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Gromov’s almost flat manifold theorem

Theorem (Gromov, 1978; Ruh, 1982)

There is a dimensional constant ε(n) ∈ (0, 1) such that if a closed
n-dimensional Riemannian manifold (M, g) satisfies

diam(M, g)2 max
∧2TM

|Kg | ≤ ε2, (1)

then M is diffeomorphic to an almost flat manifold.

An almost flat manifold (a.k.a. infranil manifold) is by definition of
the form N/Γ, where N is a simply connected nilpotent Lie group, Γ
is a discrete subgroup of N ⋊ Aut(N) with [Γ : Γ ∩ N] < w(n), the
uniform bound here is part of Gromov’s theorem.

The theorem is striking in that pure curvature and diameter
information determines the diffeomorphism type of the manifold.

Its importance is more apparent as the “collapsing fibers” in the
collapsing geometry with bounded sectional curvature.
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Moduli spaces of Riemannian manifolds

We consider the following collections of complete Riemannian manifolds:

MRm(n,D) denotes the collection of n-dimensional Riemannian
manifolds with sectional curvature bounded between ±1, and
diameter bounded from above by D ≥ 1.

MRm(n,D, v) denotes the sub-collection of manifolds in MRm(n,D)
with volume bounded below by v > 0.

MRc(n) denotes the collection of n-dimensional Riemannian
manifolds (M, g) with Rcg ≥ −(n − 1)g .

Equip these collections with the (pointed) Gromov-Hausdorff
topology, then they become pre-compact among metric spaces.

Due to the various curvature conditions, we expect to get better
understanding of the weak limits and improve the regularity of the
topology.
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Cheeger’s finiteness theorem

MRm(n,D) is a very large moduli space, but for any k ≤ n, the moduli
space MRm(k ,D, v) is very small:

Theorem (Cheeger 1970)

The moduli space MRm(k ,D, v) has only finitely many diffeomorphism

classes. The Gromov-Hausdorff topology is the same as the C 1, 1
2

Cheeger-Gromov topology.

If {Mi} ⊂ MRm(k ,D, v) and Mi → X in the Gromov-Hausdorff
sense, then X ∈ MRm(k ,D, v), and the convergence topology is

improved to the C 1, 1
2 Cheeger-Gromov sense.

Can think of the moduli spaces MRm(k ,D, v) for k ≤ n as the
“minimal models” of manifolds in MRm(n,D).

Question: How can we relate a generic element in MRm(n,D) to one
of the “minimal models”?
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Fukaya’s fiber bundle theorem

This question is answered by the Fukaya’s fiber bundle theorem:

Theorem (Fukaya, 1987)

Given D ≥ 1 and v > 0, there is some ε(n, v) ∈ (0, 1) such that if
dGH(M,N) < ε for some M ∈ MRm(n,D) and N ∈ MRm(k ,D, v) with
k ≤ n, then there is a surjective C 1 map f : M → N which is an almost
Riemannian submersion; moreover, the fibers of f are diffeomorphic to an
almost flat manifold.

We say that M collapses to N since dimN < dimM, and M looks, to
the naked eyes, like the lower dimensional manifold N.

The curvature and metric information determines the diffeomorphism
type of M according to the “minimal model” N: M can be thought of
as a smooth family of almost flat manifolds parametrized over N.
This theorem provides the basic picture of the collapsing geometry
with bounded sectional curvature; whose structure are locally
modeled on singular infranil fiber bundles over orbifolds with corners.
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Collapsing geometry with Ricci curvature bounds

The collapsing geometry with bounded sectional curvature is
well-understood thanks to the works of Cheeger, Fukaya, Gromov,
and Rong, etc.

How about the collapsing geometry of manifolds with Ricci curvature
conditions, such as the collapsing of Ricci flows and elements in
MRc(n)?

Motivation 1: Weaker curvature assumptions, therefore more natural.

Motivation 2 - mathematical physics: the SYZ conjecture in mirror
symmetry is about the collapsing geometry of Calabi-Yau threefolds.

Motivation 3 - algebraic geometry: the abundance conjecture in
Kähler geometry is about the long-time collapsing behavior of
Kähler-Ricci flows with nef initial data.

The general expectation is a singular fibration structure over a
singular base (the base maybe topologically regular).
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Collapsing fibers: Almost Ricci-flat manifolds

The following is an attempt to generalize Gromov’s almost flat manifolds
theorem to the setting of almost Ricci-flat manifolds.

Theorem (Dai-Wei-Ye, 1996)

There is a dimensional constant ε(n) ∈ (0, 1) such that if a closed
n-dimensional Riemannian manifold (M, g) with conjugate radii bounded
below by 1 satisfies

diam(M, g)2max
M

|Rcg |g ≤ ε2,

then M is diffeomorphic to an almost flat manifold.

The point-wise lower bound of conjugate radii is hard to check.

The proof is based on a Ricci flow smoothing technique, our
improvement of which will be discussed later.
The almost flatness of a (new) mixed curvature condition is
introduced by Kapovitch recently, and a similar result is obtained.
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Collapsing fibers: Colding-Gromov gap theorem

Instead of the pointwise conjugate radii lower bound, Colding proved the
following theorem which only assumes a very natural topological condition.

Theorem (Colding, 1997; Cheeger-Colding, 1997)

There is a dimensional constant ε(n) ∈ (0, 1) such that if a closed
n-dimensional Riemannian manifold (M, g) satisfies

diam(M, g)2Rcg ≥ −ε2g and b1(M) = n,

then M is diffeomorphic to a flat torus.

This theorem can be viewed as a quantitative version of the Bochner
technique, or the Cheeger-Gromoll splitting theorem.

The diffeomorphism version of this theorem is proven by Cheeger and
Colding based on the Reifenberg method.
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Topological rigidity of the first Betti number

Recently, Bing Wang and I obtained the following torus bundle theorem for
manifolds in MRc(n).

Theorem (H.-Wang, 2020)

Given D ≥ 1 and v > 0, there is a constant ε(n,D, v) ∈ (0, 1) such that if
dGH(M,N) < ε for some M ∈ MRc(n) and N ∈ MRm(k ,D, v) with
k ≤ n, then b1(M)− b1(N) ≤ n − k. Moreover, if the equality holds, then
M is diffeomorphic to an (n − k)-torus bundle over N.
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Topological rigidity of the first Betti number

Some comments:

This theorem is in the same spirit as Fukaya’s fiber bundle theorem,
which can be thought as a parametrized version of Gromov’s almost
flat manifolds theorem: our theorem could be though as a
parametrized version of the Colding-Gromov gap theorem.

Notice that if M is an (n − k)-torus bundle over N and N is
aspherical, then by the homotopy long exact sequence we have
b1(M)− b1(N) = n − k . The theorem tells the inverse, whence
serving as a topological rigidity theorem for manifolds in MRc(n) that
are sufficiently close to the “minimal models” in the
Gromov-Hausdorff sense.

The proof is based on the Ricci flow smoothing technique.
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Topological rigidity of the first Betti number

Some consequent works:

We were later able to localize the Ricci flow smoothing technique and
prove a singular fiber bundle theorem when the collapsing limit is
actually an orbifold.

In a forthcoming joint work with Xiaochun Rong, we are able to show
that if the manifold (M, g) satisfying the assumptions of the fiber
bundle theorem (esp. with b1(M) = b1(N) + dimM − dimN) and in
additional has almost non-negative Ricci curvature Rcg ≥ −δg , then
it is homeomorphic to the product N × TdimM−dimN .
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Ricci flow smoothing: Existence and regularity

On a closed manifold M of dimension m, a smooth family of metrics
g(t) is called a Ricci flow solution if it satisfies

∂gij
∂t

= −2Rij ,

where Rij is the Ricci curvature. Hamilton (1982) showed the short
time existence of the Ricci flow given any such initial data (M, g).

Shi’s estimate (1989): the Riemannian curvature satisfies the
following bound:

sup
M

|Rmg(t)| ≤ Ct−1 (2)

whenever the flow exists up to time t.
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Ricci flow smoothing: The basic idea

We will start a Ricci flow from the collapsing initial data (M, g),
which is a closed manifold.

In view of Shi’s estimate, the evolved metric should have better
regularity — especially, it enjoys uniformly bounded sectional
curvature.

We would like to appeal to the classical theory of collapsing geometry
with bounded sectional curvature (notably Fukaya’s fiber bundle
theorem) to obtain a fiber bundle structure for M.

However, notice that in Shi’s estimate, the shorter the existence time
of the flow is, the worse the curvature bound is (by the nature of the
heat flow). So the key difficulty is to obtain a Ricci flow existence
time lower bound, uniformly depending on the given info.: Ricci lower
bound, collapsing to a lower dimensional “minimal model”, and Betti
number condition.

Another technical point is that the evolved metric should still be very
collapsed, this follows from a distance distortion estimate.
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of the flow is, the worse the curvature bound is (by the nature of the
heat flow). So the key difficulty is to obtain a Ricci flow existence
time lower bound, uniformly depending on the given info.: Ricci lower
bound, collapsing to a lower dimensional “minimal model”, and Betti
number condition.

Another technical point is that the evolved metric should still be very
collapsed, this follows from a distance distortion estimate.
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Ricci flow smoothing: The pseudo-locality theorem

Theorem (Perelman, 2002; Tian-Wang, 2015)

For any α ∈ (0, 1), there are positive constants εP = εP(n,α) and
δP = δP(n,α) such that if (M, g) is a Ricci flow solution define for
t ∈ [0,T ] with each time slice (M, g(t)) being a complete Riemannian
manifold, and if one of the conditions holds for p ∈ M:

1 (Perelman) Rg(0) ≥ −1 on Bg(0)(p, 1) and IBg(0)(p,1) ≥ (1− δP)Im, or

2 (Tian-Wang) Rcg(0) ≥ −δPg(0) on Bg(0)(p, 1) and!!Bg(0)(p, 1)
!!
g(0)

≥ (1− δP)ωn,

where In and ωn stands for the isoperimetric constant and volume of the
n-Euclidean unit ball, respectively, and IΩ denotes the isoperimetric
constant for the domain Ω ⊂ M, then

∀t ∈ (0, ε2P ], sup
Bg(t)(p,εP )

!!Rmg(t)

!!
g(t)

≤ αt−1 + ε−2
P . (3)
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Ricci flow smoothing: The distance distortion estimate

Lemma (Huang-Kong-Rong-Xu, 2018)

Let (M, g(t)) be a smooth Ricci flow solution such that

1 the initial data g(0) satisfies Rcg(0) ≥ −(n − 1)g(0) and
|Bg(0)(p,1)|g(0) ≥ v > 0 for all p ∈ M,

2 the space-time curvature is bounded as |Rmg(t)|g(t) ≤ αt−1,

then for any x , y ∈ M satisfying dg(0)(x , y) ≤
√
t, we have

|dg(0)(x , y)− dg(t)(x , y)| ≤ ΨD(α|v)
√
t.

ΨD(α|v) → 0 as α → 0. Here we can take α ∈ (0, 1) arbitrarily small.

The space-time curvature bound is natural.

Here the uniform estimate depends on the volume lower bound (i.e.
non-collapsing) of the initial data — same issue for the
pseudo-locality theorem: the initial data should locally look almost
like the n-dimensional Euclidean space!
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Key difficulty: collapsing initial condition

In our situation, the n-dimensional manifold (M, g) ∈ MRc(n) may
be very collapsed, since it is Gromov-Hausdorff close to a lower
dimensional manifold N — the locally almost n-Euclidean conditions
may drastically fail.

While we can start the Ricci flow with initial data (M, g), the possible
collapsing may destroy the uniform estimates in the pseudo-locality
theorem, or the distance distortion estimate.

Once we have started the flow, we can pull it back to the universal
covering space "M of M. Here we let π : "M → M denote the covering
map, and let g̃(t) := π∗g(t) denote the covering flow.

Instead of showing uniform estimate for the Ricci flow (M, g(t)), we
will consider the covering flow ( "M, g̃(t)).

In view of the pseudo-locality theorem and the distance distortion
estimate, we will need to prove the almost locally Euclidean condition
for the initial data ( "M, g̃).
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Almost locally Euclidean universal covering spaces

The key lemma is the following almost locally Euclidean condition for the
universal covering of (M, g) ∈ MRc(n), provided the topological
information encoded in the first Betti numbers.

Lemma (H.-Wang, 2020)

For any ε ∈ (0, 1) fixed, there are δALE ∈ (0, 1) and rALE ∈ (0, 1), solely
determined by ε, n, D and v, to the following effect: if (M, g) ∈ MRc(n)
and (N, h) ∈ MRm(k ,D, v) with k ≤ n satisfy

1 dGH(M,N) < δ for some δ ≤ δALE , and

2 b1(M)− b1(N) = n − k,

then for any r ∈ (0, rALE ] and p̃ ∈ "M we have

|Bg̃ (p̃, r)|g̃ ≥ (1− ε)ωnr
n. (4)
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Pseudo-local fundamental group

This lemma is based on the ε-regularity theorem due to Naber and
Zhang for Ricci curvature. To state their result let us first define the
pseudo-local fundamental group.

Given (M, g) ∈ MRc(n), for any δ ∈ (0, 1) and any p ∈ M, the
pseudo-local fundamental group at p, denoted by Γ̃δ(p), is defined as
Γ̃δ(p) := Image [π1(Bg (p, δ), p) → π1(M, p)].

If π : ( "M, g̃ , p̃) → (M, g , p) is the pointed Riemannian universal
covering, then the restriction π : π−1(Bg (p, 2))0 → Bg (p, 2) is a
normal covering whose deck transformation group G is a sub-group of
π1(M, p).

For this normal covering we can consider the following group
#Gδ(p) := 〈γ ∈ π1(M, p) : dg̃ (γ.p̃, p̃) < 2δ〉.
It can be easily seen that #Gδ(p) = Γ̃δ(p).
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ε-Regularity for the Ricci curvature

Theorem (Naber-Zhang, 2016)

For any ε > 0 there is a δ(n, ε) ∈ (0, 1) such that if (M, g , p) is a pointed
Riemannian n-manifold with Rcg ≥ −(n − 1)g, and Bg (p, 2) ⋐ Bg (p, 4),
then for any normal covering π̂ : (W , p̂) → (Bg (p, 2), p) with π̂(p̂) = p,
covering metric ĝ and deck transformation group G, if
dGH

$
Bg (p, 2),Bk(2)

%
< δ, then the group #Gδ(p) is almost nilpotent with

nilpotency rank not exceeding m − k; moreover, if it rank #Gδ(p) = n − k,
then for some r ∈ (δ, 1) it holds that dGH (Bĝ (p̂, r),Bn(r)) < εr .

Here as just discussed, we will take π̂ as the restriction of the
universal covering map π̃ to the preimage of a geodesic ball.

In this case we have rank Γ̃δ(p) ≤ n− k and the equality gives for any
p̃ ∈ "M that

dGH(Bg̃ (p̃, r),Bn(r)) < εr .
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covering metric ĝ and deck transformation group G, if
dGH

$
Bg (p, 2),Bk(2)

%
< δ, then the group #Gδ(p) is almost nilpotent with

nilpotency rank not exceeding m − k; moreover, if it rank #Gδ(p) = n − k,
then for some r ∈ (δ, 1) it holds that dGH (Bĝ (p̂, r),Bn(r)) < εr .
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Almost nilpotent groups

If Γ is an almost nilpotent group, then it admits a polycyclic
decomposition

Γ ≡ Γl ⊲ Γl−1 ⊲ · · · ⊲ Γ1 ⊲ Γ0 = {e}.

such that Γj−1 ⊳ Γj and Γj/Γj−1 is cyclic or finite for each 1 ≤ j ≤ l .

The nilpotency rank of Γ is defined as

rank Γ := |{1 ≤ j ≤ l |Γj/Γj−1
∼= Z}| .

The nilpotency rank of an almost nilpotent group is independent of
the polycyclic decomposition.

Intuitively, for Γ̃δ(p), its nilpotency rank counts how many
independent and non-trivial circles are packet in Bg (p, δ).
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Outline of the proof—fiber bundle structure

Here we notice that the assumptions of Naber-Zhang’s Theorem are
purely local, and the major work in the proof is to localize the
topological information encoded in the first Betti number, which is
global in nature.

Besides the pseudo-local fundamental group at every point, we also
consider the group Hε

1(M;Z), generated by singular homology classes
with a representation by a geodesic loop of length not exceeding 10ε.
Under the assumption dGH(M,N) < ε, it is then shown that

b1(M)− b1(N) = rank Hε
1(M;Z).

For ε < ε(m) sufficiently small, generalizing the work of Colding and
Naber, it is shown that

rank Hε
1(M;Z) ≤ rank Γ̃δ(ε)(p) ≤ n − k

for any p ∈ M.
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Outline of the proof—fiber bundle structure

The assumption b1(M)− b1(N) = n − k ensures that

n − k = rank Hε
1(M;Z) ≤ rank Γ̃δ(ε)(p) = n − k .

By Naber-Zhang’s Theorem, the universal covering of M to locally
resemble the n-Euclidean space.

By Colding’s volume continuity theorem, we have every point in M
satisfies the assumption of the pseudo-locality theorem, applied to the
covering Ricci flow g̃(t). Therefore, the covering Ricci flow exists at
least up to time ε2P , and the distance distortion estimate applies for
g̃(ε2P).

The Riemannian metric ε−2
P g(ε2P) is sufficiently collapsed by the

distance distortion estimate, and has bounded sectional curvature.
Therefore, by Fukaya’s fiber bundle theorem we obtain the bundle
structure.

We are yet to check that each fiber Fp is a flat torus, rather than a
generic almost flat manifold.
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Outline of the proof—torus bundle structure

Γ̃δ(ε)(p) ∼= π1(Fp, p).

But then by the Hurewicz theorem, we have

n − k = rank Hε
1(M;Z)

≤ rank Γ̃δ(ε)(p)/
&
[π1(M, p),π1(M, p)] ∩ Γ̃δ(ε)(p)

'

≤ rank Γ̃δ(ε)(p) ≤ n − k .

This forces the almost nilpotent group Γ̃δ(ε)(p) to be a finitely
generated abelian group.

Each fiber Fp has abelian fundamental group, and thus it has to be a
finite quotient of the (n − k)-torus.
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Outline of the proof—torus bundle structure

If Fp is not diffeomorphic to Tn−k , that means there is a finite order
action of some element in π1(Fp, p). But since π1(Fp, p) ∼= Γ̃ε(p) and
M is a smooth manifold, there must be certain finite order action by
some γ ∈ Γ̃ε(p) on an invariant neighborhood U of p ∈ M that fixes
the central fiber, i.e. the fibration F |U : U → F (U) ⊂ N is Γ̃ε(p)
equivariant with γ.Fp = Fp. However, this will leave F (p) ∈ N a
singular orbifold point, contradicting our assumption that (N, h) is a
smooth manifold.
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Thank you!
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