Class groups of n-monogenic cubic fields

Arul Shankar

Joint work with Manjul Bhargava and Jonathan Hanke

December 4
The Cohen–Lenstra–Martinet heuristics predict the distribution of the p-torsion subgroups of the class groups of degree-n number fields, for primes p not dividing n.

Theorem (Davenport–Heilbronn)
When quadratic fields K are ordered by discriminant,
(a) The average of $|\text{Cl}_3(K)|$ over real quadratic fields K is $4/3$.
(b) The average of $|\text{Cl}_3(K)|$ over complex quadratic fields K is 2.

Theorem (Bhargava)
When cubic fields K are ordered by discriminant,
(a) The average of $|\text{Cl}_2(K)|$ over real cubic fields K is $5/4$.
(b) The average of $|\text{Cl}_2(K)|$ over complex cubic fields K is $3/2$.

Arul Shankar
Class groups of n-monogenic cubic fields
The Cohen–Lenstra–Martinet heuristics predict the distribution of the p-torsion subgroups of the class groups of degree-n number fields, for primes p not dividing n.

Only two cases of these conjectures have been proven:
The Cohen–Lenstra–Martinet heuristics predict the distribution of the p-torsion subgroups of the class groups of degree-n number fields, for primes p not dividing n.

Only two cases of these conjectures have been proven:

Theorem (Davenport–Heilbronn)

When quadratic fields K are ordered by discriminant,

(a) The average of $|\text{Cl}_3(K)|$ over real quadratic fields K is $4/3$.

(b) The average of $|\text{Cl}_3(K)|$ over complex quadratic fields K is 2.

Theorem (Bhargava)

When cubic fields K are ordered by discriminant,

(a) The average of $|\text{Cl}_2(K)|$ over real cubic fields K is $5/4$.

(b) The average of $|\text{Cl}_2(K)|$ over complex cubic fields K is $3/2$.

Arul Shankar

Class groups of n-monogenic cubic fields
The Cohen–Lenstra–Martinet heuristics predict the distribution of the p-torsion subgroups of the class groups of degree-n number fields, for primes p not dividing n.

Only two cases of these conjectures have been proven:

Theorem (Davenport–Heilbronn)

When quadratic fields K are ordered by discriminant,

(a) *The average of $|Cl_3(K)|$ over real quadratic fields K is 4/3.*
The Cohen–Lenstra–Martinet heuristics predict the distribution of the p-torsion subgroups of the class groups of degree-n number fields, for primes p not dividing n.

Only two cases of these conjectures have been proven:

Theorem (Davenport–Heilbronn)

When quadratic fields K are ordered by discriminant,

(a) The average of $|Cl_3(K)|$ over real quadratic fields K is $4/3$.
(b) The average of $|Cl_3(K)|$ over complex quadratic fields K is 2.
The Cohen–Lenstra–Martinet heuristics predict the distribution of the p-torsion subgroups of the class groups of degree-n number fields, for primes p not dividing n.

Only two cases of these conjectures have been proven:

Theorem (Davenport–Heilbronn)

When quadratic fields K are ordered by discriminant,

(a) *The average of $|Cl_3(K)|$ over real quadratic fields K is $4/3$.*

(b) *The average of $|Cl_3(K)|$ over complex quadratic fields K is 2.*

Theorem (Bhargava)

When cubic fields K are ordered by discriminant,

The Cohen–Lenstra–Martinet heuristics predict the distribution of the \(p \)-torsion subgroups of the class groups of degree-\(n \) number fields, for primes \(p \) not dividing \(n \).

Only two cases of these conjectures have been proven:

Theorem (Davenport–Heilbronn)

When quadratic fields \(K \) are ordered by discriminant,

(a) *The average of* \(|\text{Cl}_3(K)| \) *over real quadratic fields \(K \) is* 4/3.

(b) *The average of* \(|\text{Cl}_3(K)| \) *over complex quadratic fields \(K \) is* 2.

Theorem (Bhargava)

When cubic fields \(K \) are ordered by discriminant,

(a) *The average of* \(|\text{Cl}_2(K)| \) *over real cubic fields \(K \) is* 5/4.
The Cohen–Lenstra–Martinet heuristics predict the distribution of the p-torsion subgroups of the class groups of degree-n number fields, for primes p not dividing n.

Only two cases of these conjectures have been proven:

Theorem (Davenport–Heilbronn)

When quadratic fields K are ordered by discriminant,
(a) *The average of $|Cl_3(K)|$ over real quadratic fields K is $4/3$.*
(b) *The average of $|Cl_3(K)|$ over complex quadratic fields K is 2.*

Theorem (Bhargava)

When cubic fields K are ordered by discriminant,
(a) *The average of $|Cl_2(K)|$ over real cubic fields K is $5/4$.*
(b) *The average of $|Cl_2(K)|$ over complex cubic fields K is $3/2$.***
The Cohen–Lenstra and Cohen–Martinet heuristics implicitly assume: (a) The full family of degree-\(n\) fields are being averaged over;
Restricting to subfamilies of number fields

The Cohen–Lenstra and Cohen–Martinet heuristics implicitly assume: (a) The full family of degree-\(n\) fields are being averaged over; and (b) The fields in question are ordered by discriminant.
The Cohen–Lenstra and Cohen–Martinet heuristics implicitly assume: (a) The full family of degree-n fields are being averaged over; and (b) The fields in question are ordered by discriminant.

A natural question to ask is: how should these heuristics change when we restrict to “natural subfamilies” of number fields? And when we impose other “natural orderings” on these families?
The Cohen–Lenstra and Cohen–Martinet heuristics implicitly assume: (a) The full family of degree-n fields are being averaged over; and (b) The fields in question are ordered by discriminant.

A natural question to ask is: how should these heuristics change when we restrict to “natural subfamilies” of number fields? And when we impose other “natural orderings” on these families?

The most natural subfamilies are constructed by imposing local conditions, i.e., splitting conditions at primes.
Restricting to subfamilies of number fields

The Cohen–Lenstra and Cohen–Martinet heuristics implicitly assume: (a) The full family of degree-n fields are being averaged over; and (b) The fields in question are ordered by discriminant.

A natural question to ask is: how should these heuristics change when we restrict to “natural subfamilies” of number fields? And when we impose other “natural orderings” on these families?

The most natural subfamilies are constructed by imposing local conditions, i.e., splitting conditions at primes.

We already know that local conditions at infinity can change the averages.
Restricting to subfamilies of number fields

The Cohen–Lenstra and Cohen–Martinet heuristics implicitly assume: (a) The full family of degree-n fields are being averaged over; and (b) The fields in question are ordered by discriminant. A natural question to ask is: how should these heuristics change when we restrict to “natural subfamilies” of number fields? And when we impose other “natural orderings” on these families?

The most natural subfamilies are constructed by imposing local conditions, i.e., splitting conditions at primes.

We already know that local conditions at infinity can change the averages. However:

Theorem (Bhargava–Varma)

The values in the above two results are unchanged if we impose any finite set of local conditions on the family of quadratic/cubic fields.
Restricting to subfamilies of number fields

The Cohen–Lenstra and Cohen–Martinet heuristics implicitly assume: (a) The full family of degree-n fields are being averaged over; and (b) The fields in question are ordered by discriminant. A natural question to ask is: how should these heuristics change when we restrict to “natural subfamilies” of number fields? And when we impose other “natural orderings” on these families?

The most natural subfamilies are constructed by imposing local conditions, i.e., splitting conditions at primes. We already know that local conditions at infinity can change the averages. However:

Theorem (Bhargava–Varma)

The values in the above two results are unchanged if we impose any finite set of local conditions on the family of quadratic/cubic fields.

In this talk, we will be imposing certain *global* conditions on the family of cubic fields.
A number field K, with ring of integers \mathcal{O}_K is said to be monogenic if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$.
A number field K, with ring of integers \mathcal{O}_K is said to be monogenic if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$. The pair (K, α) is then said to be a monogenized field.
A number field K, with ring of integers \mathcal{O}_K is said to be monogenic if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$.

The pair (K, α) is then said to be a monogenized field.

More generally, for $\alpha \in \mathcal{O}_K$, a pair (K, α) is an n-monogenized field if

$$\text{index } \mathcal{O}_K : \mathbb{Z}[\alpha] = n;$$

the element α is primitive in $\mathcal{O}_K / \mathbb{Z}$.

The n-monogenized fields (K, α) and (K', α') are isomorphic if there is an isomorphism $f : K \to K'$ such that $f(\alpha) = \alpha' + m$ for some $m \in \mathbb{Z}$.

Every cubic field K has an "n-monogenizer" α for some $n \ll |\Delta(K)|^{1/4}$.

For fixed n, a cubic field K has an absolutely bounded number of n-monogenizers.
A number field K, with ring of integers \mathcal{O}_K is said to be **monogenic** if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$.

The pair (K, α) is then said to be a **monogenized field**.

More generally, for $\alpha \in \mathcal{O}_K$, a pair (K, α) is an n-monogenized field if

- The index $[\mathcal{O}_K : \mathbb{Z}[\alpha]] = n$;

Every cubic field K has an "n-monogenizer" α for some $n \ll |\Delta(K)|^{1/4}$.

For fixed n, a cubic field K has an absolutely bounded number of n-monogenizers.
A number field K, with ring of integers \mathcal{O}_K is said to be monogenic if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$.

The pair (K, α) is then said to be a monogenized field.

More generally, for $\alpha \in \mathcal{O}_K$, a pair (K, α) is an n-monogenized field if

- The index $[\mathcal{O}_K : \mathbb{Z}[\alpha]] = n$;
- The element α is primitive in $\mathcal{O}_K / \mathbb{Z}$.
A number field K, with ring of integers \mathcal{O}_K is said to be monogenic if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$.

The pair (K, α) is then said to be a monogenized field. More generally, for $\alpha \in \mathcal{O}_K$, a pair (K, α) is an n-monogenized field if

- The index $[\mathcal{O}_K : \mathbb{Z}[\alpha]] = n$;
- The element α is primitive in $\mathcal{O}_K / \mathbb{Z}$.

The n-monogenized fields (K, α) and (K', α') are isomorphic if there is an isomorphism $f : K \to K'$ such that $f(\alpha) = \alpha' + m$ for some $m \in \mathbb{Z}$.

"Every cubic field K has an "n-monogenizer" α for some $n \ll |\Delta(K)|^{1/4}$.

For fixed n, a cubic field K has an absolutely bounded number of n-monogenizers."

Arul Shankar

Class groups of n-monogenic cubic fields
A number field K, with ring of integers \mathcal{O}_K is said to be \textit{monogenic} if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$.

The pair (K, α) is then said to be a \textit{monogenized field}.

More generally, for $\alpha \in \mathcal{O}_K$, a pair (K, α) is an n-\textit{monogenized field} if

- The index $[\mathcal{O}_K : \mathbb{Z}[\alpha]] = n$;
- The element α is primitive in \mathcal{O}_K/\mathbb{Z}.

The n-monogenized fields (K, α) and (K', α') are \textit{isomorphic} if there is an isomorphism $f : K \to K'$ such that $f(\alpha) = \alpha' + m$ for some $m \in \mathbb{Z}$.

Every cubic field K has an “n-monogenizer” α for some $n \ll |\Delta(K)|^{1/4}$.
A number field K, with ring of integers \mathcal{O}_K is said to be monogenic if $\mathcal{O}_K = \mathbb{Z}[\alpha]$ for some $\alpha \in \mathcal{O}_K$.

The pair (K, α) is then said to be a monogenized field. More generally, for $\alpha \in \mathcal{O}_K$, a pair (K, α) is an n-monogenized field if

- The index $[\mathcal{O}_K : \mathbb{Z}[\alpha]] = n$;
- The element α is primitive in \mathcal{O}_K/\mathbb{Z}.

The n-monogenized fields (K, α) and (K', α') are isomorphic if there is an isomorphism $f : K \to K'$ such that $f(\alpha) = \alpha' + m$ for some $m \in \mathbb{Z}$.

Every cubic field K has an “n-monogenizer” α for some $n \ll |\Delta(K)|^{1/4}$.

For fixed n, a cubic field K has an absolutely bounded number of n-monogenizers.
Let \((K, \alpha)\) be an \(n\)-monogenized cubic field, and denote the characteristic polynomial of \(\alpha\) by \(f(x) = x^3 + ax^2 + bx + c\).
Families of \(n \)-monogenized cubic fields

Let \((K, \alpha)\) be an \(n \)-monogenized cubic field, and denote the characteristic polynomial of \(\alpha \) by \(f(x) = x^3 + ax^2 + bx + c \).

We may assume that \(a \in \{-1, 0, 1\} \) by replacing \(\alpha \) with \(\alpha + m \) for some \(m \in \mathbb{Z} \).
Let \((K, \alpha)\) be an \(n\)-monogenized cubic field, and denote the characteristic polynomial of \(\alpha\) by \(f(x) = x^3 + ax^2 + bx + c\). We may assume that \(a \in \{-1, 0, 1\}\) by replacing \(\alpha\) with \(\alpha + m\) for some \(m \in \mathbb{Z}\). We then define the height of \((K, \alpha)\) to be

\[
H(K, \alpha) = n^{-2} \max\{4|b|^3, 27c^2\}.
\]
Let \((K, \alpha)\) be an \(n\)-monogenized cubic field, and denote the characteristic polynomial of \(\alpha\) by \(f(x) = x^3 + ax^2 + bx + c\). We may assume that \(a \in \{-1, 0, 1\}\) by replacing \(\alpha\) with \(\alpha + m\) for some \(m \in \mathbb{Z}\).

We then define the height of \((K, \alpha)\) to be

\[
H(K, \alpha) = n^{-2} \max\{4|b|^3, 27c^2\}.
\]

The height is designed to mimic \(\Delta(K) \asymp n^{-2}(4b^3 - 27c^2)\).

Let \(\mathcal{F}(\delta)\) denote the family of \(n\)-monogenized cubic fields \((K, \alpha)\), with \(n \leq H(K, \alpha)^\delta\).
Let \((K, \alpha)\) be an \(n\)-monogenized cubic field, and denote the characteristic polynomial of \(\alpha\) by \(f(x) = x^3 + ax^2 + bx + c\).

We may assume that \(a \in \{-1, 0, 1\}\) by replacing \(\alpha\) with \(\alpha + m\) for some \(m \in \mathbb{Z}\).

We then define the height of \((K, \alpha)\) to be

\[
H(K, \alpha) = n^{-2} \max\{4|b|^3, 27c^2\}.
\]

The height is designed to mimic \(\Delta(K) \asymp n^{-2}(4b^3 - 27c^2)\).

Let \(\mathcal{F}(\delta)\) denote the family of \(n\)-monogenized cubic fields \((K, \alpha)\), with \(n \leq H(K, \alpha)^{\delta}\).

There are \(\asymp X^{\frac{5}{6} + \frac{2\delta}{3}}\) fields in \(\mathcal{F}(\delta)\) with height \(< X\).
Let (K, α) be an n-monogenized cubic field, and denote the characteristic polynomial of α by $f(x) = x^3 + ax^2 + bx + c$. We may assume that $a \in \{-1, 0, 1\}$ by replacing α with $\alpha + m$ for some $m \in \mathbb{Z}$.

We then define the height of (K, α) to be

$$H(K, \alpha) = n^{-2} \max\{4|b|^3, 27c^2\}.$$

The height is designed to mimic $\Delta(K) \asymp n^{-2}(4b^3 - 27c^2)$.

Let $\mathcal{F}(\delta)$ denote the family of n-monogenized cubic fields (K, α), with $n \leq H(K, \alpha)^\delta$.

There are $\asymp X^{\frac{5}{6} + \frac{2\delta}{3}}$ fields in $\mathcal{F}(\delta)$ with height $< X$.

The family $\mathcal{F}(1/4)$ is similar to the family of all cubic fields ordered by height.
Let \((K, \alpha)\) be an \(n\)-monogenized cubic field, and denote the characteristic polynomial of \(\alpha\) by \(f(x) = x^3 + ax^2 + bx + c\). We may assume that \(a \in \{-1, 0, 1\}\) by replacing \(\alpha\) with \(\alpha + m\) for some \(m \in \mathbb{Z}\).

We then define the height of \((K, \alpha)\) to be

\[
H(K, \alpha) = n^{-2} \max\{4|b|^3, 27c^2\}.
\]

The height is designed to mimic \(\Delta(K) \asymp n^{-2}(4b^3 - 27c^2)\).

Let \(\mathcal{F}(\delta)\) denote the family of \(n\)-monogenized cubic fields \((K, \alpha)\), with \(n \leq H(K, \alpha)^\delta\).

There are \(\asymp X^{\frac{5}{6} + \frac{2\delta}{3}}\) fields in \(\mathcal{F}(\delta)\) with height \(< X\).

The family \(\mathcal{F}(1/4)\) is similar to the family of all cubic fields ordered by height.

But \(\mathcal{F}(\delta)\) expected to be “thin” for \(\delta < 1/4\).
Theorem (Bhargava–Hanke–S.)

Fix $\delta > 0$. When cubic fields in $\mathcal{F}(\delta)$ are ordered by height:

(a) The average of $|\text{Cl}_2(K)|$ over real (K,α) is $\frac{5}{4}$;

(b) The average of $|\text{Cl}_2(K)|$ over complex (K,α) is $\frac{3}{2}$.

Imposing finitely many local conditions leave the result unchanged.
Theorem (Bhargava–Hanke–S.)

Fix $\delta > 0$. When cubic fields in $\mathcal{F}(\delta)$ are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $5/4$;
Theorem (Bhargava–Hanke–S.)

Fix $\delta > 0$. When cubic fields in $\mathcal{F}(\delta)$ are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $5/4$;
(b) The average of $|Cl_2(K)|$ over complex (K, α) is $3/2$.

Imposing finitely many local conditions leave the result unchanged.

That is, monogenicity has a doubling effect (on average) on the nontrivial part of the 2-torsion in the class groups of cubic fields!
Statements of the results (Part 1)

Theorem (Bhargava–Hanke–S.)

Fix $\delta > 0$. When cubic fields in $\mathcal{F}(\delta)$ are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $5/4$;
(b) The average of $|Cl_2(K)|$ over complex (K, α) is $3/2$.

Imposing finitely many local conditions leave the result unchanged.
Fix $\delta > 0$. When cubic fields in $F(\delta)$ are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $5/4$;

(b) The average of $|Cl_2(K)|$ over complex (K, α) is $3/2$.

Imposing finitely many local conditions leave the result unchanged.

Next, we consider the limiting situation $\delta = 0$.
Statements of the results (Part 1)

<table>
<thead>
<tr>
<th>Theorem (Bhargava–Hanke–S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fix (\delta > 0). When cubic fields in (F(\delta)) are ordered by height:</td>
</tr>
<tr>
<td>(a) The average of (</td>
</tr>
<tr>
<td>(b) The average of (</td>
</tr>
</tbody>
</table>

Imposing finitely many local conditions leave the result unchanged.

Next, we consider the limiting situation \(\delta = 0 \).

<table>
<thead>
<tr>
<th>Theorem (Bhargava–Hanke–S.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>When monogenized cubic fields are ordered by height:</td>
</tr>
</tbody>
</table>
Statements of the results (Part 1)

Theorem (Bhargava–Hanke–S.)

Fix $\delta > 0$. When cubic fields in $\mathcal{F}(\delta)$ are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $5/4$;

(b) The average of $|Cl_2(K)|$ over complex (K, α) is $3/2$.

Imposing finitely many local conditions leave the result unchanged.

Next, we consider the limiting situation $\delta = 0$.

Theorem (Bhargava–Hanke–S.)

When monogenized cubic fields are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $3/2$;

That is, monogenicity has a doubling effect (on average) on the nontrivial part of the 2-torsion in the class groups of cubic fields!
Statements of the results (Part 1)

Theorem (Bhargava–Hanke–S.)

Fix $\delta > 0$. When cubic fields in $\mathcal{F}(\delta)$ are ordered by height:

(a) The average of $|\text{Cl}_2(K)|$ over real (K, α) is $5/4$;

(b) The average of $|\text{Cl}_2(K)|$ over complex (K, α) is $3/2$.

Imposing finitely many local conditions leave the result unchanged.

Next, we consider the limiting situation $\delta = 0$.

Theorem (Bhargava–Hanke–S.)

When monogenized cubic fields are ordered by height:

(a) The average of $|\text{Cl}_2(K)|$ over real (K, α) is $3/2$;

(b) The average of $|\text{Cl}_2(K)|$ over complex (K, α) is 2.

That is, monogenicity has a doubling effect (on average) on the nontrivial part of the 2-torsion in the class groups of cubic fields!
Statements of the results (Part 1)

Theorem (Bhargava–Hanke–S.)

Fix $\delta > 0$. When cubic fields in $F(\delta)$ are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $5/4$;
(b) The average of $|Cl_2(K)|$ over complex (K, α) is $3/2$.

Imposing finitely many local conditions leave the result unchanged.

Next, we consider the limiting situation $\delta = 0$.

Theorem (Bhargava–Hanke–S.)

When monogenized cubic fields are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $3/2$;
(b) The average of $|Cl_2(K)|$ over complex (K, α) is 2.

Imposing finitely many local conditions leave the result unchanged.

That is, monogenicity has a doubling effect (on average) on the nontrivial part of the 2-torsion in the class groups of cubic fields!
Statements of the results (Part 1)

Theorem (Bhargava–Hanke–S.)

Fix $\delta > 0$. When cubic fields in $\mathcal{F}(\delta)$ are ordered by height:

(a) The average of $|\text{Cl}_2(K)|$ over real (K, α) is $5/4$;
(b) The average of $|\text{Cl}_2(K)|$ over complex (K, α) is $3/2$.

Imposing finitely many local conditions leave the result unchanged.

Next, we consider the limiting situation $\delta = 0$.

Theorem (Bhargava–Hanke–S.)

When monogenized cubic fields are ordered by height:

(a) The average of $|\text{Cl}_2(K)|$ over real (K, α) is $3/2$;
(b) The average of $|\text{Cl}_2(K)|$ over complex (K, α) is 2.

Imposing finitely many local conditions leave the result unchanged.

That is, monogenicity has a doubling effect (on average) on the nontrivial part of the 2-torsion in the class groups of cubic fields!
Let \mathcal{F}_n denote the family of n-monogenized cubic fields.
Statements of the results (Part 2)

Let \(\mathcal{F}_n \) denote the family of \(n \)-monogenized cubic fields.

Theorem (Bhargava–Hanke–S.)

Fix \(n = m^2 k \), with \(k \) squarefree. When \(\mathcal{F}_n \) is ordered by height:

1. The average of \(|\text{Cl}_2(K,\alpha)| \) over real \((K,\alpha)\) is \(\frac{5}{4} + \frac{1}{4}\sigma(k) \);
2. The average of \(|\text{Cl}_2(K,\alpha)| \) over complex \((K,\alpha)\) is \(\frac{3}{2} + \frac{1}{2}\sigma(k) \).

The averages can change when we impose local conditions!

Theorem (Bhargava–Hanke–S.)

When \((K,\alpha)\) \(\in \mathcal{F}_n\), unramified at all \(p | n \), are ordered by height:

1. The average of \(|\text{Cl}_2(K,\alpha)| \) over real \((K,\alpha)\) is \(\frac{3}{2} \) if \(n \) is a square and \(\frac{5}{4} \) else;
2. The average of \(|\text{Cl}_2(K,\alpha)| \) over complex \((K,\alpha)\) is \(\frac{2}{3} \) if \(n \) is a square and \(\frac{3}{2} \) else.
Let \mathcal{F}_n denote the family of n-monogenized cubic fields.

Theorem (Bhargava–Hanke–S.)

Fix $n = m^2 k$, with k squarefree. When \mathcal{F}_n is ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4\sigma(k)}$;
Let \mathcal{F}_n denote the family of n-monogenized cubic fields.

Theorem (Bhargava–Hanke–S.)

Fix $n = m^2 k$, with k squarefree. When \mathcal{F}_n is ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4\sigma(k)}$;

(b) The average of $|Cl_2(K)|$ over complex (K, α) is $\frac{3}{2} + \frac{1}{2\sigma(k)}$.

The averages can change when we impose local conditions!
Let \mathcal{F}_n denote the family of n-monogenized cubic fields.

Theorem (Bhargava–Hanke–S.)

Fix $n = m^2 k$, with k squarefree. When \mathcal{F}_n is ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4\sigma(k)}$;

(b) The average of $|Cl_2(K)|$ over complex (K, α) is $\frac{3}{2} + \frac{1}{2\sigma(k)}$.

The averages can change when we impose local conditions!
Let \mathcal{F}_n denote the family of n-monogenized cubic fields.

Theorem (Bhargava–Hanke–S.)

Fix $n = m^2 k$, with k squarefree. When \mathcal{F}_n is ordered by height:

(a) *The average of $|Cl_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4\sigma(k)}$;*

(b) *The average of $|Cl_2(K)|$ over complex (K, α) is $\frac{3}{2} + \frac{1}{2\sigma(k)}$.

The averages *can* change when we impose local conditions!

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in \mathcal{F}_n$, unramified at all $p \mid n$, are ordered by height:
Let \mathcal{F}_n denote the family of n-monogenized cubic fields.

Theorem (Bhargava–Hanke–S.)

Fix $n = m^2 k$, with k squarefree. When \mathcal{F}_n is ordered by height:

(a) *The average of $|Cl_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4\sigma(k)}$;*

(b) *The average of $|Cl_2(K)|$ over complex (K, α) is $\frac{3}{2} + \frac{1}{2\sigma(k)}$.

The averages can change when we impose local conditions!

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in \mathcal{F}_n$, unramified at all $p | n$, are ordered by height:

(a) *The average of $|Cl_2(K)|$ over real (K, α) is $\frac{3}{2}$ if n is a square and $\frac{5}{4}$ else;*
Let \mathcal{F}_n denote the family of n-monogenized cubic fields.

Theorem (Bhargava–Hanke–S.)

Fix $n = m^2 k$, with k squarefree. When \mathcal{F}_n is ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4\sigma(k)}$;

(b) The average of $|Cl_2(K)|$ over complex (K, α) is $\frac{3}{2} + \frac{1}{2\sigma(k)}$.

The averages *can* change when we impose local conditions!

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in \mathcal{F}_n$, unramified at all $p \mid n$, are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $\frac{3}{2}$ if n is a square and $\frac{5}{4}$ else;

(b) The average of $|Cl_2(K)|$ over complex (K, α) is 2 if n is a square and $\frac{3}{2}$ else.
An n-monogenized cubic field (K, α) is sufficiently ramified at p if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;
- $K_p = \mathbb{Q}_p \times F$, where F is ramified, and $\mathbb{Z}_p[\alpha_p] = \mathbb{Z}_p \times O$.

Fix $n = m^2 k$ and let $F \subset F_n$ be a subfamily defined by local conditions at finitely many primes. Define $\rho_p(F)$ to be the density of fields in F_n that are sufficiently ramified at p.

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in F_n$ are ordered by height:

(a) The average of $|\text{Cl}_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4} \rho(F)$.

(b) The average of $|\text{Cl}_2(K)|$ over complex (K, α) is $\frac{3}{2} + \frac{1}{2} \rho(F)$.

The increase for nonsquare n is within sufficiently ramified fields.
An n-monogenized cubic field (K, α) is sufficiently ramified at p if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in F$ are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $5/4 + 1/4 \rho(F)$.

(b) The average of $|Cl_2(K)|$ over complex (K, α) is $3/2 + 1/2 \rho(F)$.

The increase for nonsquare n is within sufficiently ramified fields.
The general n-monogenized theorem

An n-monogenized cubic field (K, α) is sufficiently ramified at p if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;
- $K_p = \mathbb{Q}_p \times F$, where F is ramified, and $\mathbb{Z}_p[\alpha_p] = \mathbb{Z}_p \times \mathcal{O}$.

Arul Shankar

Class groups of n-monogenic cubic fields
An n-monogenized cubic field (K, α) is sufficiently ramified at p if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;
- $K_p = \mathbb{Q}_p \times F$, where F is ramified, and $\mathbb{Z}_p[\alpha_p] = \mathbb{Z}_p \times O$.

Fix $n = m^2 k$ and let $\mathcal{F} \subset \mathcal{F}_n$ be a subfamily defined by local conditions at finitely many primes p.
An n-monogenized cubic field (K, α) is **sufficiently ramified at p** if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;
- $K_p = \mathbb{Q}_p \times F$, where F is ramified, and $\mathbb{Z}_p[\alpha_p] = \mathbb{Z}_p \times \mathcal{O}$.

Fix $n = m^2k$ and let $\mathcal{F} \subset \mathcal{F}_n$ be a subfamily defined by local conditions at finitely many primes p.

Define $\rho_p(\mathcal{F})$ to be the density of fields in \mathcal{F}_n that are sufficiently ramified at p.
An n-monogenized cubic field (K, α) is sufficiently ramified at p if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;
- $K_p = \mathbb{Q}_p \times F$, where F is ramified, and $\mathbb{Z}_p[\alpha_p] = \mathbb{Z}_p \times \mathcal{O}$.

Fix $n = m^2k$ and let $\mathcal{F} \subset \mathcal{F}_n$ be a subfamily defined by local conditions at finitely many primes p. Define $\rho_p(\mathcal{F})$ to be the density of fields in \mathcal{F}_n that are sufficiently ramified at p. Define $\rho(\mathcal{F}) = \prod_{p|k} \rho_p(\mathcal{F})$.

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in \mathcal{F}$ are ordered by height:

(a) The average of $|\text{Cl}_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4} \rho(\mathcal{F})$.

(b) The average of $|\text{Cl}_2(K)|$ over complex (K, α) is $\frac{3}{2} + \frac{1}{2} \rho(\mathcal{F})$.

The increase for nonsquare n is within sufficiently ramified fields.
An n-monogenized cubic field (K, α) is sufficiently ramified at p if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;
- $K_p = \mathbb{Q}_p \times F$, where F is ramified, and $\mathbb{Z}_p[\alpha_p] = \mathbb{Z}_p \times \mathcal{O}$.

Fix $n = m^2k$ and let $\mathcal{F} \subset \mathcal{F}_n$ be a subfamily defined by local conditions at finitely many primes p.

Define $\rho_p(\mathcal{F})$ to be the density of fields in \mathcal{F}_n that are sufficiently ramified at p. Define $\rho(\mathcal{F}) = \prod_{p \mid k} \rho_p(\mathcal{F})$.

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in \mathcal{F}$ are ordered by height:
An n-monogenized cubic field (K, α) is sufficiently ramified at p if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;
- $K_p = \mathbb{Q}_p \times F$, where F is ramified, and $\mathbb{Z}_p[\alpha_p] = \mathbb{Z}_p \times \mathcal{O}$.

Fix $n = m^2k$ and let $\mathcal{F} \subset \mathcal{F}_n$ be a subfamily defined by local conditions at finitely many primes p. Define $\rho_p(\mathcal{F})$ to be the density of fields in \mathcal{F}_n that are sufficiently ramified at p. Define $\rho(\mathcal{F}) = \prod_{p|k} \rho_p(\mathcal{F})$.

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in \mathcal{F}$ are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4}\rho(\mathcal{F})$.

Arul Shankar

Class groups of n-monogenic cubic fields
The general n-monogenized theorem

An n-monogenized cubic field (K, α) is sufficiently ramified at p if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;
- $K_p = \mathbb{Q}_p \times F$, where F is ramified, and $\mathbb{Z}_p[\alpha_p] = \mathbb{Z}_p \times \mathcal{O}$.

Fix $n = m^2k$ and let $\mathcal{F} \subset \mathcal{F}_n$ be a subfamily defined by local conditions at finitely many primes p.

Define $\rho_p(\mathcal{F})$ to be the density of fields in \mathcal{F}_n that are sufficiently ramified at p. Define $\rho(\mathcal{F}) = \prod_{p|k} \rho_p(\mathcal{F})$.

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in \mathcal{F}$ are ordered by height:

(a) The average of $|Cl_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4} \rho(\mathcal{F})$.

(b) The average of $|Cl_2(K)|$ over complex (K, α) is $\frac{3}{2} + \frac{1}{2} \rho(\mathcal{F})$.

Arul Shankar

Class groups of n-monogenic cubic fields
An n-monogenized cubic field (K, α) is sufficiently ramified at p if either holds:

- $K_p := K \otimes \mathbb{Q}_p$ is a totally ramified extension of \mathbb{Q}_p;
- $K_p = \mathbb{Q}_p \times F$, where F is ramified, and $\mathbb{Z}_p[\alpha_p] = \mathbb{Z}_p \times \mathcal{O}$.

Fix $n = m^2k$ and let $\mathcal{F} \subset \mathcal{F}_n$ be a subfamily defined by local conditions at finitely many primes p.

Define $\rho_p(\mathcal{F})$ to be the density of fields in \mathcal{F}_n that are sufficiently ramified at p. Define $\rho(\mathcal{F}) = \prod_{p|k} \rho_p(\mathcal{F})$.

Theorem (Bhargava–Hanke–S.)

When $(K, \alpha) \in \mathcal{F}$ are ordered by height:

(a) *The average of $|\text{Cl}_2(K)|$ over real (K, α) is $\frac{5}{4} + \frac{1}{4} \rho(\mathcal{F})$.*

(b) *The average of $|\text{Cl}_2(K)|$ over complex (K, α) is $\frac{3}{2} + \frac{1}{2} \rho(\mathcal{F})$.*

The increase for nonsquare n is within sufficiently ramified fields.
For each n, the average is computed using Magma over ~ 1800 different n-monogenized cubic fields of huge height ($\sim 10^{20}$).

<table>
<thead>
<tr>
<th>n</th>
<th>Computed average</th>
<th>Actual average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5003</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>1.3203</td>
<td>1.333</td>
</tr>
<tr>
<td>3</td>
<td>1.3008</td>
<td>1.313</td>
</tr>
<tr>
<td>4</td>
<td>1.5117</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>1.2892</td>
<td>1.292</td>
</tr>
<tr>
<td>6</td>
<td>1.2638</td>
<td>1.271</td>
</tr>
<tr>
<td>7</td>
<td>1.2688</td>
<td>1.281</td>
</tr>
<tr>
<td>8</td>
<td>1.3378</td>
<td>1.333</td>
</tr>
<tr>
<td>9</td>
<td>1.4773</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>1.2625</td>
<td>1.264</td>
</tr>
</tbody>
</table>
For each n, the average is computed using Magma over ~ 1800 different n-monogenized cubic fields of huge height ($\sim 10^{20}$).

<table>
<thead>
<tr>
<th>n</th>
<th>Computed average</th>
<th>Actual average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5003</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>1.3203</td>
<td>1.333</td>
</tr>
<tr>
<td>3</td>
<td>1.3008</td>
<td>1.313</td>
</tr>
<tr>
<td>4</td>
<td>1.5117</td>
<td>1.55</td>
</tr>
<tr>
<td>5</td>
<td>1.2892</td>
<td>1.292</td>
</tr>
<tr>
<td>6</td>
<td>1.2638</td>
<td>1.271</td>
</tr>
<tr>
<td>7</td>
<td>1.2688</td>
<td>1.281</td>
</tr>
<tr>
<td>8</td>
<td>1.3378</td>
<td>1.333</td>
</tr>
<tr>
<td>9</td>
<td>1.4773</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>1.2625</td>
<td>1.264</td>
</tr>
</tbody>
</table>
For each n, the average is computed using Magma over ~ 1800 different n-monogenized cubic fields of huge height ($\sim 10^{20}$).

<table>
<thead>
<tr>
<th>n</th>
<th>Computed average</th>
<th>Actual average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5003</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>1.3203</td>
<td>1.333</td>
</tr>
<tr>
<td>3</td>
<td>1.3008</td>
<td>1.313</td>
</tr>
<tr>
<td>4</td>
<td>1.5117</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>1.2892</td>
<td>1.292</td>
</tr>
<tr>
<td>6</td>
<td>1.2638</td>
<td>1.271</td>
</tr>
<tr>
<td>7</td>
<td>1.2688</td>
<td>1.281</td>
</tr>
<tr>
<td>8</td>
<td>1.3378</td>
<td>1.333</td>
</tr>
<tr>
<td>9</td>
<td>1.4773</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>1.2625</td>
<td>1.264</td>
</tr>
</tbody>
</table>
The first step is to parametrize the relevant arithmetic objects.

Let U be the space of cubic polynomials, and let $U_n \subset U$ be the subspace with leading coefficient n. The group G_a acts on U via $\lambda \cdot f(x) = f(x + \lambda)$. This action preserves U_n.

The set of n-monogenized cubic fields naturally injects into the set of \mathbb{Z}-orbits on $U_n(\mathbb{Z})$.

Let $V = \mathbb{Z} \otimes \text{Sym}_2(3)$ be the space of pairs of ternary quadratic forms. Define the resolvent map $\text{Res} : V \to U$ sending (A, B) to $4 \det(Ax + B)$.

The group $G_a \times \text{SL}_3(\mathbb{Z})$ acts on V via $(\lambda, \gamma) \cdot (A, B) = (\gamma A \gamma^t, \gamma (B + \lambda A) \gamma^t)$. This action respects Res.

Theorem (Bhargava) There is a bijection between $\text{SL}_3(\mathbb{Z})$-orbits on $\text{Res}^{-1}(f)$ and index-2 subgroups of $\text{Cl}(K)$.

Class groups of n-monogenic cubic fields
The first step is to parametrize the relevant arithmetic objects. Let U be the space of cubic polynomials, and let $U_n \subset U$ be the subspace with leading coefficient n.
The first step is to parametrize the relevant arithmetic objects. Let U be the space of cubic polynomials, and let $U_n \subset U$ be the subspace with leading coefficient n. The group \mathbb{G}_a acts on U via $\lambda \cdot f(x) = f(x + \lambda)$. This action preserves U_n.

Theorem (Bhargava) Let $f(x) \in U(\mathbb{Z})$ correspond to \mathcal{O}_K, for some cubic field K. There is a bijection between $\text{SL}_3(\mathbb{Z})$-orbits on $\text{Res}^{-1}(f)$ and index-2 subgroups of $\text{Cl}(K)$.

Arul Shankar
The first step is to parametrize the relevant arithmetic objects. Let U be the space of cubic polynomials, and let $U_n \subset U$ be the subspace with leading coefficient n. The group \mathbb{G}_a acts on U via $\lambda \cdot f(x) = f(x + \lambda)$. This action preserves U_n.

The set of n-monogenized cubic fields naturally injects into the set of \mathbb{Z}-orbits on $U_n(\mathbb{Z})$.

\[
\text{Arul Shankar}
\]
The first step is to parametrize the relevant arithmetic objects. Let U be the space of cubic polynomials, and let $U_n \subset U$ be the subspace with leading coefficient n. The group \mathbb{G}_a acts on U via $\lambda \cdot f(x) = f(x + \lambda)$. This action preserves U_n.

The set of n-monogenized cubic fields naturally injects into the set of \mathbb{Z}-orbits on $U_n(\mathbb{Z})$.

Let $V = 2 \otimes \text{Sym}^2(3)$ be the space of pairs of ternary quadratic forms. Define the resolvent map $\text{Res} : V \to U$ sending (A, B) to $4 \det(Ax + B)$.

Theorem (Bhargava)

Let $f(x) \in U(\mathbb{Z})$ correspond to \mathcal{O}_K, for some cubic field K. There is a bijection between $\text{SL}_3(\mathbb{Z})$-orbits on $\text{Res}^{-1}(f)$ and index-2 subgroups of $\text{Cl}(K)$.

Arul Shankar

Class groups of n-monogenic cubic fields
The first step is to parametrize the relevant arithmetic objects. Let U be the space of cubic polynomials, and let $U_n \subset U$ be the subspace with leading coefficient n. The group \mathbb{G}_a acts on U via $\lambda \cdot f(x) = f(x + \lambda)$. This action preserves U_n.

The set of n-monogenized cubic fields naturally injects into the set of \mathbb{Z}-orbits on $U_n(\mathbb{Z})$.

Let $V = 2 \otimes \text{Sym}^2(3)$ be the space of pairs of ternary quadratic forms. Define the resolvent map $\text{Res} : V \to U$ sending (A, B) to $4 \det(Ax + B)$. The group $\mathbb{G}_a \times \text{SL}_3$ acts on V via $(\lambda, \gamma) \cdot (A, B) = (\gamma A \gamma^t, \gamma(B + \lambda A) \gamma^t)$. This action respects Res.
The first step is to parametrize the relevant arithmetic objects. Let U be the space of cubic polynomials, and let $U_n \subset U$ be the subspace with leading coefficient n. The group \mathbb{G}_a acts on U via $\lambda \cdot f(x) = f(x + \lambda)$. This action preserves U_n.

The set of n-monogenized cubic fields naturally injects into the set of \mathbb{Z}-orbits on $U_n(\mathbb{Z})$.

Let $V = 2 \otimes \text{Sym}^2(3)$ be the space of pairs of ternary quadratic forms. Define the resolvent map $\text{Res} : V \to U$ sending (A, B) to $4 \det(AX + B)$. The group $\mathbb{G}_a \times \text{SL}_3$ acts on V via $(\lambda, \gamma) \cdot (A, B) = (\gamma A \gamma^t, \gamma(B + \lambda A) \gamma^t)$. This action respects Res.

Theorem (Bhargava)

Let $f(x) \in U(\mathbb{Z})$ correspond to O_K, for some cubic field K. There is a bijection between $\text{SL}_3(\mathbb{Z})$-orbits on $\text{Res}^{-1}(f)$ and index-2 subgroups of $\text{Cl}(K)$.

Arul Shankar

Class groups of n-monogenic cubic fields
For the first result (where \(n \) varies), we need to count the relevant \(\mathbb{Z} \)-orbits on \(U(\mathbb{Z}) \), and the relevant \(\mathbb{Z} \times \text{SL}_3(\mathbb{Z}) \)-orbits on \(V(\mathbb{Z}) \), having bounded height and index.
Counting the relevant lattice points

For the first result (where \(n \) varies), we need to count the relevant \(\mathbb{Z} \)-orbits on \(U(\mathbb{Z}) \), and the relevant \(\mathbb{Z} \times \text{SL}_3(\mathbb{Z}) \)-orbits on \(V(\mathbb{Z}) \), having bounded height and index.

For the remaining results (where \(n \) is fixed), we need to count the relevant \(\mathbb{Z} \)-orbits on \(U_n(\mathbb{Z}) \), and the relevant \(\mathbb{Z} \times \text{SL}_3(\mathbb{Z}) \)-orbits on \(\text{Res}^{-1}(U_n(\mathbb{Z})) \), having bounded height.
Counting the relevant lattice points

For the first result (where \(n \) varies), we need to count the relevant \(\mathbb{Z} \)-orbits on \(U(\mathbb{Z}) \), and the relevant \(\mathbb{Z} \times \text{SL}_3(\mathbb{Z}) \)-orbits on \(V(\mathbb{Z}) \), having bounded height and index.

For the remaining results (where \(n \) is fixed), we need to count the relevant \(\mathbb{Z} \)-orbits on \(U_n(\mathbb{Z}) \), and the relevant \(\mathbb{Z} \times \text{SL}_3(\mathbb{Z}) \)-orbits on \(\text{Res}^{-1}(U_n(\mathbb{Z})) \), having bounded height.

However, \(\text{Res}^{-1}(U_n(\mathbb{Z})) = \{(A, B) \in V(\mathbb{Z}) : \det(A) = \frac{n}{4} \} \) is not defined by a linear condition. Instead, we count \(\text{SO}_A(\mathbb{Z}) \)-orbits on integral ternary quadratic forms \(B \), such that \((A, B)\) has bounded height.

We then sum over a set of representatives \(A \) for the action of \(\text{SL}_3(\mathbb{Z}) \) on integral ternary quadratic forms \(A \) with \(\det(A) = \frac{n}{4} \).

In both cases, we perform the count using geometry–of–numbers methods along with a squarefree sieve. These methods yields answers in terms of products of local volumes of sets within \(U(\mathbb{Q}_v) \), \(U_n(\mathbb{Q}_v) \), \(V(\mathbb{Q}_v) \), and \(V_A(\mathbb{Q}_v) \).
Counting the relevant lattice points

For the first result (where n varies), we need to count the relevant \mathbb{Z}-orbits on $U(\mathbb{Z})$, and the relevant $\mathbb{Z} \times \text{SL}_3(\mathbb{Z})$-orbits on $V(\mathbb{Z})$, having bounded height and index.

For the remaining results (where n is fixed), we need to count the relevant \mathbb{Z}-orbits on $U_n(\mathbb{Z})$, and the relevant $\mathbb{Z} \times \text{SL}_3(\mathbb{Z})$-orbits on $\text{Res}^{-1}(U_n(\mathbb{Z}))$, having bounded height.

However, $\text{Res}^{-1}(U_n(\mathbb{Z})) = \{(A, B) \in V(\mathbb{Z}) : \det(A) = \frac{n}{4}\}$ is not defined by a linear condition. Instead, we count $\text{SO}_A(\mathbb{Z})$-orbits on integral ternary quadratic forms B, such that (A, B) has bounded height.

We then sum over a set of representatives A for the action of $\text{SL}_3(\mathbb{Z})$ on integral ternary quadratic forms A with $\det(A) = \frac{n}{4}$.
For the first result (where n varies), we need to count the relevant \mathbb{Z}-orbits on $U(\mathbb{Z})$, and the relevant $\mathbb{Z} \times SL_3(\mathbb{Z})$-orbits on $V(\mathbb{Z})$, having bounded height and index.

For the remaining results (where n is fixed), we need to count the relevant \mathbb{Z}-orbits on $U_n(\mathbb{Z})$, and the relevant $\mathbb{Z} \times SL_3(\mathbb{Z})$-orbits on $\text{Res}^{-1}(U_n(\mathbb{Z}))$, having bounded height.

However, $\text{Res}^{-1}(U_n(\mathbb{Z})) = \{(A, B) \in V(\mathbb{Z}) : \det(A) = \frac{n}{4}\}$ is not defined by a linear condition. Instead, we count $SO_A(\mathbb{Z})$-orbits on integral ternary quadratic forms B, such that (A, B) has bounded height.

We then sum over a set of representatives A for the action of $SL_3(\mathbb{Z})$ on integral ternary quadratic forms A with $\det(A) = \frac{n}{4}$.

In both cases, we perform the count using geometry–of–numbers methods along with a squarefree sieve.
Counting the relevant lattice points

For the first result (where \(n \) varies), we need to count the relevant \(\mathbb{Z} \)-orbits on \(U(\mathbb{Z}) \), and the relevant \(\mathbb{Z} \times \text{SL}_3(\mathbb{Z}) \)-orbits on \(V(\mathbb{Z}) \), having bounded height and index.

For the remaining results (where \(n \) is fixed), we need to count the relevant \(\mathbb{Z} \)-orbits on \(U_n(\mathbb{Z}) \), and the relevant \(\mathbb{Z} \times \text{SL}_3(\mathbb{Z}) \)-orbits on \(\text{Res}^{-1}(U_n(\mathbb{Z})) \), having bounded height.

However, \(\text{Res}^{-1}(U_n(\mathbb{Z})) = \{(A, B) \in V(\mathbb{Z}) : \det(A) = \frac{n}{4}\} \) is not defined by a linear condition. Instead, we count \(\text{SO}_A(\mathbb{Z}) \)-orbits on integral ternary quadratic forms \(B \), such that \((A, B) \) has bounded height.

We then sum over a set of representatives \(A \) for the action of \(\text{SL}_3(\mathbb{Z}) \) on integral ternary quadratic forms \(A \) with \(\det(A) = \frac{n}{4} \).

In both cases, we perform the count using geometry–of–numbers methods along with a squarefree sieve.

These methods yields answers in terms of products of local volumes of sets within \(U(\mathbb{Q}_v) \), \(U_n(\mathbb{Q}_v) \), \(V(\mathbb{Q}_v) \), and \(V_A(\mathbb{Q}_v) \).
For each p, pick a subset $S_p \subset U(\mathbb{Z}_p)$ of maximal forms. Our family \mathcal{F} of cubic fields is in bijection with
\[
\mathcal{L} = U(\mathbb{R})^\pm \cap U(\mathbb{Z}) \cap \bigcap_p S_p.
\]
For each p, pick a subset $S_p \subset U(\mathbb{Z}_p)$ of maximal forms. Our family \mathcal{F} of cubic fields is in bijection with

$$\mathcal{L} = U(\mathbb{R})^\pm \cap U(\mathbb{Z}) \cap \bigcap_p S_p.$$

The average size of $|\text{Cl}(K)[2]|$ over $K \in \mathcal{F}$ is

$$\frac{\#\text{Res}^{-1}(\mathcal{L}_X)}{\#\mathcal{L}_X} = 1 + \tau(\text{SL}_3(\mathbb{Q})) \text{Mass}_\pm \frac{\prod_p \int_{f \in S_p} \text{Mass}_p(f) df}{\prod_p \int_{f \in S_p} df}.$$

Above, for a form f corresponding to K_p/\mathbb{Q}_p, $\text{Mass}_p(f)$ is

$$\sum_{(A, B) \in \text{Res}^{-1}(f)} \frac{1}{\#\text{Stab}(A, B)} = \sum_{L_p \in \text{Res}^{-1}(K_p)} \frac{1}{\#\text{Aut}(L_p, K_p)} = 1.$$

The necessary result follows from the computation of Mass_\pm, which is $\frac{1}{4}$ for $+$ and $\frac{1}{2}$ for $-$.

Arul Shankar

Class groups of n-monogenic cubic fields
For each p, pick a subset $S_p \subset U(\mathbb{Z}_p)$ of maximal forms. Our family \mathcal{F} of cubic fields is in bijection with

$$\mathcal{L} = U(\mathbb{R})^\pm \cap U(\mathbb{Z}) \cap \bigcap_{p} S_p.$$

The average size of $|\text{Cl}(K)[2]|$ over $K \in \mathcal{F}$ is

$$\frac{\#\text{Res}^{-1}(\mathcal{L}_x)}{\#\mathcal{L}_x} = 1 + \tau(\text{SL}_3(\mathbb{Q})) \text{Mass}_\infty \frac{\prod_p \int_{f \in S_p} \text{Mass}_p(f) df}{\prod_p \int_{f \in S_p} df}.$$

Above, for a form f corresponding to K_p/\mathbb{Q}_p, $\text{Mass}_p(f)$ is

$$\sum_{(A,B) \in \text{Res}^{-1}(f)} \frac{1}{\#\text{Stab}(A,B)} \frac{1}{\text{SL}_3(\mathbb{Z}_p)}.$$
For each p, pick a subset $S_p \subset U(\mathbb{Z}_p)$ of maximal forms. Our family \mathcal{F} of cubic fields is in bijection with

$$\mathcal{L} = U(\mathbb{R})^\pm \cap U(\mathbb{Z}) \bigcap \cap_p S_p.$$

The average size of $|\text{Cl}(K)[2]|$ over $K \in \mathcal{F}$ is

$$\frac{\#\text{Res}^{-1}(\mathcal{L}_X)}{\#\mathcal{L}_X} = 1 + \tau(\text{SL}_3(\mathbb{Q}))\text{Mass}_\infty \frac{\prod_p \int_{f \in S_p} \text{Mass}_p(f) df}{\prod_p \int_{f \in S_p} df}.$$

Above, for a form f corresponding to K_p/\mathbb{Q}_p, $\text{Mass}_p(f)$ is

$$\sum_{(A,B) \in \text{Res}^{-1}(f) / \text{SL}_3(\mathbb{Z}_p)} \frac{1}{\#\text{Stab}(A,B)} = \sum_{L_p \in \text{Res}^{-1}(K_p)} \frac{1}{\#\text{Aut}(L_p, K_p)}.$$
For each p, pick a subset $S_p \subset U(\mathbb{Z}_p)$ of maximal forms. Our family \mathcal{F} of cubic fields is in bijection with

$$\mathcal{L} = U(\mathbb{R})^\pm \cap U(\mathbb{Z}) \bigcap \cap_p S_p.$$

The average size of $|\text{Cl}(K)[2]|$ over $K \in \mathcal{F}$ is

$$\frac{\#\text{Res}^{-1}(\mathcal{L}_X)}{\#\mathcal{L}_X} = 1 + \tau(\text{SL}_3(\mathbb{Q})) \text{Mass}_\infty \frac{\prod_p \int_{f \in S_p} \text{Mass}_p(f) df}{\prod_p \int_{f \in S_p} df}.$$

Above, for a form f corresponding to K_p/\mathbb{Q}_p, $\text{Mass}_p(f)$ is

$$\sum_{(A,B) \in \text{Res}^{-1}(f) \backslash \text{SL}_3(\mathbb{Z}_p)} \frac{1}{\#\text{Stab}(A,B)} = \sum_{L_p \in \text{Res}^{-1}(K_p)} \frac{1}{\#\text{Aut}(L_p, K_p)} = 1.$$
Computing local volumes: varying \(n \)

For each \(p \), pick a subset \(S_p \subset U(\mathbb{Z}_p) \) of maximal forms. Our family \(\mathcal{F} \) of cubic fields is in bijection with

\[
\mathcal{L} = U(\mathbb{R})^\pm \cap U(\mathbb{Z}) \cap \bigcap_p S_p.
\]

The average size of \(|\text{Cl}(K)[2]| \) over \(K \in \mathcal{F} \) is

\[
\frac{\#\text{Res}^{-1}(\mathcal{L}_X)}{\#\mathcal{L}_X} = 1 + \tau(\text{SL}_3(\mathbb{Q}))\text{Mass}_{\infty}^{\pm} \prod_p \int_{f \in S_p} \text{Mass}_p(f) df / \prod_p \int_{f \in S_p} df.
\]

Above, for a form \(f \) corresponding to \(K_p/\mathbb{Q}_p \), \(\text{Mass}_p(f) \) is

\[
\sum_{(A,B) \in \text{Res}^{-1}(f)/\text{SL}_3(\mathbb{Z}_p)} \frac{1}{\#\text{Stab}(A,B)} = \sum_{L_p \in \text{Res}^{-1}(K_p)} \frac{1}{\#\text{Aut}(L_p, K_p)} = 1.
\]

The necessary result follows from the computation of \(\text{Mass}_{\infty}^{\pm} \), which is \(\frac{1}{4} \) for \(+ \) and \(\frac{1}{2} \) for \(- \).
Fixing n introduces important changes: specifically the theory of quadratic forms now plays a crucial role.
Fixing n introduces important changes: specifically the theory of quadratic forms now plays a crucial role. The group is SO_3 instead of SL_3, so the Tamagawa number is 2.
Fixing n introduces important changes: specifically the theory of quadratic forms now plays a crucial role. The group is SO_3 instead of SL_3, so the Tamagawa number is 2. The masses involved also change: they are now the partial masses $\text{Mass}_p(f, A) := \sum_{(A, B) \in \text{Res}^{-1}(f)} \#\text{Stab}(A, B) \in \{0, 1/2, 1\}$. The partial mass is always $1/2$ unless f is sufficiently ramified. We now have to evaluate $= 1 + 2 \sum A \text{Mass}_\pm \infty \prod_p \int_{f \in S_p} \text{Mass}_p(f, A) df \prod_p \int_{f \in S_p} df$, where the sum is over genera A having determinant n. Evaluating this sum using the theory of quadratic forms yields the result.
Fixing n introduces important changes: specifically the theory of quadratic forms now plays a crucial role. The group is SO_3 instead of SL_3, so the Tamagawa number is 2. The masses involved also change: they are now the **partial masses**

$$\text{Mass}_p(f, A) := \sum_{(A, B) \in \text{Res}^{-1}(f) \subseteq \text{SL}_3(\mathbb{Z}_p) / \text{SL}_3(\mathbb{Z}_p)} \frac{1}{\# \text{Stab}(A, B)}$$
Fixing n introduces important changes: specifically the theory of quadratic forms now plays a crucial role. The group is SO_3 instead of SL_3, so the Tamagawa number is 2. The masses involved also change: they are now the partial masses

$$\text{Mass}_p(f, A) := \sum_{(A,B) \in \text{Res}^{-1}(f)} \frac{1}{\#\text{Stab}(A, B)} \in \{0, 1/2, 1\}.$$
Fixing n introduces important changes: specifically the theory of quadratic forms now plays a crucial role.

The group is SO_3 instead of SL_3, so the Tamagawa number is 2. The masses involved also change: they are now the partial masses

$$\text{Mass}_p(f, A) := \sum_{(A,B) \in \text{Res}^{-1}(f) \cap \text{SL}_3(\mathbb{Z}_p)} \frac{1}{\#\text{Stab}(A, B)} \in \{0, 1/2, 1\}.$$

The partial mass is always $1/2$ unless f is sufficiently ramified.
Fixing \(n \) introduces important changes: specifically the theory of quadratic forms now plays a crucial role. The group is \(\text{SO}_3 \) instead of \(\text{SL}_3 \), so the Tamagawa number is 2. The masses involved also change: they are now the partial masses

\[
\text{Mass}_p(f, A) := \sum_{(A,B) \in \text{Res}^{-1}(f) \cap \text{SL}_3(\mathbb{Z}_p)} \frac{1}{\#\text{Stab}(A, B)} \in \{0, 1/2, 1\}.
\]

The partial mass is always 1/2 unless \(f \) is sufficiently ramified.

We now have to evaluate

\[
= 1 + 2 \sum_A \text{Mass}_\infty^\pm \frac{\prod_p \int_{f \in S_p} \text{Mass}_p(f, A) df}{\prod_p \int_{f \in S_p} df},
\]

where the sum is over genera \(A \) having determinant \(n \).
Computing local volumes: fixed n

Fixing n introduces important changes: specifically the theory of quadratic forms now plays a crucial role. The group is SO_3 instead of SL_3, so the Tamagawa number is 2. The masses involved also change: they are now the partial masses

$$\text{Mass}_p(f, A) := \sum_{(A, B) \in \text{Res}^{-1}(f) \backslash \text{SL}_3(\mathbb{Z}_p)} \frac{1}{\#\text{Stab}(A, B)} \in \{0, 1/2, 1\}.$$

The partial mass is always $1/2$ unless f is sufficiently ramified.

We now have to evaluate

$$= 1 + 2 \sum_A \text{Mass}_\infty \frac{\prod_p \int_{f \in \mathcal{S}_p} \text{Mass}_p(f, A) df}{\prod_p \int_{f \in \mathcal{S}_p} df},$$

where the sum is over genera A having determinant n. Evaluating this sum using the theory of quadratic forms yields the result.
For an integer $d \geq 0$, let $\mathcal{F}(d)$ denote the family of monogenized degree-d number fields. For integers r_1, r_2 with $r_1 + 2r_2 = d$, let $\mathcal{F}(d, r_1, r_2) \subset \mathcal{F}(d)$ be the set of fields with signature (r_1, r_2).

Theorem (Siad)
Let $d \geq 3$ be an odd integer. The average of $|\text{Cl}_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, r_1, r_2)$ is bounded above by $1 + 2^{2r_1 + 2r_2}$, with equality conditional on a widely expected tail estimate.

Let $d \geq 4$ be an even integer. The average of $|\text{Cl}_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, 0, r_2)$ is bounded by $\prod_p (1 + \rho_p)(1 + 2^{2r_2}) + 2^{2 - r_2}$, with equality conditional on a widely expected tail estimate.

In the even degree case, the product over p is the contribution from genus theory.

Siad also proves the result for all signatures. These results use a generalization of Bhargava’s parametrization due to Wood.
For an integer $d \geq 0$, let $\mathcal{F}(d)$ denote the family of monogenized degree-d number fields. For integers r_1, r_2 with $r_1 + 2r_2 = d$, let $\mathcal{F}(d, r_1, r_2) \subset \mathcal{F}(d)$ be the set of fields with signature (r_1, r_2).

Theorem (Siad)

Let $d \geq 3$ be an odd integer. The average of $|\text{Cl}_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, r_1, r_2)$ is bounded above by $1 + 2^{2-r_1-r_2}$, with equality conditional on a widely expected tail estimate.
For an integer $d \geq 0$, let $\mathcal{F}(d)$ denote the family of monogenized degree-d number fields. For integers r_1, r_2 with $r_1 + 2r_2 = d$, let $\mathcal{F}(d, r_1, r_2) \subset \mathcal{F}(d)$ be the set of fields with signature (r_1, r_2).

Theorem (Siad)

Let $d \geq 3$ be an odd integer. The average of $|Cl_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, r_1, r_2)$ is bounded above by $1 + 2^{2-r_1-r_2}$, with equality conditional on a widely expected tail estimate.

Let $d \geq 4$ be an even integer. The average of $|Cl_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, 0, r_2)$ is bounded by $\prod_p (1 + \rho_p)(1 + 2^{2-r_2}) + 2^{-r_2}$, with equality conditional on a widely expected tail estimate.
For an integer $d \geq 0$, let $\mathcal{F}(d)$ denote the family of monogenized degree-d number fields. For integers r_1, r_2 with $r_1 + 2r_2 = d$, let $\mathcal{F}(d, r_1, r_2) \subset \mathcal{F}(d)$ be the set of fields with signature (r_1, r_2).

Theorem (Siad)

Let $d \geq 3$ be an odd integer. The average of $|\text{Cl}_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, r_1, r_2)$ is bounded above by $1 + 2^{2-r_1-r_2}$, with equality conditional on a widely expected tail estimate.

Let $d \geq 4$ be an even integer. The average of $|\text{Cl}_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, 0, r_2)$ is bounded by $\prod_p (1 + \rho_p)(1 + 2^{2-r_2}) + 2^{-r_2}$, with equality conditional on a widely expected tail estimate.

In the even degree case, the product over p is the contribution from genus theory.
Generalizations to higher degrees: monogenic case

For an integer \(d \geq 0 \), let \(\mathcal{F}(d) \) denote the family of monogenized degree-\(d \) number fields. For integers \(r_1, r_2 \) with \(r_1 + 2r_2 = d \), let \(\mathcal{F}(d, r_1, r_2) \subset \mathcal{F}(d) \) be the set of fields with signature \((r_1, r_2)\).

Theorem (Siad)

Let \(d \geq 3 \) be an odd integer. The average of \(|Cl_2(K)| \) over \((K, \alpha) \in \mathcal{F}(d, r_1, r_2)\) is bounded above by \(1 + 2^{2-r_1-r_2} \), with equality conditional on a widely expected tail estimate.

Let \(d \geq 4 \) be an even integer. The average of \(|Cl_2(K)| \) over \((K, \alpha) \in \mathcal{F}(d, 0, r_2)\) is bounded by \(\prod_p (1 + \rho_p)(1 + 2^{2-r_2}) + 2^{-r_2} \), with equality conditional on a widely expected tail estimate.

In the even degree case, the product over \(p \) is the contribution from genus theory.

Siad also proves the result for all signatures. These results use a generalization of Bhargava’s parametrization due to Wood.
For positive integers d and n, let $\mathcal{F}(d, n)$ denote the family of degree-d number fields corresponding to the family of degree-d polynomials whose first coefficient is n.

Theorem (Swaminathan) Let $d \geq 3$ be an odd integer. The average of $|Cl_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, n; r_1, r_2)$ is bounded above by $1 + 2^{1 - r_1 - r_2} \left(1 + \frac{1}{k} \frac{n - 3}{2} \sigma(k)\right)$, with equality conditional on a widely expected tail estimate. Swaminathan also proves the analogous (much more complicated) result in the even degree case. Both Siad's and Swaminathan's work have a host of applications towards finding fields with odd class number, various unit signatures, and much more!
For positive integers d and n, let $\mathcal{F}(d, n)$ denote the family of degree-d number fields corresponding to the family of degree-d polynomials whose first coefficient is n.

Theorem (Swaminathan)

Let $d \geq 3$ be an odd integer. The average of $|Cl_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, n; r_1, r_2)$ is bounded above by

$$1 + 2^{1-r_1-r_2} \left(1 + \frac{1}{k^{(n-3)/2} \sigma(k)}\right),$$

with equality conditional on a widely expected tail estimate.
For positive integers d and n, let $\mathcal{F}(d, n)$ denote the family of degree-d number fields corresponding to the family of degree-d polynomials whose first coefficient is n.

Theorem (Swaminathan)

Let $d \geq 3$ be an odd integer. The average of $|Cl_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, n; r_1, r_2)$ is bounded above by

$$1 + 2^{1-r_1-r_2} \left(1 + \frac{1}{k^{(n-3)/2}\sigma(k)}\right),$$

with equality conditional on a widely expected tail estimate.

Swaminathan also proves the analogous (much more complicated) result in the even degree case.
For positive integers d and n, let $\mathcal{F}(d, n)$ denote the family of degree-d number fields corresponding to the family of degree-d polynomials whose first coefficient is n.

Theorem (Swaminathan)

Let $d \geq 3$ be an odd integer. The average of $|Cl_2(K)|$ over $(K, \alpha) \in \mathcal{F}(d, n; r_1, r_2)$ is bounded above by

$$1 + 2^{1-r_1-r_2} \left(1 + \frac{1}{k(n-3)/2\sigma(k)} \right),$$

with equality conditional on a widely expected tail estimate.

Swaminathan also proves the analogous (much more complicated) result in the even degree case.

Both Siad’s and Swaminathan’s work have a host of applications towards finding fields with odd class number, various unit signatures, and much more!
Thank you!