark: In (2) each X, can be replaced by its closure, hence we
may assume all X, are closed. L
n Cxwl g— L )
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OCAT

OCAT Whenever X is a separable metrizable space and
[X]2 = Lo LI Ly is an open colouring, one of the following

alternatives applies.
1 There exists an uncountable Lo-homogeneous Y C X.
2 There are Li-homogeneous sets X,,, for n € N, such that

Un X” =X —
Remark: In (2), each X, can be replaced by its closure, hence we

may assume all X, are closed.
A proof of the following requires Cohen’s method of forcing, and it

will be omitted. [QF/} — OCA,—
Thm The axiom OCAT is relatively consistent with ZFC.
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OCAT

OCAT Whenever X is a separable metrizable space and
[X]?2 = Lo U L is an open colouring, one of the following

alternatives applies.

1 There exists an uncountable Lo-homogeneous Y C X.
2 There are Li-homogeneous sets X,,, for n € N, such that

U, Xn = X.
Remark: In (2), each X, can be replaced by its closure, hence we

may assume all X, are closed.
A proof of the following requires Cohen’s method of forcing, and it

will be omitted.

Thm The axiom OCAT is relatively consistent with ZFC.

We'll prove two consequences of OCAT as a warmup, but first,
let's see examples of relevant separable metric topologies.
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(0) R, any separable C*-algebra/Hilbert space/Banach space.
(1) SOT on B(H)1: Fix dense &,, for n € N, in Hy, and let

d(a,b) =) 27"[(2 = b)éallo-

(2) WOT on B(H)1: Fix dense §p, for n € N, in Hy, and Iet@/)
d(a,b) =) 27" "|((a — b)émlén)]
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Relevant separable metric spaces

(0) R, any separable C*-algebra/Hilbert space/Banach space.
(1) SOT on B(H)1: Fix dense &,, for n € N, in Hy, and let

d(a.b) = 3272~ b)eullo
(2) WOT on B(H)1: Fix dense &,, for n € N, in Hp, and let
d(a,b):= ) 27" "|((a — b)émlén)]

740

A1) du.v) = max, 2 ) — vin)

(A similar metric is used on the product of any sequence of
bounded metric spaces, or any sequence of metric spaces.)



§

(4) The Baire space, NV, Let N
(Bit.) = i) #80)  \)f7
and let
d(f,g) = 1/(A(f, &) +1).
(d(f. £) =0, A(f.f) = oc.) {(£L) e dED
- dfgb)



(4) The Baire space, NV, Let

A(f, g) = int{jf(j) # g()}

and let

d(f,g) =1/(A(f,g) +1). ((f) 4*{3$

(d(f,f) =0, A(f,f) = 0.) -
(5) Party: Identify Party with a subspace of NN, by J
\ /—/—

Party — NV: E — f,

where for E = (Ej|j € N) we let fE(_j) = min E;, for j € N.
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(6) If X and Y are separable metric and F: X — Y, refine the
topology on X by identifying x € X with (x, F(x)) € X X Y.
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If X has a natural linear ordering <, then {x, y} stands for
{x,y} € [X]? and it is understood that x < y.

——

Prop 8.6.3 Assume OCAt. If X C R is uncountable and
g: X — R, then there exists an uncountable Y C X such that the
restriction of g to Y is continuous.



If X has a natural linear ordering <, then {x, y}~ stands for
{x,y} € [X]? and it is understood that x < y.

Prop 8.6.3 Assume OCAt. If X C R is uncountable and
g: X — R, then there exists an uncoum such that the
restriction of g to Y is continuous.
Proof: As in (6), refine the topology on X by identifying x € X
with (x, g(x)) € X x Y. Let

\ e\l

{x,x'}< € Lo if g(x) < g(xX) s ,

—_—

—

hence {x,x'}- € L1 if g(x) > g(x). s [
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If X has a natural linear ordering <, then {x, y}~ stands for
{x,y} € [X]? and it is understood that x < y.

Prop 8.6.3 Assume OCAt. If X C R is uncountable and
g: X — R, then there exists an uncountable Y C X such that the
restriction of g to Y is continuous.

Proof: As in (6), refine the topology on X by identifying x € X
with (x, g(x)) € X x Y. Let

{x,x'}< € Lo if g(x) < g(x')
hence {x,x'} . € L1 if g(x) > g(x').

Exercise. Prove that CH implies there is g: R — R such that the
restriction of g to Y is discontinuous for any uncountable Y.

Coro 8.6.4 OCAT and the Continuum Hypothesis are

incompatible. Q(;/ Rﬁb)g\
§



If X has a natural linear ordering <, then {x, y}~ stands for
{x,y} € [X]? and it is understood that x < y.

Prop 8.6.3 Assume OCAt. If X C R is uncountable and
g: X — R, then there exists an uncountable Y C X such that the
restriction of g to Y is continuous.

Proof: As in (6), refine the topology on X by identifying x € X
with (x, g(x)) € X x Y. Let

{x,x'} . € Ly if g(x) < g(x)
hence {x,x'} . € L1 if g(x) > g(x').

Exercise. Prove that CH implies there is g: R — R such that the
restriction of g to Y is discontinuous for any uncountable Y.

Coro 8.6.4 OCAT and the Continuum Hypothesis are
incompatible.

(Remark: The exercise has little to do with the CH. To see this,
prove (in ZFC) that there is g: R — R such that the restriction of
g to Y is discontinuous, for any Y of cardinality 2% )
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Prop 8.6.5 Assume OCA~. If X and Y are uncountable subsets of
R, then there exists an uncountable X' C X and an increasing

f: X =Y. K (7
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Prop 8.6.5 Assume OCA-T. lf X and Y are uncountable subsets of
R, then there exists an uncountable X' C X and an increasing

f: X' =Y. D(x)j

Proof: Let {(X,_y) (x,y')} € Lo if (a) x < x" and y <y’ or (b)
x>x"and y >y’

From an uncountable Ly-homogeneous Z C X X Y we can define f
as required.
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Prop 8.6.5 Assume OCA~. If X and Y are uncountable subsets of
R, then there exists an uncountable X' C X and an increasing

f: X _>Y((/(,9/ (}C >/S@L [ ()(.;}d' or }’7%’/0:44/ <X$X

Proof: Let {we Lo if (a) x<x andy<y or (b) =)

x> x"and y >y
From an uncountable Lo-homogeneous Z C X x Y we can define f
as required.

Claim. X X Y cannot be covered by countably many
L1-homogeneous sets.

pitoee xxy = Ut [2.] €(, b
Fix xeX {Axy7 /e %(

Fex  u(x) ¢l Flot ({x}x}/ﬂgnw
(S qu’é/(‘ Fi x P, €& sucl f Lot
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Prop 8.6.5 Assume OCA~. If X and Y are uncountable subsets of
R, then there exists an uncountable X’ C X and an increasing
f: X'—=Y.

Proof: Let {(x,y),(x,y")} € Ly if (a) x < x" and y <y’ or (b)
x>x"and y >y’

From an uncountable Lyp-homogeneous Z C X X Y we can define f
as required.

Claim. X X Y cannot be covered by countably many
L1-homogeneous sets.

Exercise. Prove that CH implies there are uncountable subsets X
and Y of R such that there are no uncountable X’ an
increasing f: X’ — Y (or a decreasing f: X' — Y).

(Again, this has little to do with the CH: drop CH and replace

‘uncountable’ with ‘of cardinality 2%0"))
—
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Prop ~9.5.7 OCAT implies that every & C PartN of cardinality N1
is <*-bounded.

-_
The proof of this Proposition will require some preparations.

E <*F = J[El §§[F]+K(W

e—



