Massive C*-algebras, Winter 2021, I. Farah, Lecture 11

From the last time:

Lemma Suppose $A \leq C$, and u, v are in $\mathcal{U}(C)$. TFAE: 1. Ad $u(a) = \operatorname{Ad} v(a)$ for all $a \in A \Subset uau^{\dagger} = UaU^{\dagger}$, that $A = uau^{\dagger}$, that $A = u^{\dagger}u$, the A2. $v^*u \in C \cap A'$. 3. $u^*v \in C \cap A'$. 4. $u^*\sigma = (v^*u)^{\dagger}$ TFAE: 4. Ad $u^*(a) = \operatorname{Ad} v^*(a)$ for all $a \in A$ 5. $uv^* \in C \cap A'$. 6. $vu^* \in C \cap A'$. N(A) = {w | wAw + SA WAW SA If u and v are in the normalizer of A, then all of the above

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● のへで

conditions are equivalent.

Recall from the last class: $\begin{array}{l}
\mathcal{U}(\mathcal{L}_{\mathcal{W}}) \subseteq \mathcal{U}(\mathcal{K}(\mathcal{H}))\\
\end{array}$ $\begin{array}{l}
\text{Def 17.1.8 Let } F_{E} := \{x \in \mathbb{T}^{\mathbb{N}} : \Delta_{E}(x,1) = 0\}, \text{ and } \mathcal{L}_{E} = (\underbrace{\text{in SUL}}_{\mathcal{H} \to \infty} \underbrace{\mathcal{L}_{\mathcal{H}}}_{\mathcal{H} \to \infty} \underbrace{\mathcal{L}_{$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Then F_E is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^* F$ implies $F_E \supseteq F_F$ and therefore $G_F = G_E / (F_F / F_E)$. Also,

Recall from the last class:

Def 17.1.8 Let $F_E := \{x \in \mathbb{T}^{\mathbb{N}} : \Delta_E(x, 1) = 0\}$, and $G_E := \mathbb{T}^{\mathbb{N}} / F_E$, for $E \in Part_{\mathbb{N}}$.

Then F_E is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^* F$ implies $F_E \supseteq F_F$ and therefore $G_F = G_E / (F_F / F_E)$. Also,

Lemma 17.1.9 Suppose $E \in Part_{\mathbb{N}}$ and u and v belong to $\mathbb{T}^{\mathbb{N}}$. Then $u \sim_{\mathsf{E}} v$ if and only if $uv^* \in \mathsf{F}_{\mathsf{E}}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ ∽��

Recall from the last class:

Def 17.1.8 Let $F_E := \{x \in \mathbb{T}^{\mathbb{N}} : \Delta_E(x, 1) = 0\}$, and $G_E := \mathbb{T}^{\mathbb{N}} / F_E$, for $E \in Part_{\mathbb{N}}$.

Then F_E is a subgroup of $\mathbb{T}^{\mathbb{N}}$ and $E \leq^* F$ implies $F_E \supseteq F_F$ and therefore $G_F = G_E / (F_F / F_E)$. Also,

2 (55

Lemma 17.1.9 Suppose $E \in Part_{\mathbb{N}}$ and u and v belong to $\mathbb{T}^{\mathbb{N}}$. Then $u \sim_{\mathsf{E}} v$ if and only if $uv^* \in \mathsf{F}_{\mathsf{E}}$.

Prop \approx 17.1.11 If E(α), for $\alpha < \aleph_1$, is \leq^* -cofinal in Part_N, then the inverse limit $\lim_{\alpha} G_{E(\alpha)}$ has cardinality 2^{\aleph_1} .

Thm (Coskey–F., 2014) If $E(\alpha)$, for $\alpha < \kappa$, is \leq^* -cofinal in $Part_{\mathbb{N}}$, then there is an injective group homomorphism from $\varprojlim_{\alpha} G_{E(\alpha)}$ into $Aut(\mathcal{Q}(H))$.

Suppose that $E(\alpha)$, for $\alpha < \kappa$, is \leq^* -cofinal in $Part_{\mathbb{N}}$. For what C^* -algebras A is there an injective group homomorphism from $\varprojlim_{\alpha} G_{E(\alpha)}$ into $Aut(\mathcal{M}(A)/A)$?

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Thm (Coskey–F., 2014) If $E(\alpha)$, for $\alpha < \kappa$, is \leq^* -cofinal in $Part_N$, then there is an injective group homomorphism from $\varprojlim_{\alpha} G_{E(\alpha)}$ into $Aut(\mathcal{Q}(H))$.

Suppose that $E(\alpha)$, for $\alpha < \kappa$, is \leq^* -cofinal in $Part_{\mathbb{N}}$. For what C^* -algebras A is there an injective group homomorphism from $\varprojlim_{\alpha} G_{E(\alpha)}$ into $Aut(\mathcal{M}(A)/A)$?

Thm (Coskey–F.) Any of the following (successively weaker) conditions suffices to give a positive answer to the above (and therefore CH implies that $\mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms):

S

1. A has an approximate unit e_m , $m \in \mathbb{N}$, consisting of projections and $f_n := e_n - e_{n-1}$ ($e_0 = 0$) satisfy $f_m A f_n \neq \{0\}$ for all m and n.

□ ▶ ▲ Ξ ▶ ▲ Ξ ▶ Ξ − ∽ ۹ (~

Thm (Coskey–F., 2014) If $E(\alpha)$, for $\alpha < \kappa$, is \leq^* -cofinal in $Part_{\mathbb{N}}$, then there is an injective group homomorphism from $\varprojlim_{\alpha} G_{E(\alpha)}$ into $Aut(\mathcal{Q}(H))$.

Suppose that $E(\alpha)$, for $\alpha < \kappa$, is \leq^* -cofinal in $Part_{\mathbb{N}}$. For what C^* -algebras A is there an injective group homomorphism from $\varprojlim_{\alpha} G_{E(\alpha)}$ into $Aut(\mathcal{M}(A)/A)$?

Thm (Coskey–F.) Any of the following (successively weaker) conditions suffices to give a positive answer to the above (and therefore CH implies that $\mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms):

1. A has an approximate unit e_m , $m \in \mathbb{N}$, consisting of projections and $f_n := e_n - e_{n-1}$ ($e_0 = 0$) satisfy $f_m A f_n \neq \{0\}$ for all m and n.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

$$\underline{2}. A \text{ is stable, } (i.e., A \cong A \otimes \mathcal{K}).$$

Thm (Coskey–F., 2014) If $E(\alpha)$, for $\alpha < \kappa$, is \leq^* -cofinal in $Part_N$, then there is an injective group homomorphism from $\varprojlim_{\alpha} G_{E(\alpha)}$ into $Aut(\mathcal{Q}(H))$.

Suppose that $E(\alpha)$, for $\alpha < \kappa$, is \leq^* -cofinal in $Part_{\mathbb{N}}$. For what C^* -algebras A is there an injective group homomorphism from $\varprojlim_{\alpha} G_{E(\alpha)}$ into $Aut(\mathcal{M}(A)/A)$?

Thm (Coskey–F.) Any of the following (successively weaker) conditions suffices to give a positive answer to the above (and therefore CH implies that $\mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms):

- 1. A has an approximate unit e_m , $m \in \mathbb{N}$, consisting of projections and $f_n := e_n e_{n-1}$ ($e_0 = 0$) satisfy $f_m A f_n \neq \{0\}$ for all m and n.
- 2. A is stable, (i.e., $A \cong A \otimes \mathcal{K}$).
- 3. A is primitive (i.e., it has a faithful, nondegenerate, representation).

(Idea for (2) and (3): A quasicentral approximate unit will satisfy the analog of the condition from (1).)

The other opposite and a curiosity

Prop Suppose that A has an approximate unit e_n , $n \in \mathbb{N}$, consisting of projectons, such that with $f_n = e_n - e_{n-1}$ ($e_0 = 0$) we have $f_m A f_n = \{0\}$ whenever $m \neq n$. f fi

<ロト < 同ト < ヨト < ヨト

臣

The other opposite and a curiosity

Prop Suppose that A has an approximate unit e_n , $n \in \mathbb{N}$, consisting of projectons, such that with $f_n = e_n - e_{n-1}$ ($e_0 = 0$) we have $f_m A f_n = \{0\}$ whenever $m \neq n$. Then $A \cong \bigoplus_m f_m A f_m$, $\mathcal{M}(A) \cong \prod_m f_m A f_m$, hence $\mathcal{M}(A)/A$ is countably saturated and CH implies that it has 2^{\aleph_1} automorphisms.

The other opposite and a curiosity

Prop Suppose that A has an approximate unit e_n , $n \in \mathbb{N}$, consisting of projectons, such that with $f_n = e_n - e_{n-1}$ ($e_0 = 0$) we have $f_m A f_n = \{0\}$ whenever $m \neq n$. Then $A \cong \bigoplus_m f_m A f_m$, $\mathcal{M}(A) \cong \prod_m f_m A f_m$, hence $\mathcal{M}(A)/A$ is countably saturated and CH implies that it has 2^{\aleph_1} automorphisms.

Exercise. There exists a σ -unital C*-algebra with an approximate unit consisting of projections, but no such approximate unit of A can be chosen so that (with $f_n = e_n - e_{n-1}$) $f_m A f_n \neq \{0\}$ for all m and n and no approximate unit of A can be chosen so that $f_m A f_n = \{0\}$ whenever $m \neq n$.

Back to Q(H)

The original BDF question is still open.

Question Is it possible to find, in some model of ZFC, a K-theory-reversing automorphism Φ of Q(H)?

Back to $\mathcal{Q}(H)$

The original BDF question is still open.

Question Is it possible to find, in some model of ZFC, a K-theory-reversing automorphism Φ of Q(H)?

Even the following is open.

Question Is it possible to find, in some model of ZFC, $\Phi \in \operatorname{Aut}(\mathcal{Q}(H))$ such that $\Phi \upharpoonright A$ is not implemented by a unitary for some separable $A \leq \mathcal{Q}(H)$?

(By Woodin's theorem, this is essentially the same as trying to construct such Φ using CH.)

If $A = C_0(X)$, X locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$ and $\mathcal{M}(A)/A \cong C(\beta X \setminus X)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

If $A = C_0(X)$, X locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$ and $\mathcal{M}(A)/A \cong C(\beta X \setminus X)$. (1) If X is an increasing union of clopen, compact subsets K_n then

 $A = \bigoplus_{\mathbb{N}} C(K_n \setminus K_{n-1})$ and $\mathcal{M}(A)/A$ is countably saturated. Thus CH implies $\mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms.

₽[o,v] N

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

If $A = C_0(X)$, X locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$ and $\mathcal{M}(A)/A \cong C(\beta X \setminus X)$. (1) If X is an increasing union of clopen, compact subsets K_n then

(1) If X is an increasing union of clopen, compact subsets K_n then $A = \bigoplus_{\mathbb{N}} C(K_n \setminus K_{n-1})$ and $\mathcal{M}(A)/A$ is countably saturated. Thus CH implies $\mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms. (2) (Yu) If $A = C_0(\mathbb{R})$, then CH $\Rightarrow \mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms. $(A \cap C) = C_0(\mathbb{R})$, then CH $\Rightarrow \mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms.

If $A = C_0(X)$, X locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$ and $\mathcal{M}(A)/A \cong C(\beta X \setminus X)$.

(1) If X is an increasing union of clopen, compact subsets K_n then $A = \bigoplus_{\mathbb{N}} C(K_n \setminus K_{n-1})$ and $\mathcal{M}(A)/A$ is countably saturated. Thus CH implies $\mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms. (2) (Yu) If $A = C_0(\mathbb{R})$, then CH $\Rightarrow \mathcal{M}(A)/A$ has 2^{\aleph_1}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ∽000

automorphisms.

(3) (Vignati, 2017) The same for $A = C_0(\mathbb{R}^n)$ for any $n \ge 1$.

If $A = C_0(X)$, X locally compact metrizable, then $\mathcal{M}(A) \cong C(\beta X)$ and $\mathcal{M}(A)/A \cong C(\beta X \setminus X)$.

(1) If X is an increasing union of clopen, compact subsets K_n then $A = \bigoplus_{\mathbb{N}} C(K_n \setminus K_{n-1})$ and $\mathcal{M}(A)/A$ is countably saturated. Thus CH implies $\mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms.

 $C_{o}(\mathbb{R}^{n})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めへぐ

(2) (Yu) If $A = C_0(\mathbb{R})$, then $CH \Rightarrow \mathcal{M}(A)/A$ has 2^{\aleph_1} automorphisms.

(3) (Vignati, 2017) The same for $A = C_0(\mathbb{R}^n)$ for any $n \ge 1$. (2b) (F.–Shelah) The corona of $C_0(\mathbb{R})$ is countably saturated. Let's consider the abelian case, $A = C_0(X)$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If dim(X) = 0, we have the Gelfand–Naimark duality and the Stone duality:

Let's consider the abelian case, $A = C_0(X)$.

If dim(X) = 0, we have the Gelfand–Naimark duality and the Stone duality:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Let's consider the abelian case, $A = C_0(X)$.

If dim(X) = 0, we have the Gelfand–Naimark duality and the Stone duality:

C^* -algebra	topological space	Boolean algebra
$C_0(X)$	X	
$\mathcal{M}(C_0(X))$	$eta oldsymbol{X}$	Clop(X)
$\mathcal{M}(\mathcal{C}_0(X))/\mathcal{C}_0(X)$	$eta X \setminus X$	$\operatorname{Clop}(X)/\operatorname{Clop}_{\operatorname{cpct}}(X)$

The simplest nontrivial case, $A = C_0(\mathbb{N})$:			
C^* -algebra	topological space	Boolean algebra	
<i>C</i> ₀	\mathbb{N}		
ℓ_{∞}	$\beta\mathbb{N}$	$\mathcal{P}(\mathbb{N})$	
ℓ_{∞}/c_0	$\beta\mathbb{N}\setminus\mathbb{N}$	$\mathcal{P}(\mathbb{N})/\operatorname{Fin}$	

A topological space X is *homogeneous* if its autohomeomorphism group acts transitively on X.

Thm (W. Rudin, 1956) CH implies the following:

1. $\beta \mathbb{N} \setminus \mathbb{N}$ is not homogeneous (it has P-points!).

2. ℓ_{∞}/c_0 has 2^{\aleph_1} automorphisms.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣��

A topological space X is *homogeneous* if its autohomeomorphism group acts transitively on X.

Thm (W. Rudin, 1956) CH implies the following:

- 1. $\beta \mathbb{N} \setminus \mathbb{N}$ is not homogeneous (it has *P*-points!).
- 2. ℓ_{∞}/c_0 has 2^{\aleph_1} automorphisms.

Proof of (2), I: ℓ_{∞}/c_0 is a countably saturated C*-algebra. Proof of (2), II: $\mathcal{P}(\mathbb{N})/F$ in is a countably saturated Boolean algebra.

A topological space X is *homogeneous* if its autohomeomorphism group acts transitively on X.

Thm (W. Rudin, 1956) CH implies the following:

- 1. $\beta \mathbb{N} \setminus \mathbb{N}$ is not homogeneous (it has *P*-points!).
- 2. ℓ_{∞}/c_0 has 2^{\aleph_1} automorphisms.

Proof of (2), I: ℓ_{∞}/c_0 is a countably saturated C*-algebra. Proof of (2), II: $\mathcal{P}(\mathbb{N})/F$ in is a countably saturated Boolean algebra.

Kunen (1972): $\beta \mathbb{N} \setminus \mathbb{N}$ is not homogeneous. (Notably, Kunen's construction was extended by Shelah, and this form the basis of non-structure theory for ultrapowers, including the result that CH implies there are 2^{\aleph_1} nonisomorphic ultrapowers of every separable, infinite-dimensional C*-algebra.)

Question: Is CH necessary to construct many nontrivial automorphisms of ℓ_{∞}/c_0 , and what makes an automorphism 'nontrivial'?

Here are two extreme cases (both resolvable in ZFC).

Question: Is CH necessary to construct many nontrivial automorphisms of ℓ_{∞}/c_0 , and what makes an automorphism 'nontrivial'?

Here are two extreme cases (both resolvable in ZFC).

Exercise. The group $\prod_{\mathbb{N}}(\mathbb{Z}/2\mathbb{Z})/\bigoplus_{\mathbb{N}}(\mathbb{Z}/2\mathbb{Z})$ has $2^{2^{\aleph_0}}$ automorphisms (in ZFC).

- 11.5 den = 1 No

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필 _ .

SQ (~

Question: Is CH necessary to construct many nontrivial automorphisms of ℓ_{∞}/c_0 , and what makes an automorphism 'nontrivial'?

Here are two extreme cases (both resolvable in ZFC).

Exercise. The group $\prod_{\mathbb{N}}(\mathbb{Z}/2\mathbb{Z})/\bigoplus_{\mathbb{N}}(\mathbb{Z}/2\mathbb{Z})$ has $2^{2^{\aleph_0}}$ L(u) = ut()automorphisms (in ZFC).

An *almost permutation* of \mathbb{N} is a bijection between cofinite subsets of ℕ.

Thm (Alperin–Covington–McPherson) Let G be the quotient of the semigroup of almost permutations of \mathbb{N} modulo the finitely supported permutations of $\mathbb N$. This is a group, and every automorphism of G is inner (in ZFC). $f'(u\pi) = 4$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < э

> 0/ F=11-50)

Question: Is CH necessary to construct many nontrivial automorphisms of ℓ_{∞}/c_0 , and what makes an automorphism 'nontrivial'?

Here are two extreme cases (both resolvable in ZFC).

Exercise. The group $\prod_{\mathbb{N}}(\mathbb{Z}/2\mathbb{Z})/\bigoplus_{\mathbb{N}}(\mathbb{Z}/2\mathbb{Z})$ has $2^{2^{\aleph_0}}$ automorphisms (in ZFC).

An *almost permutation* of \mathbb{N} is a bijection between cofinite subsets of \mathbb{N} .

Thm (Alperin–Covington–McPherson) Let G be the quotient of the semigroup of almost permutations of \mathbb{N} modulo the finitely supported permutations of \mathbb{N} . This is a group, and every automorphism of G is inner (in ZFC).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めの⊘

Lifting a nonomorphism Φ between quotient structures

 S_∞ : The group of permutations of \mathbb{N} .

Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

 $l = IG \psi(3mS) = N$ let $f(U) = U_{1}$

 S_∞ : The group of permutations of \mathbb{N} .

Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise. Every automorphism of $\mathcal{B}(H)$ is inner.

 S_∞ : The group of permutations of \mathbb{N} .

Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise. Every automorphism of $\mathcal{B}(H)$ is inner.

Lemma $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.

 S_∞ : The group of permutations of \mathbb{N} .

Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise. Every automorphism of $\mathcal{B}(H)$ is inner.

Lemma $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.

Proof: Take $x \mapsto \{n-1 | n \in x\}$. $\oint ([x]) = [\{n-1 | n \in X\}]$ Fin If ([x], for fore fcS, flered) $x \to f'(x), for fore fcS, flered)$ f(x) = [n + 1]

(V)9 + (0) = 0 + 1It x = 15/ f(4) = 14+1) is on They find YEX, 00, 5 Flot 463 =, 11+1 ¢ 5 f(1+1)¢5 4 u Tha 2= (U+1 | UE 4) $\phi([z_1]) = [y_1] [y_1]$ $f'(2) \land 5 = p$

 S_∞ : The group of permutations of \mathbb{N} .

Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise. Every automorphism of $\mathcal{B}(H)$ is inner.

Lemma $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < </p>

Proof: Take $x \mapsto \{n-1 | n \in x\}$.

Def An automorphism Φ of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$ is trivial if there is a bijection f between cofinite sets of \mathbb{N} such that $x \mapsto f^{-1}(x)$ lifts Φ .

 S_∞ : The group of permutations of \mathbb{N} .

Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise. Every automorphism of $\mathcal{B}(H)$ is inner.

Lemma $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.

Proof: Take $x \mapsto \{n-1 | n \in x\}$.

Def An automorphism Φ of $\mathcal{P}(\mathbb{N})/\mathsf{Fin}$ is trivial if there is a bijection f between cofinite sets of \mathbb{N} such that $x \mapsto f^{-1}(x)$ lifts Φ .

Thm (Shelah, 1970s) (If ZFC is consistent then) there is a model of ZFC in which all automorphisms of $\mathcal{P}(\mathbb{N})/$ Fin are trivial.

 S_∞ : The group of permutations of \mathbb{N} .

Lemma Every automorphism Φ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ is of the form $x \mapsto f^{-1}(x)$, for $f \in S_{\infty}$.

Exercise. Every automorphism of $\mathcal{B}(H)$ is inner.

Lemma $\mathcal{P}(\mathbb{N})/\text{Fin}$ has an automorphism that cannot be lifted to an automorphism of $\mathcal{P}(\mathbb{N})$.

Proof: Take $x \mapsto \{n-1 | n \in x\}$.

Def An automorphism Φ of $\mathcal{P}(\mathbb{N})/\mathsf{Fin}$ is trivial if there is a bijection f between cofinite sets of \mathbb{N} such that $x \mapsto f^{-1}(x)$ lifts Φ .

Thm (Shelah, 1970s) (If ZFC is consistent then) there is a model of ZFC in which all automorphisms of $\mathcal{P}(\mathbb{N})/$ Fin are trivial. Shelah–Steprāns: (If ZFC is consistent then) there is a model of ZFC in which CH fails but $\mathcal{P}(\mathbb{N})/$ Fin has nontrivial. We will prove the following lemma later on:

Lemma For an automorphism Φ of Q(H) the following are equivalent.

- 1. Φ is inner.
- 2. There is a Borel-measurable $f : \mathcal{B}(H)_1 \to \mathcal{B}(H)_1$ (where $\mathcal{B}(H)_1$ is considered with respect to the strong operator topology) lift of Φ .
- 3. There is a continuous $f : \mathcal{B}(H)_1 \to \mathcal{B}(H)_1$ (where $\mathcal{B}(H)_1$ is considered with respect to the strong operator topology) lift of Φ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Lemma If A is separable, then the strict topology on $\mathcal{M}(A)_1$ is Polish (i.e., separable, completely metrizable).

Suppose A is separable, non-unital. An automorphism Φ of $\mathcal{M}(A)/A$ is topologically trivial if

Trivio!

$$\{(a,b)\in\mathcal{M}(A)_1^\mathcal{L}|\Phi(a+A)=b+A\}$$

is Borel in the strict topology.

Shoenfield's Absolutiones Them

▲□▶ ▲圖▶ ▲글▶ ▲글▶ _ 글 _

SQ (~

G → ([hall || · ((→ ((al.)) Lemma If A is separable, then the strict topology on $\mathcal{M}(A)_1$ is Polish (i.e., separable, completely metrizable).

Suppose A is separable, non-unital. An automorphism Φ of $\mathcal{M}(A)/A$ is topologically trivial if

$$\{(a,b)\in\mathcal{M}(A)_1|\Phi(a+A)=b+A\}$$

is Borel in the strict topology.

Conjecture (Coskey–F.) If A is a separable, non-unital C*-algebra, then CH implies that $\mathcal{M}(A)/A$ has topologially nontrivial automorphisms. (Meder Han (Ma) 2 Gulfun Hing

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少♀?

Lemma If A is separable, then the strict topology on $\mathcal{M}(A)_1$ is Polish (i.e., separable, completely metrizable).

Suppose A is separable, non-unital. An automorphism Φ of $\mathcal{M}(A)/A$ is *topologically trivial* if

$$\{(a,b)\in\mathcal{M}(A)_1|\Phi(a+A)=b+A\}$$

is Borel in the strict topology.

Conjecture (Coskey–F.) If A is a separable, non-unital C^* -algebra, then CH implies that $\mathcal{M}(A)/A$ has topologially nontrivial automorphisms.

There are partial positive answers by Coskey–F., F.–Shelah, Vignati.

Forcing axioms (Baire Category Theorem on steriods) Auto -> for trovid The conclusion of Shelah's theorem ('all automorphisms of $\mathcal{P}(\mathbb{N})/\text{Fin}$ are trivial') is true in a class of canonical models of ZFC. **Def** Suppose that Ω is a class of compact Hausdorff spaces. Then $FA(\Omega)$ is the statement If $K \in \Omega$, then the intersection of any family of \aleph_1 dense open subsets of K is dense in K.

Example

If $[0,1] \in \Omega$, then FA(Ω) contradicts CH.

Forcing axioms (Baire Category Theorem on steriods)

The conclusion of Shelah's theorem ('all automorphisms of $\mathcal{P}(\mathbb{N})/$ Fin are trivial') is true in a class of canonical models of ZFC.

Def Suppose that Ω is a class of compact Hausdorff spaces. Then $FA(\Omega)$ is the statement

If $K \in \Omega$, then the intersection of any family of \aleph_1 dense open subsets of K is dense in K.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Example

If $[0,1] \in \Omega$, then FA(Ω) contradicts CH.

Some forcing axioms: Martin's Axiom (MA), Proper Forcing Axiom (PFA), Martin's Maximum (MM).

Thm (Shelah–Steprāns) *PFA implies that all automorphisms of* $\mathcal{P}(\mathbb{N})/\text{Fin}$ are trivial.

Thm (Veličković, 1992) A consequence of PFA, MA+OCA, implies that all automorphisms of $\mathcal{P}(\mathbb{N})/F$ in are trivial.

Thm (Veličković, 1992) *MA* does not imply that all automorphisms of $\mathcal{P}(\mathbb{N})/\mathsf{Fin}$ are trivial (unless ZFC implies 0 = 1).

 $M(A)_A \rightarrow M(B)_R$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

Isomorphisms of coronas

Here is another motivation for studying isomorphisms of coronas.

Question (Sakai, 1971) If A and B are separable and simple C^* -algebras, does $\mathcal{M}(A)/A \cong \mathcal{M}(B)/B$ imply $A \cong B$?

 $M(A \oplus C)/(A \oplus C) \cong M(A)/A$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Isomorphisms of coronas

Here is another motivation for studying isomorphisms of coronas.

Question (Sakai, 1971) If A and B are separable and simple C^* -algebras, does $\mathcal{M}(A)/A \cong \mathcal{M}(B)/B$ imply $A \cong B$?

The answer is negative if either of the the separability or simplicity assumptions is dropped.

Thm (Sakai, 1971) There is a simple, nonseparable, non-unital, A such that $\mathcal{M}(A)/A \cong \mathbb{C}$.

Isomorphisms of coronas

Here is another motivation for studying isomorphisms of coronas.

Question (Sakai, 1971) If A and B are separable and simple $(A) = \mathcal{M}(B) = \mathcal{M}(B) = \mathbb{R}$

The answer is negative if either of the the separability or simplicity assumptions is dropped.

Thm (Sakai, 1971) There is a simple, nonseparable, non-unital, A such that $\mathcal{M}(A)/A \cong \mathbb{C}$.

G. Elliott, Derivations of Matroid C^* -algebras, II (1973): A positive answer for the matroid (aka AM) algebras.

 $\mathcal{M}_{\mathcal{L}}(\mathcal{C})$

K(H) & Mas