Massive C*-algebras, Winter 2021, I. Farah, Lecture 11

From the last time:
Lemma Suppose $A \leq C$, and u, v are in $\mathcal{U}(C)$. TFAE:

1. $\operatorname{Ad} u(a)=\operatorname{Ad} v(a)$ for all $a \in A \Subset u a u^{*}=v a V^{\star}, \forall a \in A$

TFAE:

$$
\begin{aligned}
& \text { 4. } \operatorname{Ad} u^{*}(a)=\operatorname{Ad} v^{*}(a) \text { for all } a \in A \\
& \text { 5. } \underline{u v^{*} \in C \cap A^{\prime} .} \begin{array}{l}
\text { 6. } \underline{v u^{*}} \in C \cap A^{\prime} .
\end{array} N(A)=\left\{w \left\lvert\, \begin{array}{l}
w \in w^{*} \subseteq A \\
w^{*} A w \subseteq A
\end{array}\right.\right.
\end{aligned}
$$

If u and v are in the normalizer of A, then all of the above conditions are equivalent.

Recall from the last class: $\quad U\left(\ell_{d}\right) \subseteq U(B(H))$
 $\mathrm{G}_{\mathrm{E}}:=\mathbb{T}^{\mathbb{N}} / \mathrm{F}_{\mathrm{E}}$, for $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$.
Then F_{E} is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^{*} F$ implies $F_{E} \supseteq F_{F}$ and therefore $\mathrm{G}_{\mathrm{F}}=\mathrm{G}_{\mathrm{E}} /\left(\mathrm{F}_{\mathrm{F}} / \mathrm{F}_{\mathrm{E}}\right)$. Also ,
$0 \longrightarrow \mathrm{~F}_{\mathrm{F}} \longrightarrow \mathbb{T}^{\mathbb{N}} \longrightarrow \mathrm{G}_{\mathrm{F}} \longrightarrow 0$

$0 \longrightarrow \mathrm{~F}_{\mathrm{E}} \longrightarrow \mathbb{T}^{\mathbb{N}} \longrightarrow \mathrm{G}_{\mathrm{E}} \longrightarrow 0$

Recall from the last class:
Def 17.1.8 Let $\mathrm{F}_{\mathrm{E}}:=\left\{x \in \mathbb{T}^{\mathbb{N}}: \Delta_{\mathrm{E}}(x, 1)=0\right\}$, and $G_{E}:=\mathbb{T}^{\mathbb{N}} / F_{E}$, for $E \in \operatorname{Part}_{\mathbb{N}}$.

Then F_{E} is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^{*} F$ implies $F_{E} \supseteq F_{F}$ and therefore $\mathrm{G}_{\mathrm{F}}=\mathrm{G}_{\mathrm{E}} /\left(\mathrm{F}_{\mathrm{F}} / \mathrm{F}_{\mathrm{E}}\right)$. Also,
$0 \longrightarrow F_{F} \longrightarrow \mathbb{T}^{\mathbb{N}} \longrightarrow G_{F} \longrightarrow 0$

$0 \longrightarrow F_{E} \longrightarrow \mathbb{T}^{\mathbb{N}} \longrightarrow G_{E} \longrightarrow 0$
Lemma 17.1.9 Suppose $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and u and v belong to $\mathbb{T}^{\mathbb{N}}$. Then $u \sim_{E} v$ if and only if $u v^{*} \in \mathrm{~F}_{\mathrm{E}}$.

$$
4 d u / \mathcal{F}[E]=A d v / F[E]
$$

Recall from the last class:
Def 17.1.8 Let $\mathrm{F}_{\mathrm{E}}:=\left\{x \notin \mathbb{T}^{\mathbb{N}} \cdot \Delta_{\mathrm{E}}(x, 1)=0\right\}$, and $G_{E}:=\mathbb{T}^{\mathbb{N}} / F_{E}$, for $E \in \operatorname{Part}_{\mathbb{N}}$.

Then F_{E} is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^{*} F$ implies $F_{E} \supseteq F_{F}$ and therefore $G_{F}=G_{E} /\left(F_{F} / F_{E}\right)$. Also,

Lemma 17.1.9 Suppose $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and u and v belong to $\mathbb{T}^{\mathbb{N}}$. Then $u \sim_{\mathrm{E}} v$ if and only if $u v^{*} \in \mathrm{~F}_{\mathrm{E}}$.

Prop \approx 17.1.11 If $\mathrm{E}(\alpha)$, for $\alpha<\aleph_{1}$, is \leq^{*}-cofinal in Part $_{\mathbb{N}}$, then the inverse limit $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ has cardinality $2^{\aleph_{1}}$.

Thm (Coskey-F., 2014) If $\mathrm{E}(\alpha)$, for $\alpha<\kappa$, is \leq^{*}-cofinal in Part ${ }_{\mathbb{N}}$, then there is an infective group homomorphism from $\lim _{\alpha} \mathrm{G}_{\mathrm{E}}(\alpha)$ into $\operatorname{Act}(\mathcal{Q}(H))$.

$$
F(\alpha) \sim, \frac{F[F(\alpha)]}{n_{\alpha}}
$$

Thm (Coskey-F., 2014) If $\mathrm{E}(\alpha)$, for $\alpha<\kappa$, is \leq^{*}-cofinal in Part $_{\mathbb{N}}$, then there is an injective group homomorphism from $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ into $\operatorname{Aut}(\mathcal{Q}(H))$.
Suppose that $\mathrm{E}(\alpha)$, for $\alpha<\kappa$, is \leq^{*}-cofinal in Part $_{\mathbb{N}}$. For what C^{*}-algebras A is there an injective group homomorphism from ${ }_{\leftrightarrows}{ }_{\infty} \mathrm{G}_{\mathrm{E}(\alpha)}$ into $\operatorname{Aut}(\mathcal{M}(A) / A) ?$

Chm (Coskey-F., 2014) If $\mathrm{E}(\alpha)$, for $\alpha<\kappa$, is \leq^{*}-cofinal in Part $_{\mathbb{N}}$, then there is an injective group homomorphism from $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ into $\operatorname{Aut}(\mathcal{Q}(H))$.

Suppose that $\mathrm{E}(\alpha)$, for $\alpha<\kappa$, is \leq^{*}-cofinal in Part $_{\mathbb{N}}$. For what C^{*}-algebras A is there an injective group homomorphism from $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ into $\operatorname{Aut}(\mathcal{M}(A) / A)$?
Chm (Coskey-F.) Any of the following (successively weaker) conditions suffices to give a positive answer to the above (and therefore $C H$ implies that $\mathcal{M}(A) / A$ has $2^{\aleph_{1}}$ automorphisms):

1. A has an approximate unit $e_{m}, m \in \mathbb{N}$, consisting of projections and $f_{n}:=e_{n}-e_{n-1}\left(e_{0}=0\right)$ satisfy $f_{m} A f_{n} \neq\{0\}$ for all m and n.

Thm (Coskey-F., 2014) If $\mathrm{E}(\alpha)$, for $\alpha<\kappa$, is \leq^{*}-cofinal in Part $_{\mathbb{N}}$, then there is an injective group homomorphism from $\lim _{幺} \mathrm{G}_{\mathrm{E}(\alpha)}$ into $\operatorname{Aut}(\mathcal{Q}(H))$.

Suppose that $\mathrm{E}(\alpha)$, for $\alpha<\kappa$, is \leq^{*}-cofinal in Part $_{\mathbb{N}}$. For what C^{*}-algebras A is there an injective group homomorphism from $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ into $\operatorname{Aut}(\mathcal{M}(A) / A)$?
Thm (Coskey-F.) Any of the following (successively weaker) conditions suffices to give a positive answer to the above (and therefore $C H$ implies that $\mathcal{M}(A) / A$ has $2^{\aleph_{1}}$ automorphisms):

1. A has an approximate unit $e_{m}, m \in \mathbb{N}$, consisting of projections and $f_{n}:=e_{n}-e_{n-1}\left(e_{0}=0\right)$ satisfy $f_{m} A f_{n} \neq\{0\}$ for all m and n.
2. A is stable, (i.e., $A \cong A \otimes \mathcal{K})$.

Thm (Coskey-F., 2014) If $\mathrm{E}(\alpha)$, for $\alpha<\kappa$, is \leq^{*}-cofinal in Part $_{\mathbb{N}}$, then there is an injective group homomorphism from $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ into $\operatorname{Aut}(\mathcal{Q}(H))$.
Suppose that $\mathrm{E}(\alpha)$, for $\alpha<\kappa$, is \leq^{*}-cofinal in Part $_{\mathbb{N}}$. For what C^{*}-algebras A is there an injective group homomorphism from $\lim _{\alpha} \mathrm{G}_{\mathrm{E}(\alpha)}$ into $\operatorname{Aut}(\mathcal{M}(A) / A) ?$
Thm (Coskey-F.) Any of the following (successively weaker) conditions suffices to give a positive answer to the above (and therefore $C H$ implies that $\mathcal{M}(A) / A$ has $2^{\aleph_{1}}$ automorphisms):

1. A has an approximate unit $e_{m}, m \in \mathbb{N}$, consisting of projections and $f_{n}:=e_{n}-e_{n-1}\left(e_{0}=0\right)$ satisfy $f_{m} A f_{n} \neq\{0\}$ for all m and n.
2. A is stable, (i.e., $A \cong A \otimes \mathcal{K}$).
3. A is primitive (i.e., it has a faithful, nondegenerate, representation).
(Idea for (2) and (3): A quasicentral approximate unit will satisfy the analog of the condition from (1).)

The other opposite and a curiosity

Prop Suppose that A has an approximate unit $e_{n}, n \in \mathbb{N}$, consisting of projectons, such that with $f_{n}=e_{n}-e_{n-1}\left(e_{0}=0\right)$ we have $f_{m} A f_{n}=\{0\}$ whenever $m \neq n$.

The other opposite and a curiosity

Prop Suppose that A has an approximate unit $e_{n}, n \in \mathbb{N}$, consisting of projectons, such that with $f_{n}=e_{n}-e_{n-1}\left(e_{0}=0\right)$ we have $f_{m} A f_{n}=\{0\}$ whenever $m \neq n$.
Then $A \cong \bigoplus_{m} f_{m} A f_{m}, \mathcal{M}(A) \cong \prod_{m} f_{m} A f_{m}$, hence $\mathcal{M}(A) / A$ is countably saturated and CH implies that it has $2^{\aleph_{1}}$ automorphisms.

The other opposite and a curiosity

Prop Suppose that A has an approximate unit $e_{n}, n \in \mathbb{N}$, consisting of projectons, such that with $f_{n}=e_{n}-e_{n-1}\left(e_{0}=0\right)$ we have $f_{m} A f_{n}=\{0\}$ whenever $m \neq n$.
Then $A \cong \bigoplus_{m} f_{m} A f_{m}, \mathcal{M}(A) \cong \prod_{m} f_{m} A f_{m}$, hence $\mathcal{M}(A) / A$ is countably saturated and CH implies that it has $2^{\aleph_{1}}$ automorphisms.

Exercise. There exists a σ-unital C^{*}-algebra with an approximate unit consisting of projections, but no such approximate unit of A can be chosen so that (with $\left.f_{n}=e_{n}-e_{n-1}\right) f_{m} A f_{n} \neq\{0\}$ for all m and n and no approximate unit of A can be chosen so that $f_{m} A f_{n}=\{0\}$ whenever $m \neq n$.

Back to $\mathcal{Q}(H)$

The original BDF question is still open.
Question Is it possible to find, in some model of ZFC, a K-theory-reversing automorphism Φ of $\mathcal{Q}(H)$?

Back to $\mathcal{Q}(H)$

The original BDF question is still open.
Question Is it possible to find, in some model of ZFC, a K-theory-reversing automorphism Φ of $\mathcal{Q}(H)$?

Even the following is open.
Question Is it possible to find, in some model of ZFC, $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ such that $\Phi \upharpoonright A$ is not implemented by a unitary for some separable $A \leq \mathcal{Q}(H)$?
(By Woodin's theorem, this is essentially the same as trying to construct such Φ using CH .)

When does $\mathcal{M}(A) / A$ have many automorphisms, assuming CH ?
(the abelian case)

If $A=C_{0}(X), X$ locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$
and $\overline{\mathcal{M}(A) / A} \cong C(\beta X \backslash X)$.

When does $\mathcal{M}(A) / A$ have many automorphisms, assuming CH ?

(the abelian case)

If $A=C_{0}(X), X$ locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$ and $\mathcal{M}(A) / A \cong C(\beta X \backslash X)$.
(1) If X is an increasing union of clopen, compact subsets K_{n} then $A=\bigoplus_{\mathbb{N}} C\left(K_{n} \backslash K_{n-1}\right)$ and $\mathcal{M}(A) / A$ is countably saturated. Thus CH implies $\overline{\mathcal{M}(A) / \bar{A}}$ has $2^{\aleph_{1}}$ automorphisms.

$$
\underset{N}{\oplus}[0, \pi]
$$

When does $\mathcal{M}(A) / A$ have many automorphisms, assuming CH ?

(the abelian case)

If $A=C_{0}(X), X$ locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$ and $\mathcal{M}(A) / A \cong C(\beta X \backslash X)$.
(1) If X is an increasing union of clopen, compact subsets K_{n} then $A=\bigoplus_{\mathbb{N}} C\left(K_{n} \backslash K_{n-1}\right)$ and $\mathcal{M}(A) / A$ is countably saturated. Thus CH implies $\mathcal{M}(A) / A$ has $2^{\aleph_{1}}$ automorphisms.
(2) (Yu) If $A=C_{0}(\mathbb{R})$, then $\mathrm{CH} \Rightarrow \mathcal{M}(A) / A$ has $2^{\aleph_{1}}$ automorphisms.

$$
\wedge[0, \infty) \backslash[0, \infty)
$$

When does $\mathcal{M}(A) / A$ have many automorphisms, assuming CH ?
(the abelian case)

If $A=C_{0}(X), X$ locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$ and $\mathcal{M}(A) / A \cong C(\beta X \backslash X)$.
(1) If X is an increasing union of clopen, compact subsets K_{n} then $A=\bigoplus_{\mathbb{N}} C\left(K_{n} \backslash K_{n-1}\right)$ and $\mathcal{M}(A) / A$ is countably saturated. Thus CH implies $\mathcal{M}(A) / A$ has $2^{K_{1}}$ automorphisms.
(2) (Yu) If $A=C_{0}(\mathbb{R})$, then $\mathrm{CH} \Rightarrow \mathcal{M}(A) / A$ has $2^{\aleph_{1}}$
automorphisms.
(3) (Vignati, 2017) The same for $A=C_{0}\left(\mathbb{R}^{n}\right)$ for any $n \geq 1$.

When does $\mathcal{M}(A) / A$ have many automorphisms, assuming CH ?
(the abelian case)

If $A=C_{0}(X), X$ locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$ and $\mathcal{M}(A) / A \cong C(\beta X \backslash X)$.
(1) If X is an increasing union of clopen, compact subsets K_{n} then $A=\bigoplus_{\mathbb{N}} C\left(K_{n} \backslash K_{n-1}\right)$ and $\mathcal{M}(A) / A$ is countably saturated. Thus CH implies $\mathcal{M}(A) / A$ has $2^{\aleph_{1}}$ automorphisms.
(2) (Yu) If $A=C_{0}(\mathbb{R})$, then $\mathrm{CH} \Rightarrow \mathcal{M}(A) / A$ has $2^{\aleph_{1}}$ automorphisms.
(3) (Vignati, 2017) The same for $A=C_{0}\left(\mathbb{R}^{n}\right)$ for any $n \geq 1$.
(2b) (F.-Shelah) The corona of $C_{0}(\mathbb{R})$ is countably saturated.

$$
C_{0}\left(\mathbb{R}^{n}\right)
$$

Let's consider the abelian case, $A=C_{0}(X)$.

If $\operatorname{dim}(X)=0$, we have the Gelfand-Naimark duality and the Stone duality:

Let's consider the abelian case, $A=C_{0}(X)$.

If $\operatorname{dim}(X)=0$, we have the Gelfand-Naimark duality and the Stone duality:

Let's consider the abelian case, $A=C_{0}(X)$.

If $\operatorname{dim}(X)=0$, we have the Gelfand-Naimark duality and the Stone duality:

C^{*}-algebra	topological space	Boolean algebra
$C_{0}(X)$	X	
$\mathcal{M}\left(C_{0}(X)\right)$	βX	$\operatorname{Clop}(X)$
$\mathcal{M}\left(C_{0}(X)\right) / C_{0}(X)$	$\beta X \backslash X$	$\operatorname{Clop}(X) / \operatorname{Clop}_{\text {cpct }}(X)$

The simplest nontrivial case, $A=C_{0}(\mathbb{N})$:

C^{*}-algebra	topological space	Boolean algebra
c_{0}	\mathbb{N}	
ℓ_{∞}	$\beta \mathbb{N}$	$\mathcal{P}(\mathbb{N})$
ℓ_{∞} / c_{0}	$\beta \mathbb{N} \backslash \mathbb{N}$	$\mathcal{P}(\mathbb{N}) /$ Fin

A topological space X is homogeneous if its autohomeomorphism group acts transitively on X.

Chm (W. Ruin, 1956) CH implies the following:

1. $\beta \mathbb{N} \backslash \mathbb{N}$ is not homogeneous (it has P-points!).
2. ℓ_{∞} / c_{0} has $2^{\aleph_{1}}$ automorphisms.

$$
c=x \backslash y \in F_{\text {in }}
$$

A topological space X is homogeneous if its autohomeomorphism group acts transitively on X.

Thm (W. Rudin, 1956) CH implies the following:

1. $\beta \mathbb{N} \backslash \mathbb{N}$ is not homogeneous (it has P-points!).
2. ℓ_{∞} / c_{0} has $2^{\aleph_{1}}$ automorphisms.

Proof of (2), I: ℓ_{∞} / c_{0} is a countably saturated C^{*}-algebra. Proof of (2), II: $\mathcal{P}(\mathbb{N}) /$ Fin is a countably saturated Boolean algebra.

A topological space X is homogeneous if its autohomeomorphism group acts transitively on X.

Thm (W. Rudin, 1956) CH implies the following:

1. $\beta \mathbb{N} \backslash \mathbb{N}$ is not homogeneous (it has P-points!).
2. ℓ_{∞} / c_{0} has $2^{\aleph_{1}}$ automorphisms.

Proof of (2), I: ℓ_{∞} / c_{0} is a countably saturated C^{*}-algebra. Proof of (2), II: $\mathcal{P}(\mathbb{N}) /$ Fin is a countably saturated Boolean algebra.
Kunen (1972): $\beta \mathbb{N} \backslash \mathbb{N}$ is not homogeneous. (Notably, Kunen's construction was extended by Shelah, and this form the basis of non-structure theory for ultrapowers, including the result that CH implies there are $2^{\aleph_{1}}$ nonisomorphic ultrapowers of every separable, infinite-dimensional C*-algebra.)

Question: Is CH necessary to construct many nontrivial automorphisms of ℓ_{∞} / c_{0}, and what makes an automorphism 'nontrivial'?
Here are two extreme cases (both resolvable in ZFC).

Question: Is CH necessary to construct many nontrivial automorphisms of ℓ_{∞} / c_{0}, and what makes an automorphism 'nontrivial'?
Here are two extreme cases (both resolvable in ZFC).
Exercise. The group $\prod_{\mathbb{N}}(\mathbb{Z} / 2 \mathbb{Z}) / \bigoplus_{\mathbb{N}}(\mathbb{Z} / 2 \mathbb{Z})$ has $2^{2^{N_{0}}}$ automorphisms (in ZFC).

Question: Is CH necessary to construct many nontrivial automorphisms of ℓ_{∞} / c_{0}, and what makes an automorphism 'nontrivial'?
Here are two extreme cases (both resolvable in ZFC).
Exercise. The group $\prod_{\mathbb{N}}(\mathbb{Z} / 2 \mathbb{Z}) / \bigoplus_{\mathbb{N}}(\mathbb{Z} / 2 \mathbb{Z})$ has $2^{2^{N_{0}}}$ automorphisms (in ZFC).

An almost permutation of \mathbb{N} is a bijection between cofinite subsets of \mathbb{N}.
|Ohm (Alperin-Covington-McPherson) Let G be the quotient of the semigroup of almost permutations of \mathbb{N} modulo the finitely supported permutations of \mathbb{N}. This is a group, and every automorphism of G is inner (in ZFC).

Question: Is CH necessary to construct many nontrivial automorphisms of ℓ_{∞} / c_{0}, and what makes an automorphism 'nontrivial'?
Here are two extreme cases (both resolvable in ZFC).
Exercise. The group $\prod_{\mathbb{N}}(\mathbb{Z} / 2 \mathbb{Z}) / \bigoplus_{\mathbb{N}}(\mathbb{Z} / 2 \mathbb{Z})$ has $2^{2^{\aleph_{0}}}$ automorphisms (in ZFC).

An almost permutation of \mathbb{N} is a bijection between cofinite subsets of \mathbb{N}.

Thm (Alperin-Covington-McPherson) Let G be the quotient of the semigroup of almost permutations of \mathbb{N} modulo the finitely supported permutations of \mathbb{N}. This is a group, and every automorphism of G is inner (in ZFC).
Lifting a homomorphism Φ between quotient structures

Algebraically trivial automorphisms
S_{∞} : The group of permutations of \mathbb{N}.
Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto \underline{f^{-1}(x)}$, for $f \in S_{\infty}$.

$$
\text { pe If } \phi\left(\{\omega s)=n \text { let } f(u)=u_{n}\right.
$$

Algebraically trivial automorphisms

S_{∞} : The group of permutations of \mathbb{N}.
Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise.Every automorphism of $\mathcal{B}(H)$ is inner.

Algebraically trivial automorphisms

S_{∞} : The group of permutations of \mathbb{N}.
Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise.Every automorphism of $\mathcal{B}(H)$ is inner.
Lemma $\mathcal{P}(\mathbb{N}) /$ Fin has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.

Algebraically trivial automorphisms

S_{∞} : The group of permutations of \mathbb{N}.
Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise. Every automorphism of $\mathcal{B}(H)$ is inner.
Lemma $\mathcal{P}(\mathbb{N}) /$ Fin has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.
Proof: Take $\underset{\sim}{ } \mapsto\{n-1 \mid n \in x\}$.

$$
\begin{aligned}
& \underline{\phi}\left([x]_{F_{i n}}=[3 n-1|n \in X|]_{\text {Fin }}\right. \\
& \text { If } \phi_{x} \text { wino, lifted } l_{\text {, }} \\
& x \rightarrow f^{-1}(x) \text {, for are } f \in S_{\infty} \text {, then }
\end{aligned}
$$

If $x=m\rceil$ $f(u) \neq n+1)$ if ∞,
Then ford $y \subseteq x, \infty$, so that $\forall n \quad n \in n+1 \notin \zeta, f(n+1) \notin c$
The $z=\{n+1 \mid n \in \zeta\}$

$$
\begin{gathered}
\phi([z])=[s], \text { Lot } \\
f^{-1}(z) \cap>=\phi
\end{gathered}
$$

Algebraically trivial automorphisms

S_{∞} : The group of permutations of \mathbb{N}.
Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise.Every automorphism of $\mathcal{B}(H)$ is inner.
Lemma $\mathcal{P}(\mathbb{N}) /$ Fin has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.
Proof: Take $x \mapsto\{n-1 \mid n \in x\}$.
Def An automorphism Φ of $\mathcal{P}(\mathbb{N}) /$ Fin is trivial if there is a bijection f between cofinite sets of \mathbb{N} such that $x \mapsto f^{-1}(x)$ lifts Φ.

Algebraically trivial automorphisms

S_{∞} : The group of permutations of \mathbb{N}.
Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise.Every automorphism of $\mathcal{B}(H)$ is inner.
Lemma $\mathcal{P}(\mathbb{N}) /$ Fin has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.
Proof: Take $x \mapsto\{n-1 \mid n \in x\}$.
Def An automorphism Φ of $\mathcal{P}(\mathbb{N}) /$ Fin is trivial if there is a bijection f between cofinite sets of \mathbb{N} such that $x \mapsto f^{-1}(x)$ lifts Φ.

$$
1979
$$

Thm (Shelah, 1970s) (If ZFC is consistent then) there is a model of ZFC in which all automorphisms of $\mathcal{P}(\mathbb{N}) /$ Fin are trivial.

Algebraically trivial automorphisms

S_{∞} : The group of permutations of \mathbb{N}.
Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise.Every automorphism of $\mathcal{B}(H)$ is inner.
Lemma $\mathcal{P}(\mathbb{N}) /$ Fin has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.
Proof: Take $x \mapsto\{n-1 \mid n \in x\}$.
Def An automorphism Φ of $\mathcal{P}(\mathbb{N}) /$ Fin is trivial if there is a bijection f between cofinite sets of \mathbb{N} such that $x \mapsto f^{-1}(x)$ lifts Φ.

Thm (Shelah, 1970s) (If ZFC is consistent then) there is a model of $Z F C$ in which all automorphisms of $\mathcal{P}(\mathbb{N}) /$ Fin are trivial.
Shelah-Steprāns: (If ZFC is consistent then) there is a model of ZFC in which CH fails but $\mathcal{P}(\mathbb{N}) /$ Fin has nontrivial avonoll $\mathrm{l}_{\text {a }} \mathrm{f}$,

We will prove the following lemma later on:
Lemma For an automorphism Φ of $\mathcal{Q}(H)$ the following are equivalent.

1. Φ is inner.
2. There is a Borel-measurable $f: \mathcal{B}(H)_{1} \rightarrow \mathcal{B}(H)_{1}$ (where $\mathcal{B}(H)_{1}$ is considered with respect to the strong operator topology) lift of Φ.
3. There is a continuous $f: \mathcal{B}(H)_{1} \rightarrow \mathcal{B}(H)_{1}$ (where $\mathcal{B}(H)_{1}$ is considered with respect to the strong operator topology) lift of Φ.

Lemma If A is separable, then the strict topology on $\mathcal{M}(A)_{1}$ is Polish (ie., separable, completely metrizable).
Suppose A is separable, non-unital. An automorphism Φ of $\mathcal{M}(A) / A$ is topologically trivial if

$$
\left\{(a, b) \in \mathcal{M}(A)_{1}^{2} \mid \Phi(a+A)=b+A\right\}
$$

is Bore in the strict topology.
Sloceat.dy
Abseil thais them

Lemma If A is separable, then the strict topology on $\mathcal{M}(A)_{1}$ is Polish (ie., separable, completely metrizable).
Suppose A is separable, non-unital. An automorphism Φ of $\mathcal{M}(A) / A$ is topologically trivial if

$$
\left\{(a, b) \in \mathcal{M}(A)_{1} \mid \Phi(a+A)=b+A\right\}
$$

is Bore in the strict topology.
Conjecture (Coskey-F.) If A is a separable, non-unital C^{*}-algebra, then $C H$ implies that $\mathcal{M}(A) / A$ has topologially nontrivial automorphisms.
wedor than

Lemma If A is separable, then the strict topology on $\mathcal{M}(A)_{1}$ is Polish (i.e., separable, completely metrizable).
Suppose A is separable, non-unital. An automorphism Φ of $\mathcal{M}(A) / A$ is topologically trivial if

$$
\left\{(a, b) \in \mathcal{M}(A)_{1} \mid \Phi(a+A)=b+A\right\}
$$

is Borel in the strict topology.
Conjecture (Coskey-F.) If A is a separable, non-unital C^{*}-algebra, then $C H$ implies that $\mathcal{M}(A) / A$ has topologially nontrivial automorphisms.

There are partial positive answers by Coskey-F., F.-Shelah, Vignati.

Forcing axioms (Baire Category Theorem on steriods)

$$
\text { Auto } \rightarrow \text { tor trivial }
$$

The conclusion of Shelah's theorem ('all automorphisms of $\mathcal{P}(\mathbb{N}) /$ Fin are trivial') is true in a class of canonical models of ZFC.
Def Suppose that Ω is a class of compact Hausdorff spaces. Then FA (Ω is the statement

If $K \in \Omega$, then the intersection of any family of \aleph_{1} dense open subsets of K is dense in K.

Example
If $[0,1] \in \Omega$, then $\mathrm{FA}(\Omega)$ contradicts CH .

Forcing axioms (Baire Category Theorem on steriods)

The conclusion of Shelah's theorem ('all automorphisms of $\mathcal{P}(\mathbb{N}) /$ Fin are trivial') is true in a class of canonical models of ZFC.

Def Suppose that Ω is a class of compact Hausdorff spaces. Then $F A(\Omega)$ is the statement If $K \in \Omega$, then the intersection of any family of \aleph_{1} dense open subsets of K is dense in K.

Example
If $[0,1] \in \Omega$, then $\mathrm{FA}(\Omega)$ contradicts CH .
Some forcing axioms: Martin's Axiom (MA), Proper Forcing Axiom (PFA), Martin's Maximum (MM).

Thm (Shelah-Steprāns) PFA implies that all automorphisms of $\mathcal{P}(\mathbb{N}) /$ Fin are trivial.

Thm (Veličković, 1992) A consequence of PFA, MA + CA, implies that all automorphisms of $\mathcal{P}(\mathbb{N}) /$ Fin are trivial.

Chm (Veličković, 1992) MA does not imply that all automorphisms of $\mathcal{P}(\mathbb{N}) / \overline{\text { Fin }}$ are trivial (unless ZFC implies $0=1$).

Isomorphisms of coronas

Here is another motivation for studying isomorphisms of coronas.
Question (Sakai, 1971) If A and B are separable and simple C^{*}-algebras, does $\mathcal{M}(A) / A \cong \mathcal{M}(B) / B$ imply $A \cong B$?

$$
M\left(A \oplus C K_{\substack{u_{n i} t_{0} l}}^{(A Q C)} \triangleq \overline{M(A) / A}\right.
$$

Isomorphisms of coronas

Here is another motivation for studying isomorphisms of coronas.
Question (Sakai, 1971) If A and B are separable and simple C^{*}-algebras, does $\mathcal{M}(A) / A \cong \mathcal{M}(B) / B$ imply $A \cong B$?

The answer is negative if either of the the separability or simplicity assumptions is dropped.

Thm (Sakai, 1971) There is a simple, nonseparable, non-unital, A such that $\mathcal{M}(A) / A \cong \mathbb{C}$.

Isomorphisms of coronas

Here is another motivation for studying isomorphisms of coronas.
Question (Sakai, 1971) If A and B are separable and simple C^{*}-algebras, does $\mathcal{M}(A) / A \cong \mathcal{M}(B) / B$ imply $A \cong B$?

The answer is negative if either of the the separability or simplicity assumptions is dropped.

Thm (Sakai, 1971) There is a simple, nonseparable, non-unital, A such that $\mathcal{M}(A) / A \cong \mathbb{C}$.
G. Elliott, Derivations of Matroid C*-algebras, II (1973): A positive answer for the matroid (aka AM) algebras.

