Does it matter if the Geometric Constraint is projectively invariant?

Walter Whiteley

York University walterwhiteley@icloud.com

February 23, 2021

Does it matter if the Constraints are projectively invariant?

Ways it can matter:

- Vocabulary and Notation: \mathcal{P}^d : Basic Structure and Vocabulary: projective notation Plücker, Grassman, Cayley;
- for statics as 2-extensors,
- centers of motion for structures.
- Techniques to test: e.g. Coning, Projection, Projective constructions;
- Change of Metrics: plane, sphere, hyperbolic
- Vision to Recognize What happens with points at infinity? sliders; polarity and sheet structures, buildings.
- Analogies with other projective constraint systems: parallel drawing and scene analysis;

Does it matter if the Constraints are projectively invariant?

Vocabulary and notion:

Use projective coordinates - homogeneous and projective operations, Use extensors as joins of points, for a force and for static equilibrium equation

Names such as Plücker, Grassman, Cayley for algebra.

All worked with projective algebra, as did Klein (student of Plücker)

References

- Classic: Reference: Klein Elementary Mathematics from an advanced standpoint
- 2 Coming references: B. Schulze, A. Nixon and W. Whiteley: Paper 1 Rigidity Through a Projective Lens, to appear March 2021
- Paper 2 Projective Theory of Scene Analysis, Parallel Drawings and Reciprocal Diagrams - to appear: August 2021?
- 50 years of papers coauthored by W. Whiteley,

Statics as projective

Móbius barycentric coordinates with weighted points and balance of forces. Rankine, and engineer writing a book on statics immediately realized after hearing one talk that statics was projectively invariant.

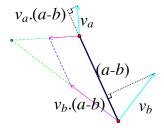
 $f \lor p$ as 2-extensor for point p and force f (free vector - point at infinity) which has $\binom{d+1}{2}$ coordinates in \mathcal{P}^d .

3 equilibrium equations in the plane, 6 equilibrium equations in 3-space, Clean and effective.

infinitesimal motions as projective

Centers of motion as projective representation of infinitesimal motions

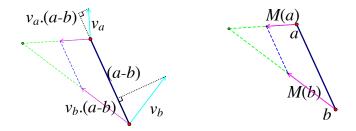
- point centers for bodies including bars, in plane
- momenta as projective centers for vertices weighted piece of line, plane, ... through point perpendicular to 'velocity'



infinitesimal motions as projective

Centers of motion as projective representation of infinitesimal motions

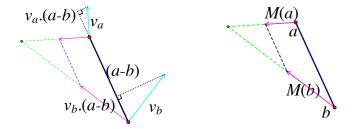
- point centers for bodies including bars, in plane
- momenta as projective centers for vertices weighted piece of line, plane, ... through point perpendicular to 'velocity'



infinitesimal motions as projective

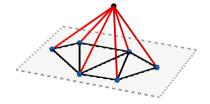
Centers of motion as projective representation of infinitesimal motions

- point centers for bodies including bars, in plane
- momenta as projective centers for vertices weighted piece of line, plane,
- ... through point perpendicular to 'velocity'

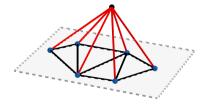


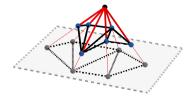
- screw centers in 3 space
- weighted plane segments through points as momenta M(a)
- notice parallel drawing above

Take a new joint in the next dimension, join it to all joints in a framework with bars

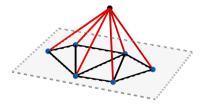


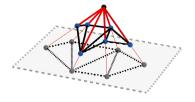
Take a new joint in the next dimension, join it to all joints in a framework with bars





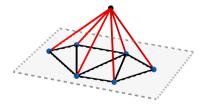
Take a new joint in the next dimension, join it to all joints in a framework with bars

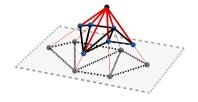




Geometrically, preserves all statics and infinitesimal mechanics

Take a new joint in the next dimension, join it to all joints in a framework with bars





Geometrically, preserves all statics and infinitesimal mechanics Push-pull vertices along cone-rays - preserves statics.

Projective polynomial for when generically isostatic graph is singular with an infinitesimal motion and stress

Pure Condition

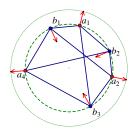
 $[a_1b_1a_2][a_1a_3b_3][b_2a_3a_2][b_2b_1b_3] - [b_2b_1a_2][b_2a_3b_3][a_1a_3a_2][a_1b_1b_3]$

Projective polynomial for when generically isostatic graph is singular with an infinitesimal motion and stress

Pure Condition

$$[a_1b_1a_2][a_1a_3b_3][b_2a_3a_2][b_2b_1b_3] - [b_2b_1a_2][b_2a_3b_3][a_1a_3a_2][a_1b_1b_3]$$

Complete Bipartite Frameworks $K_{3,3}$ on a circle

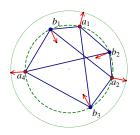


Projective polynomial for when generically isostatic graph is singular with an infinitesimal motion and stress

Pure Condition

$$[a_1b_1a_2][a_1a_3b_3][b_2a_3a_2][b_2b_1b_3] - [b_2b_1a_2][b_2a_3b_3][a_1a_3a_2][a_1b_1b_3]$$

Complete Bipartite Frameworks $K_{3,3}$ on a circle

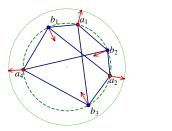


Projective polynomial for when generically isostatic graph is singular with an infinitesimal motion and stress

Pure Condition

$$[a_1b_1a_2][a_1a_3b_3][b_2a_3a_2][b_2b_1b_3] - [b_2b_1a_2][b_2a_3b_3][a_1a_3a_2][a_1b_1b_3]$$

Complete Bipartite Frameworks $K_{3,3}$ on a circle

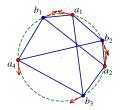


Not yet projective!

Pure Condition

 $[a_1b_1a_2][a_1a_3b_3][b_2a_3a_2][b_2b_1b_3] - [b_2b_1a_2][b_2a_3b_3][a_1a_3a_2][a_1b_1b_3]$

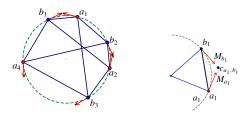
Complete Bipartite Framework $K_{3,3}$ on a circle - projective version



Pure Condition

 $[a_1b_1a_2][a_1a_3b_3][b_2a_3a_2][b_2b_1b_3] - [b_2b_1a_2][b_2a_3b_3][a_1a_3a_2][a_1b_1b_3]$

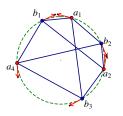
Complete Bipartite Framework $K_{3,3}$ on a circle - projective version



Pure Condition

 $[a_1b_1a_2][a_1a_3b_3][b_2a_3a_2][b_2b_1b_3] - [b_2b_1a_2][b_2a_3b_3][a_1a_3a_2][a_1b_1b_3]$

Complete Bipartite Framework $K_{3,3}$ on a circle - projective version



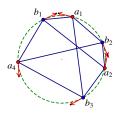
Projectively - circle goes to all conics

- point momenta are tangent to conic

Pure Condition

 $[a_1b_1a_2][a_1a_3b_3][b_2a_3a_2][b_2b_1b_3] - [b_2b_1a_2][b_2a_3b_3][a_1a_3a_2][a_1b_1b_3]$

Complete Bipartite Framework $K_{3,3}$ on a circle - projective version

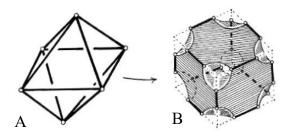


Projectively - circle goes to all conics

- point momenta are tangent to conic
- plus taking limits to get two lines
- extends to larger complete bipartite

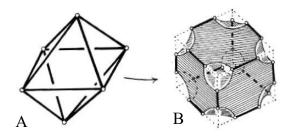
Polarity

bar-joint polarizes to plane sheet-hinge same 3d counts, projective conditions.



Polarity

bar-joint polarizes to plane sheet-hinge same 3d counts, projective conditions.



Sheet is rigid within its plane - has a dual momentum - which is a weighted point center in the plane.

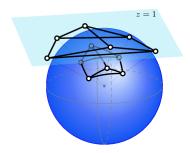
Related to Alexandrov's extension of Cauchy

Polarity for rigidity does not easily adapt to $d \neq 3$

Sheets are 3d analogs of collinear points with a tree of edges in the plane

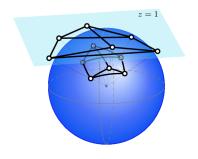
Change of Metric

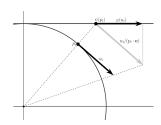
Spherical as slice of cone



Change of Metric

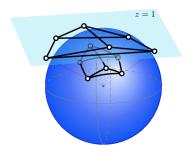
Spherical as slice of cone

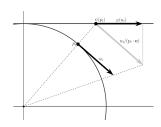




Change of Metric

Spherical as slice of cone

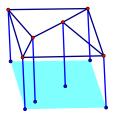




Also extends to Hyperbolic

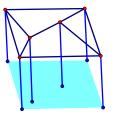
Expanding our vision

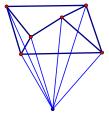
One story building as cone



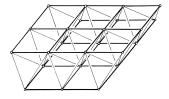
Expanding our vision

One story building as cone

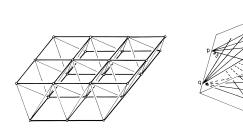




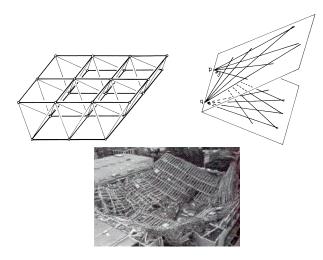
Truss as bipartite - can you see this as a ruled quadric with a bipartite framework?



Truss as bipartite - can you see this as a ruled quadric with a bipartite framework?



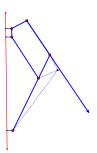
Truss as bipartite - can you see this as a ruled quadric with a bipartite framework?



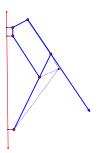
Collapse - did the projective geometry matter?

Sliders in mechanical engineering - as points at infinity

Sliders in mechanical engineering - as points at infinity



Sliders in mechanical engineering - as points at infinity



Both geometry and combinatorics Includes conditions for collinear vertices

Liftings: Given picture with points, lines and faces in plane - what plane faced polyhedra project to this? How many?

Picture Theorem [Whiteley 1989]

Incidence structure S = (V, F; I) with a generic picture has d + k space of of liftings if and only if i = v + df - (d + k) and $i' \le v' + df' - (d + 1)$ for any substructure I' with at least two faces.

Liftings: Given picture with points, lines and faces in plane - what plane faced polyhedra project to this? How many?

Picture Theorem [Whiteley 1989]

Incidence structure S=(V,F;I) with a generic picture has d+k space of of liftings if and only if i=v+df-(d+k) and $i'\leq v'+df'-(d+1)$ for any substructure I' with at least two faces.

Connects to Bill Baker's question on maximizing liftings on Thursday:

Liftings: Given picture with points, lines and faces in plane - what plane faced polyhedra project to this? How many?

Picture Theorem [Whiteley 1989]

Incidence structure S=(V,F;I) with a generic picture has d+k space of of liftings if and only if i=v+df-(d+k) and $i'\leq v'+df'-(d+1)$ for any substructure I' with at least two faces.

Connects to Bill Baker's question on maximizing liftings on Thursday:

Parallel drawing: theory is projective dual of liftings, in all dimensions, For graphs G = (V, E): (d - 1) copies of edges and subgraphs G^* :

$$|E^*| = d|V| - (d+1)$$
 and $|E^*| \le d|V| - (d+1)$.

Generalizes Laman's Theorem (d=2)

Connects to multiple applications

Liftings: Given picture with points, lines and faces in plane - what plane faced polyhedra project to this? How many?

Picture Theorem [Whiteley 1989]

Incidence structure S=(V,F;I) with a generic picture has d+k space of of liftings if and only if i=v+df-(d+k) and $i'\leq v'+df'-(d+1)$ for any substructure I' with at least two faces.

Connects to Bill Baker's question on maximizing liftings on Thursday:

Parallel drawing: theory is projective dual of liftings, in all dimensions,

For graphs
$$G = (V, E)$$
: $(d-1)$ copies of edges and subgraphs G^* :

$$|E^*| = d|V| - (d+1)$$
 and $|E^*| \le d|V| - (d+1)$.

Generalizes Laman's Theorem
$$(d = 2)$$

Connects to multiple applications

Connects directly to rigidity in the plane, in part though reciprocal diagrams, and momenta

Discussion

Questions?

Other Connections

New research problems?

Discussion

Discussion

18 / 20

Symmetry and Projection

In the plane, the projective transformation of a mirror symmetry is a half-turn!

Send mirror to infinity and normal to mirror becomes center of half-turn

Symmetry and Projection

In the plane, the projective transformation of a mirror symmetry is a half-turn!

Send mirror to infinity and normal to mirror becomes center of half-turn

In the sphere, inversion of mirror symmetry is half-turn

Symmetry and Projection

In the plane, the projective transformation of a mirror symmetry is a half-turn!

Send mirror to infinity and normal to mirror becomes center of half-turn

In the sphere, inversion of mirror symmetry is half-turn

Pairing of symmetries found in elliptic space - sphere with antipodal points identified

Global Rigidity with sliders

If we add sliders - what happens to global rigidity?

In plane? in higher dimensions?

Global Rigidity with sliders

If we add sliders - what happens to global rigidity?

In plane? in higher dimensions?

What happens with global rigidity of sheet structures?