Massive C*-algebras, Winter 2021, I. Farah, Lecture 22

Today:

1. Completing the proof that $O C A_{T}$ implies all automorphisms of $\mathcal{Q}(H)$ are inner.
2. Generalizations.

Recall the following definitions (throughout $\S 17.6-\S 17.7, \mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)

Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)_{\leq 1}^{2}$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.
It is $\underline{\varepsilon}$-narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx_{\varepsilon}^{\mathcal{K}} c$. A function $f: \mathcal{B}(H)_{\leq 1} \rightarrow \mathcal{B}(H)_{\leq 1}$ is σ-narrow if its graph can be covered by a countable family of narrow Borel sets.
It is σ - ε-narrow if its graph can be covered by a countable family of ε-narrow Borel sets.
An endomorphism Φ of $\mathcal{Q}(H)$ has a σ-narrow lifting if its restriction to the unit ball has a lifting which is σ-narrow. It has a σ-narrow ε-approximation if there is a σ - ε-narrow function Θ such that every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_{*}(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$.
A σ-narrow lifting on $\mathcal{D}[\mathrm{E}]$ or $\mathrm{D}[\mathrm{E}]$ and a σ-narrow ε-approximation on $\mathcal{D}[\mathrm{E}]$ or $\mathrm{D}[\mathrm{E}]$ are defined analogously.

We'll need another result from the classical descriptive set theory. Chm B.2.14 (Novikov) If X and Y are Polish spaces and $\mathrm{A} \subseteq \mathrm{X} \times \mathrm{Y}$ is analytic, then the set $\left\{x \in \mathrm{X}: \mathrm{A}_{x}\right.$ is nonmeager $\}$ is analytic. $\quad \mathrm{S} .1 \neq \mathrm{P} . \delta$

$$
\left.A_{x}=\langle b|(x, y) \in A\right\}
$$

Lemma 17.7.1 Suppose Φ is an endomorphism of $\mathcal{Q}(H), d \geq 1$, $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$, and there exists a $1 / d$-narrow analytic set $\mathcal{Z} \subseteq \mathrm{D}_{\tilde{\mathrm{X}}} \times \mathcal{B}(H)_{\leq 1}$. Then for every $\mathrm{A} \subseteq \tilde{\mathrm{X}}$ such that both A and $\tilde{\mathrm{X}} \backslash \mathrm{A}$ are infinite at least one of the following applies.

1. There is a C-measurable $3 / d$-approximation of Φ on D_{A}.
2. There are $\mathrm{B} \subseteq \tilde{\mathrm{X}} \backslash \mathrm{A}, a \in \mathrm{D}_{\mathrm{A}}$, and $\mathrm{D}_{0} b \in \mathrm{D}_{\mathrm{B}}$ such that both B and $\tilde{\mathrm{X}} \backslash(\mathrm{A} \cup \mathrm{B})$ are infinite and every uniformization \equiv of \mathcal{Z} and/ $c \in D_{\tilde{x} \backslash(A \cup B)}$ such that $a+b+c \in \operatorname{dom}(\equiv)$ satisfy $\equiv(a+b+c) q_{\mathrm{A}} \nexists_{1 / d}^{\mathcal{K}} \Phi_{*}(a) . \quad$ (otherwo. ,

Lemma 17.7.1 Suppose Φ is an endomorphism of $\mathcal{Q}(H), d \geq 1$, $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$, and there exists a $1 / d$-narrow analytic set
$\mathcal{Z}) \subseteq \mathrm{D}_{\tilde{\mathrm{x}}} \times \mathcal{B}(H)_{\leq 1}$. Then for every $\mathrm{A} \subseteq \tilde{\mathrm{X}}$ such that both A and $\tilde{X} \backslash A$ are infinite at least one of the following applies.

1. There is a C-measurable 3/d-approximation of Φ on D_{A}.
2. There are $B \subseteq \tilde{X} \backslash A, a \in D_{A}$, and $b \in D_{B}$ such that both B and $\tilde{\mathrm{X}} \backslash(\mathrm{A} \cup \mathrm{B})$ are infinite and every uniformization \equiv of \mathcal{Z} and $c \in \mathrm{D}_{\tilde{\mathrm{x}} \backslash(\mathrm{A} \cup \mathrm{B})}$ such that $a+b+c \in \operatorname{dom}(\equiv)$ satisfy $\equiv(a+b+c) q_{\mathrm{A}} \not \nsim 1 / d_{\mathcal{K}}^{\mathcal{K}} \Phi_{*}(a)$.
Proof: Let

$$
\mathcal{V}:=\left\{(a, b, c) \in \mathrm{D}_{\mathrm{A}} \times \mathrm{D}_{\tilde{\mathrm{x}} \backslash \mathrm{~A}} \times \mathcal{B}(H)_{\leq 1}:\right.
$$

$$
\text { IS } c=y_{d} \phi_{\pi}(a) \text { ? }
$$

$$
\left.\left(\exists c^{\prime} \in \mathcal{B}(H)_{\leq 1}\right)\left(a+b, c^{\prime}\right) \in \mathcal{Z}, c \approx_{1 / d}^{\mathcal{K}} c^{\prime} q_{\mathrm{A}}\right\} .
$$

$$
\mathcal{W}(a):=\left\{b \in \mathrm{D}_{\tilde{\mathrm{X}} \backslash \mathrm{~A}}:\left(a, b, \Phi_{*}(a)\right) \in \mathcal{V}\right\}, \text { for } a \in \mathrm{D}_{\mathrm{A}} .
$$

$$
\text { Gudstir } \geqslant\left\langle\left(a, b, c, c^{\prime}\right)\left[\left(a+b, c^{\prime}\right) \in z, \quad c \approx_{1 / h}^{h} c^{\prime}=s_{A}\right)\right.
$$

ci,e $1 \quad \forall a \in \mathbb{M}_{A} \quad \underline{W}(0)$ is relotions, comeojer in Dर人 a.

$$
\begin{aligned}
& y=\left\langle(c, c) \in \prod_{A} \times B(H) \leq 1\right| \\
& \left\{B \in \|_{\bar{x} \backslash A}:(c, b, c) \in V\right)
\end{aligned}
$$

is relotively comeoger in $D_{x \backslash A}$ S
y is andytic.
lat θ he a c-me crualle un.tommitation of ζ.
Ther, $\forall a \in \operatorname{dom}(s) \quad \exists b \in w(a)$ and $(c, b, \theta(a)) \in V$.
Then the, "c, $\left(c+b, c^{\prime}\right) \in z$

$$
\begin{aligned}
& \theta(a) \simeq x^{\prime} c^{\prime} \varepsilon_{\tilde{x}}, \quad d s_{0} \exists c^{\prime \prime} \\
& \left(a+b, c^{\prime \prime}\right)^{\prime}+t \quad \phi_{*}(c) \approx \frac{k}{d} c^{\prime \prime} \varepsilon_{\tilde{x}}
\end{aligned}
$$

 not comeoyes. So there is a hasic one- U, w(a) $\cap \mathrm{V}$ is relotivals meajer in U.
(w(a), v $\subseteq D_{x \backslash a}$).
Thon $\exists J_{u} C C X \backslash A$, dijoin,

$$
\begin{aligned}
& \exists s(u) \in D_{J_{n}} \quad s_{0} \quad t 4 d^{\prime} \\
& \begin{array}{l}
U \cap\left\{\dot{y} \in D_{x \backslash A}\left|\exists^{\infty} n \quad y\right| J_{n}=S(n) \mid\right. \\
\cap W(0)=\varnothing .
\end{array} \\
& (U=[J, t], J \ll X \backslash A) \\
& \mapsto_{j} H_{j} \quad H_{0} \quad H_{J_{2}}-H \\
& B=\bigcup_{n} J_{2 n}, \quad \zeta=\sum_{n} S_{2}(2 n)
\end{aligned}
$$

Lemma 17.7.2 Suppose Φ is an endomorphism of $\mathcal{Q}(H), d \geq 1$, $\mathrm{E} \in \mathrm{Part}_{\mathbb{N}}$, and Φ has a σ-narrow $1 / d$-approximation on $\mathrm{D}_{\tilde{\mathrm{x}}}[\mathrm{E}]$.
Then the following holds.

1. There are an infinite $\mathrm{A} \subseteq \tilde{\mathrm{X}}$ and a C-measurable $3 / d$-approximation to Φ on $\mathrm{D}_{\mathrm{A}}[\mathrm{E}]$.
2. There is a C-measurable 3/d-approximation of Φ on $\mathrm{D}[\mathrm{F}]$ for all $F \in$ Part $_{\mathbb{N}}$.

Lemma 17.7.2 Suppose Φ is an endomorphism of $\mathcal{Q}(H), d \geq 1$, $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$, and Φ has a σ-narrow $1 / d$-approximation on $\mathrm{D}_{\tilde{\mathrm{x}}}[\mathrm{E}]$.
Then the following holds.
(1) $3 / d$-approximation to Φ on $\mathrm{D}_{\mathrm{A}}[\mathrm{E}]$.
2. There is a C-measurable 3/d-approximation of Φ on $\mathrm{D}[\mathrm{F}]$ for all $F \in$ Part $_{\mathbb{N}}$.

Proof:
Assume otherwise. Fix $1 / d$-harrow analytic sets $\left(\mathcal{Z}_{n}\right)$ that cover $3 / d-6 \|$. the graph of a $1 / d$-approximation of Φ on $\mathrm{D}_{\tilde{\mathrm{x}}}$. Fix a C-measurable uniformization $\bar{\Xi}_{n}$ of \mathcal{Z}_{n}. We will find $\tilde{X}=\square_{n} \mathrm{~A}(n) \sqcup \bigsqcup_{n} \mathrm{~B}(n)$, $a(n) \in \mathrm{D}_{\mathrm{A}(n)}$, and $b(n) \in \mathrm{D}_{\mathrm{B}(n)}$, so that $a:=\sum_{n} a(n)$ and $b:=\sum_{n} b(n)$ satisfy $\Xi_{m}(a+b) \not \nsim 1 / d_{\mathcal{K}} \Phi_{*}(a+b)$ for all m.

OCA implies all automorphisms of $\mathcal{Q}(H)$ are inner

We have finally proved that OCA $_{T}$ implies that for every $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and every $\varepsilon>0$, Φ has a C -measurable ε-approximation on $\mathcal{D}_{\mathrm{X}}[\mathrm{E}]$ for some infinite X . Let's quickly take a look at the remaining part of the proof

OCA implies all automorphisms of $\mathcal{Q}(H)$ are inner

We have finally proved that $O C A_{T}$ implies that for every $\mathrm{E} \in \operatorname{Part}_{\mathbb{N}}$ and every $\varepsilon>0$, Φ has a C -measurable ε-approximation on $\mathcal{D}_{\mathrm{X}}[\mathrm{E}]$ for some infinite X .
Let's quickly take a look at the remaining part of the proof
OCA_{4}

1. Lemma 17.5.3 (3): $\forall \mathrm{E}, \Phi$ has a C-measurable ε-approximation on $\mathrm{D}[\mathrm{E}]$ for all $\varepsilon>0$.
2. Lemma 17.4.5: $\forall E, \Phi$ has a continuous lifting on $D_{Y}[E]$ for some infinite Y.
3. Proposition 17.5.4: $\forall E, \Phi$ has a product type lifting \equiv on $\mathcal{D}[E]$ such that each \bar{E}_{n} is a unital $1 / n$-approximate ${ }^{*}$-homomorphism.
4. Theorem 17.2.6 (Corollary 17.5.5): $\forall \mathrm{E}, \Phi$ has a lifting on $\mathcal{D}[\mathrm{E}]$ that is a *-homomorphism.
5. Proposition 17.5.7: $\forall \mathrm{E}, \Phi$ has a lifting on $\mathcal{D}[\mathrm{E}]$ of the form $a \mapsto v a v^{*}$.
6. Lemma 17.5.8: For some Fredholm partial isometry $w, \forall \mathrm{E}, \mathrm{Ad} w \circ \Phi$ has a lifting on $\mathcal{D}[E]$ of the form $a \mapsto u a u^{*}$ for a unitary u.

OCAT
7. Theorem 17.8.2 the 'coherent family of unitaries' implementing Ad wo Φ can be uniformized by a single unitary.

Thm (McKenney, McKenney-Vignati, Vignati) OCA ${ }_{\boldsymbol{T}}+$ MA imply that every isomorphism between coronas of separable C^{*}-algebras has a Borel-measurable lifting.
McKenney, P. and Vignati, A. Forcing axioms and coronas of nuclear C*-algebras. J. Math. Logic, to appear.
Vignati, Rigidity conjectures. Ann. Inst. Fourier, to appear.

Thm (McKenney, McKenney-Vignati, Vignati) OCA + MA imply that every isomorphism between coronas of separable C ${ }^{*}$-algebras has a Borel-measurable lifting.
McKenney, P. and Vignati, A. Forcing axioms and coronas of nuclear C*-algebras. J. Math. Logic, to appear.
Vignati, Rigidity conjectures. Ann. Inst. Fourier, to appear.
In order to improve the conclusion to 'every isomorphism between coronas of separable C^{*}-algebras is trivial' we need
(1) A stronger Ulam-stability result (cf. Kadison-Kastler stability)
(2) The right definition of 'trivial'.

Chm (McKenney, McKenney-Vignati, Vignati) OCA ${ }_{T}+$ MA imply that every isomorphism between coronas of separable C^{*}-algebras has a Borel-measurable lifting.

McKenney, P. and Vignati, A. Forcing axioms and coronas of nuclear C*-algebras. J. Math. Logic, to appear.

Vignati, Rigidity conjectures. Ann. Inst. Fourier, to appear.
In order to improve the conclusion to 'every isomorphism between coronas of separable C^{*}-algebras is trivial' we need
(1) A stronger Ulam-stability result (cf. Kadison-Kastler stability)
(2) The right definition of 'trivial'.

Vignati did both in the abelian case (using results of Šemrl for (1)).
Chm (Vignati) Assume OCA ${ }_{\mathrm{T}}$ and MA If X and Y are locally compact, noncompact, Polish spaces and
$\Phi: C_{b}(X) / C_{0}(X) \rightarrow C_{b}(Y) / C_{0}(Y)$ is an isomorphism, then there are co-compact $X_{0} \subseteq X$ and $Y_{0} \subseteq Y$ and a homeomorphism
$f: Y_{0} \rightarrow X_{0}$ such that $a \mapsto a \circ f$ lifts Φ. (Paroroce-ho)

CH: If x is cthle localls
cret, then $c_{b}(x) / c_{0}(x) \cong l_{\infty} / c_{0}$

$$
C_{L}(N) / C_{0}(N)
$$

$$
S_{n}, S_{n}^{*} S_{m}=1 \quad S_{n} S_{n}^{*} S_{m} S_{m}^{*}=0
$$

Thm (Vignati) OCA ${ }_{\top}$ implies $\mathcal{Q}(H) \not \approx \mathcal{M}\left(\mathcal{O}_{\infty} \otimes \mathcal{K}\right) / \mathcal{O}_{\infty} \otimes \mathcal{K}$.

Fact
$\mathcal{M}\left(\mathcal{O}_{\infty} \otimes \mathcal{K}\right) / \mathcal{O}_{\infty} \otimes \mathcal{K}$ has a K-theory reversing automorphism.

$$
K_{1}=\mathbb{Z}, \quad K_{0}=0
$$

Thm (Vignati) OCA $_{\mathrm{T}}$ implies $\mathcal{Q}(H) \not \approx \mathcal{M}\left(\mathcal{O}_{\infty} \otimes \mathcal{K}\right) / \mathcal{O}_{\infty} \otimes \mathcal{K}$.
Fact
$\mathcal{M}\left(\mathcal{O}_{\infty} \otimes \mathcal{K}\right) / \mathcal{O}_{\infty} \otimes \mathcal{K}$ has a K-theory reversing automorphism.
Question Are there examples of simple separable C^{*}-algebras A and B such that the assertion ' $\mathcal{M}(A) / A \cong \mathcal{M}(B) / B$ is independent from ZFC?

$$
x \subseteq N
$$

Endomorphisms

$O C A_{T}+M_{A}$

Conjecture (F., 1997) PFA implies that every endomorphism of ℓ_{∞} / c_{0} lifts to an endomorphism (not necessarily w^{*}-continuous) of ℓ_{∞}.

Endomorphisms

Conjecture (F., 1997) PFA implies that every endomorphism of ℓ_{∞} / c_{0} lifts to an endomorphism (not necessarily w^{*}-continuous) of ℓ_{∞}.

Thm (Dow) There is an endomorphism of ℓ_{∞} / c_{0} that does not lift to an endomorphism of ℓ_{∞}.

Dow, A. A non-trivial copy of $\beta \stackrel{N}{\mathbb{N}} \backslash \mathbb{N}$, Proc. AMS 142.8 (2014): 2907-2913.

Endomorphisms of $\mathcal{Q}(H)$

$$
M_{1}^{\prime \prime}(Q(H 1) \cong Q(H)
$$

Endomorphisms of $\mathcal{Q}(H)$

Fix an isomorphism $\Phi_{n}: \mathcal{Q}(H) \otimes M_{n}(\mathbb{C}) \rightarrow \mathcal{Q}(H)$, for every $n \geq 1$. Thm (Vaccaro, 2019) OCA T implies that every endomorphism of $^{\text {a }}$ $\mathcal{Q}(H)$ is unitarily equivalent to $\Phi_{n} \circ\left(\mathrm{id}_{\mathcal{Q}(H)} \otimes 1_{n}\right)$ for some $n \geq 1$. Therefore OCA ${ }_{\top}$ implies $\operatorname{End}(\mathcal{Q}(H), \circ) / \sim_{u} \cong(\mathbb{N} \backslash\{0\}, \cdot)$.

Vaccaro, A. Trivial Endomorphisms of the Calkin Algebra. arXiv:1910.07230 (2019).

Endomorphisms of $\mathcal{Q}(H)$

Fix an isomorphism $\Phi_{n}: \mathcal{Q}(H) \otimes M_{n}(\mathbb{C}) \rightarrow \mathcal{Q}(H)$, for every $n \geq 1$.
Chm (Vaccaro, 2019) OCA ${ }_{\mathrm{T}}$ implies that every endomorphism of $\mathcal{Q}(H)$ is unitarily equivalent to $\Phi_{n} \circ\left(\mathrm{id}_{\mathcal{Q}(H)} \otimes 1_{n}\right)$ for some $n \geq 1$. Therefore OCA ${ }_{\top}$ implies $\operatorname{End}(\mathcal{Q}(H), \circ) / \sim_{u} \cong(\mathbb{N} \backslash\{0\}, \cdot)$.

Vaccaro, A. Trivial Endomorphisms of the Calkin Algebra. arXiv:1910.07230 (2019).
$O C A_{T} \Rightarrow$
Coo There are C^{*}-algebras A and B such that $A \hookrightarrow \mathcal{Q}(H)$, $B \hookrightarrow \mathcal{Q}(H)$, but $A \otimes_{\alpha} B \nrightarrow \overline{\mathcal{Q}}(H)$ for any tensor product \otimes_{α}.
There is a countable inductive system $\left(A_{n}\right)$ such that $A_{n} \hookrightarrow \mathcal{Q}(H)$ for all n, but $\lim _{n} A_{n} \nrightarrow \mathcal{Q}(H)$.

Endomorphisms of $\mathcal{Q}(H)$

Fix an isomorphism $\Phi_{n}: \mathcal{Q}(H) \otimes M_{n}(\mathbb{C}) \rightarrow \mathcal{Q}(H)$, for every $n \geq 1$. Chm (Vaccaro, 2019) OCA ${ }_{T}$ implies that every endomorphism of $\mathcal{Q}(H)$ is unitarily equivalent to $\Phi_{n} \circ\left(\mathrm{id}_{\mathcal{Q}(H)} \otimes 1_{n}\right)$ for some $n \geq 1$. Therefore OCA ${ }_{\top}$ implies $\operatorname{End}(\mathcal{Q}(H), \circ) / \sim_{u} \cong(\mathbb{N} \backslash\{0\}, \cdot)$.

Vaccaro, A. Trivial Endomorphisms of the Calkin Algebra. arXiv:1910.07230 (2019).
Corot There are C^{*}-algebras A and B such that $A \hookrightarrow \mathcal{Q}(H)$, $B \hookrightarrow \mathcal{Q}(H)$, but $A \otimes_{\alpha} B \nrightarrow \mathcal{Q}(H)$ for any tensor product \otimes_{α}. There is a countable inductive system $\left(A_{n}\right)$ such that $A_{n} \hookrightarrow \mathcal{Q}(H)$ for all n, but $\lim _{n} A_{n} \leftrightarrow \mathcal{Q}(H)$.
F.-Hirshberg-Vignati: CH implies the negation of the conclusions of the Corollary. and Thu .
Farah, I., Hirshberg, I. and Vignati, A. The Calvin algebra is \aleph_{1}-universal. Israel J. Math. 237 (2020): 287-309.

$$
\begin{aligned}
& \text { he Calkin algebra is } \aleph_{1} \text {-universal. Israel } J . \\
& \langle A| A G Q(H) \mid=\langle A| X|,|
\end{aligned}
$$

Embedding separable C*-algebras into massive C*-algebras

Two *-homomorphisms Φ, Ψ from A into B are

1. unitarily equivalent if there is $u \in U(B)$ such that $\operatorname{Ad} u \circ \Psi=\Phi$.
2. approximately unitarily equivalent if there is a net $u_{\lambda} \in \mathrm{U}(B)$ such that $\operatorname{Ad} u_{\lambda} \circ \Psi(a) \rightarrow \Phi(a)$ for all $a \in A$.

Embedding separable C*-algebras into massive C*-algebras

Two *-homomorphisms Φ, Ψ from A into B are
(1). unitarily equivalent if there is $u \in \mathrm{U}(B)$ such that Ad $u \circ \Psi=\Phi$.
12. approximately unitarily equivalent if there is a net $u_{\lambda} \in U(B)$ such that Ad $u_{\lambda} \circ \Psi(a) \rightarrow \Phi(a)$ for all $a \in A$.

Exercise. If B is countably (quantifier-free) saturated and A is separable, then $\Phi: A \rightarrow B$ and $\Psi: A \rightarrow B$ are unitarily equivalent if and only if they are approximately unitarily equivalent.

Embedding separable C*-algebras into massive C*-algebras

Two *-homomorphisms Φ, Ψ from A into B are

1. unitarily equivalent if there is $u \in U(B)$ such that $\operatorname{Ad} u \circ \Psi=\Phi$.
2. approximately unitarily equivalent if there is a net $u_{\lambda} \in \mathrm{U}(B)$ such that Ad $u_{\lambda} \circ \Psi(a) \rightarrow \Phi(a)$ for all $a \in A$.

Exercise. If B is countably (quantifier-free) saturated and A is separable, then $\Phi: A \rightarrow B$ and $\Psi: A \rightarrow B$ are unitarily equivalent if and only if they are approximately unitarily equivalent.

Degree-1 saturation does not suffice; the conclusion is false for $A=M_{2 \infty}$ and $B=\mathcal{Q}(H)$.

Recall that $B_{\infty}:=\ell_{\infty}(B) / c_{0}(B)$.
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is an injection, define $f_{*}: B_{\infty} \rightarrow B_{\infty}$ by its action on the representing sequences

$$
f_{x}=l_{\infty}(B) \rightarrow l_{\infty}(B)
$$

$$
B<l_{\infty}(B) / f_{*}\left(\left(b_{n}\right)\right)=\left(b_{f(n)}\right) .
$$

Recall that $B_{\infty}:=\ell_{\infty}(B) / c_{0}(B)$.
If $f: \mathbb{N} \rightarrow \mathbb{N}$ is an injection, define $f_{*}: B_{\infty} \rightarrow B_{\infty}$ by its action on the representing sequences

$$
f_{*}\left(\left(b_{n}\right)\right)=\left(b_{f(n)}\right) .
$$

Exercise. If \mathcal{U} is an ultrafilter, $f: \mathbb{N} \rightarrow \mathbb{N}$ is an injection, then the f_{*} defines an endomorphism of $B_{\mathcal{U}}$ iff $f(n)=n$ for \mathcal{U}-many n.

Chm (Kirchberg, Phillips, Gabe) Suppose that A is separable and $\Phi: A \rightarrow B_{\infty}$ is a ${ }^{*}$-homomorphism. TFAE

1. $\Phi \sim_{u} \psi$ for some $\Psi: A \rightarrow B$ (the diagonal copy of B in B_{∞}).
2. For every injection $f: \mathbb{N} \rightarrow \mathbb{N}, f_{*} \circ \Phi \sim_{u} \Phi$.

pe Not.

fo
ϕ,
$\psi: A$
$\rightarrow B_{\infty}$
$\phi \sim_{b} \psi \Leftrightarrow \phi \sim_{c \cdot n} \psi$
(B_{∞}, cthls saturated).
(1) \Rightarrow (2) Assum. 0 . Fix $u \in U\left(B_{\infty}\right)$ $\psi=A d u \cdot \phi$, ho, $\psi[A] \subseteq \&$.

Then $\forall f: N \rightarrow N$, inj. $f_{*} \circ \psi=\psi$.
$F_{i x} f_{i} \quad$ Then

$$
\begin{aligned}
f_{*} \circ \phi & =f_{x} \circ A d u^{y} \circ \psi \\
& =A d f_{*}\left(u^{*}\right) \cdot \psi \\
& =A d f_{x}\left(u^{*}\right) \cdot A d u \cdot \phi \\
& =A d f_{x}\left(u^{*} u\right) \circ \phi .
\end{aligned}
$$

(2) \Rightarrow (1) A sfune

Fix , loft of $\phi_{,} \phi_{木}$

$$
\begin{aligned}
& A \rightarrow l_{\infty}(B) \\
& \phi_{x}(a)=\left(\varphi_{n}(a)\right)_{n \in N}, \varphi_{n}: A \rightarrow B \\
& \frac{c(a i m}{\forall n \geqslant m_{1} \quad \forall F C A,} \quad \forall \varepsilon>0, \exists m \in \mathbb{A} \\
& \quad\left\|\varphi_{u}(a)-v \varphi_{m}(a) V^{*}\right\|<\varepsilon, \forall c \in F .
\end{aligned}
$$

Pt Assume othermid. Fix F, ε. $\forall m \quad \exists f(m)>m,(>f(i), \forall i<m)$ s.t. $\nexists v \in U(B)$
$\| \varphi_{n}(0)-v \varphi_{m}(0) v^{*} \mid<\varepsilon$ $\forall \in F$.

Tho $\quad f: N \rightarrow N$, injectir.

$$
\begin{equation*}
\left.f_{x} \circ \phi \sim_{u} \phi \quad \quad k\right\rangle \tag{2}
\end{equation*}
$$

Fix $u \in U\left(B_{o x}\right)$, then $u \in U(B)^{\mathbb{N}}$ $\forall a \in A \quad \phi(a)=A d u \circ f_{x} \cdot \phi(0)$. Therofore, $\forall a \in a$

$$
\begin{aligned}
& \left\|\varphi_{m}(a)-u_{n} \varphi_{f(m)}(a) u_{m}^{A}\right\| \rightarrow 0 \\
& \left\|u_{m}^{A} \varphi_{n}(a) u_{n}-\varphi_{f(n)}(a)\right\| \rightarrow 0 \\
& a \in F
\end{aligned} \quad \begin{array}{r}
\text { write } A=\bigcup_{n} F_{n}, F_{n} \subset A, \\
\text { fir Nf } \varepsilon_{n}=2^{-n} .
\end{array}
$$

Find $m_{0}<m_{1}<m_{2}<\ldots$ -
and $v_{0}, v_{1} \ldots$ in $u(B)$
s. that $\forall j, \forall a \in F$;

$$
\left\|v_{j} \varphi_{m_{j}}(a) v_{i}^{*}-\varphi_{m_{j-1}}(a)\right\|<2^{-i}
$$

Then lat $u_{n}=v_{n} v_{n-1} \ldots v_{0}$ $\lim _{n \rightarrow \infty} u_{u}^{*} \varphi_{u_{n}}(a) u_{n}$ exits, $\forall a \in A$. (follows from $*$)

$$
\psi(a):=\lim _{n \rightarrow \infty} u_{n}^{*} \varphi_{m_{n}}|a| u_{n}
$$

$$
\begin{aligned}
& \text { is } a \quad A \text {-hom, } \psi_{i} A \rightarrow B . \\
& \text { If } f(n)=m_{n} \text {, then } \\
& v_{i}=\left(v_{n}\right)_{n} \in \cup\left(b_{\infty}\right) \text { gives } \\
& \text { Ad } r o \psi=f_{+} \circ \phi \text { and } f_{x} \cdot \phi_{n} \phi, \\
& \text { b (1) follass. } D
\end{aligned}
$$

