Massive $\mathrm{C}^*\text{-}algebras,$ Winter 2021, I. Farah, Lecture 22

Today:

1. Completing the proof that OCA_T implies all automorphisms of $\mathcal{Q}(H)$ are inner.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

2. Generalizations.

Recall the following definitions (throughout §17.6–§17.7, $\mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)

Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)_{\leq 1}^2$ is narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$. It is $\underline{\varepsilon}$ -narrow if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}}_{\varepsilon} c$. A function $f : \mathcal{B}(H)_{\leq 1} \to \mathcal{B}(H)_{\leq 1}$ is σ -narrow if its graph can be covered by a countable family of narrow Borel sets. It is σ - ε -narrow if its graph can be covered by a countable family of ε -narrow Borel sets.

An endomorphism Φ of Q(H) has a σ -narrow lifting if its restriction to the unit ball has a lifting which is σ -narrow. It has a σ -narrow ε -approximation if there is a σ - ε -narrow function Θ such that every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_*(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$. A σ -narrow lifting on $\mathcal{D}[E]$ or D[E] and a σ -narrow ε -approximation on $\mathcal{D}[E]$ or D[E] are defined analogously.

We'll need another result from the classical descriptive set theory. Thm B.2.14 (Novikov) If X and Y are Polish spaces and $A \subseteq X \times Y$ is analytic, then the set $\{x \in X : A_x \text{ is nonmeager}\}$ is analytic. $S \colon \forall P \colon S$ $A \downarrow = \langle y \mid (X, Y) \in A \int$ Lemma 17.7.1 Suppose Φ is an endomorphism of $\mathcal{Q}(H)$, $d \ge 1$, $E \in \operatorname{Part}_{\mathbb{N}}$, and there exists a 1/d-narrow analytic set $\mathcal{Z} \subseteq D_{\tilde{X}} \times \mathcal{B}(H)_{\le 1}$. Then for every $A \subseteq \tilde{X}$ such that both A and $\tilde{X} \setminus A$ are infinite at least one of the following applies.

1. There is a C-measurable 3/d-approximation of Φ on D_A .

2. There are $B \subseteq \tilde{X} \setminus A$, $a \in D_A$, and $b \in D_B$ such that both B and $\tilde{X} \setminus (A \cup B)$ are infinite and every uniformization Ξ of Zand $c \in D_{\tilde{X} \setminus (A \cup B)}$ such that $a + b + c \in dom(\Xi)$ satisfy $\Xi(a + b + c)q_A \not\approx_{1/d}^{\mathcal{K}} \Phi_*(a)$. (otherword) $(a \mapsto \Box (c + c) \in A)$ $a \mapsto \Box (c + c) \in A$ $a \mapsto \Box (c + c) \in A$ Lemma 17.7.1 Suppose Φ is an endomorphism of $\mathcal{Q}(H)$, $d \geq 1$, $E \in \operatorname{Part}_{\mathbb{N}}$, and there exists a 1/d-narrow analytic set $\widetilde{\mathcal{Z}} \subseteq D_{\widetilde{X}} \times \mathcal{B}(H)_{\leq 1}$. Then for every $A \subseteq \widetilde{X}$ such that both A and $\widetilde{X} \setminus A$ are infinite at least one of the following applies.

1. There is a C-measurable 3/d-approximation of Φ on D_A .

2. There are $B \subseteq \tilde{X} \setminus A$, $a \in D_A$, and $b \in D_B$ such that both B and $\tilde{X} \setminus (A \cup B)$ are infinite and every uniformization Ξ of \mathcal{Z} and $c \in D_{\tilde{X} \setminus (A \cup B)}$ such that $a + b + c \in \text{dom}(\Xi)$ satisfy $\Xi(a + b + c)q_A \not\approx_{1/d}^{\mathcal{K}} \Phi_*(a)$.

U is a Projector of the house analyta Gualita > ((a, b, c, c') (a+b, c') et, (~, c's) Cuel Haelly W(0) Is relations comeojer in DarA. $y = |(c, c) \in A \times B(H_{1})|$ (BEDRIA (C, b, c) EV) BEDRIA (C, b, c) EV) BEDRIA (C, b, c) EV) BEDRIA (C, b, c) EV) in DXXAS y is and the. Let Of le a C-me crudle un formitation of J. The, the edon(y) Fbewla) 011 (c, 4, 6(0)) EV. Then then d', $(0+b,c') \in t$ Ð (a) ~ × c'Ez, olso Je' $(a+b, c') \in t \quad \phi_{\mathcal{K}}(c) \approx f(c) \leq f(c) < f(c) \leq f(c) \leq f(c) \leq f(c) \leq f(c) < f(c) \leq f(c) < f(c)$

6 -1 O(0) is 2 - 0/100 C-megvylle. Case 2 Ja el Maa is hat comeges. so there is a basic ore U, WOINU à relativels me ager in U. $(w(a), v \subseteq V_{X\setminus A}).$ Then JJu CX \A disjoin, FS(u) E By 5 + Led $\exists u g j = S(u)$ UNZYEDXIA $\Lambda W(o) = \varphi.$ $(U = [J, t], J \subset X A)$ H - ++ L = E S(24) $B = U J_{2n}$

◆□▶▲母▶▲国▶▲国▼ ● ◆

Lemma 17.7.2 Suppose Φ is an endomorphism of Q(H), $d \ge 1$, $E \in Part_{\mathbb{N}}$, and Φ has a σ -narrow 1/d-approximation on $D_{\tilde{X}}[E]$. Then the following holds.

- 1. There are an infinite $A \subseteq \tilde{X}$ and a C-measurable 3/d-approximation to Φ on $D_A[E]$.
- 2. There is a C-measurable 3/d-approximation of Φ on D[F] for all $F \in Part_{\mathbb{N}}$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

Lemma 17.7.2 Suppose Φ is an endomorphism of Q(H), $d \ge 1$, $E \in Part_{\mathbb{N}}$, and Φ has a σ -narrow 1/d-approximation on $D_{\tilde{X}}[E]$. Then the following holds.

There are an infinite $A \subseteq \tilde{X}$ and a C-measurable 3/d-approximation to Φ on $D_A[E]$.

2. There is a C-measurable 3/d-approximation of Φ on D[F] for all F ∈ Part_N.
Proof:
Assume otherwise. Fix 1/d-narrow analytic sets (Z_n) that cover 3/d-ch.
the graph of a 1/d-approximation of Φ on D_X. Fix a C-measurable uniformization Ξ_n of Z_n. We will find X = □_n A(n) ⊔ □_n B(n), a(n) ∈ D_{A(n)}, and b(n) ∈ D_{B(n)}, so that a := ∑_n a(n) and b := ∑_n b(n) satisfy Ξ_m(a+b) ≈^K_{1/d} Φ_{*}(a+b) for all m.

OCA_T implies all automorphisms of $\mathcal{Q}(H)$ are inner

We have finally proved that OCA_T implies that for every $E \in Part_{\mathbb{N}}$ and every $\varepsilon > 0$, Φ has a C-measurable ε -approximation on $\mathcal{D}_{X}[E]$ for some infinite X. Let's quickly take a look at the remaining part of the proof

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ の < ⊙

OCA_T implies all automorphisms of $\mathcal{Q}(H)$ are inner

We have finally proved that OCA_T implies that for every $E \in Part_N$ and every $\varepsilon > 0$, Φ has a C-measurable ε -approximation on $\mathcal{D}_X[E]$ for some infinite X. Let's quickly take a look at the remaining part of the proof

- ()CA_T 1. Lemma 17.5.3 (3): $\forall E, \Phi$ has a C-measurable ε -approximation on D[E] for all $\varepsilon > 0$.
 - 2. Lemma 17.4.5: $\forall E, \Phi$ has a continuous lifting on $D_{Y}[E]$ for some infinite Y.
 - 3. Proposition 17.5.4: $\forall E, \Phi$ has a product type lifting Ξ on $\mathcal{D}[E]$ such that each Ξ_n is a unital 1/n-approximate *-homomorphism.
 - 4. Theorem 17.2.6 (Corollary 17.5.5): ∀E, Φ has a lifting on D[E] that is a *-homomorphism.
 - 5. Proposition 17.5.7: $\forall E, \Phi$ has a lifting on $\mathcal{D}[E]$ of the form $a \mapsto vav^*$.
 - 6. Lemma 17.5.8: For some Fredholm partial isometry w, $\forall E$, Ad $w \circ \Phi$ has a lifting on $\mathcal{D}[E]$ of the form $a \mapsto uau^*$ for a unitary u.
 - 7. Theorem 17.8.2 the 'coherent family of unitaries' implementing Ad $w \circ \Phi$ can be uniformized by a single unitary.

Thm (McKenney, McKenney–Vignati, Vignati) $OCA_T + MA$ imply that every isomorphism between coronas of separable C^* -algebras has a Borel-measurable lifting.

McKenney, P. and Vignati, A. Forcing axioms and coronas of nuclear $\rm C^*\mathchar`-algebras.$ J. Math. Logic, to appear.

Vignati, Rigidity conjectures. Ann. Inst. Fourier, to appear.

Thm (McKenney, McKenney–Vignati, Vignati) $OCA_T + MA$ imply that every isomorphism between coronas of separable C*-algebras has a Borel-measurable lifting.

McKenney, P. and Vignati, A. Forcing axioms and coronas of nuclear C^* -algebras. J. Math. Logic, to appear.

Vignati, Rigidity conjectures. Ann. Inst. Fourier, to appear.

In order to improve the conclusion to 'every isomorphism between coronas of separable C*-algebras is trivial' we need (1) A stronger Ulam-stability result (cf. Kadison–Kastler stability) (2) The right definition of 'trivial'.

Thm (McKenney, McKenney–Vignati, Vignati) $OCA_T + MA$ imply that every isomorphism between coronas of separable C^{*}-algebras has a Borel-measurable lifting.

McKenney, P. and Vignati, A. Forcing axioms and coronas of nuclear $\rm C^*\mathchar`-algebras.$ J. Math. Logic, to appear.

Vignati, Rigidity conjectures. Ann. Inst. Fourier, to appear.

In order to improve the conclusion to 'every isomorphism between coronas of separable $\mathrm{C}^*\mbox{-}algebras$ is trivial' we need

(1) A stronger Ulam-stability result (cf. Kadison–Kastler stability)
(2) The right definition of 'trivial'.

Vignati did both in the abelian case (using results of \check{S} emrl for (1)).

Thm (Vignati) Assume OCA_T and MA If X and Y are locally compact, noncompact, Polish spaces and $\Phi: C_b(X)/C_0(X) \rightarrow C_b(Y)/C_0(Y)$ is an isomorphism, then there are co-compact $X_0 \subseteq X$ and $Y_0 \subseteq Y$ and a homeomorphism $f: Y_0 \rightarrow X_0$ such that $a \mapsto a \circ f$ lifts Φ .

CH: If X is child locally child then $C_{y}(X)/C_{y} \cong l_{0}/C_{y}$

u G(N) G(N)

 S_{u} , $S_{u}^{+}S_{u} = 1$ $S_{u}S_{u}^{+}S_{u}$, $S_{u}^{+}=0$ $N \neq m$

Thm (Vignati) OCA_T implies $\mathcal{Q}(H) \ncong \mathcal{M}(\mathcal{O}_{\infty} \otimes \mathcal{K})/\mathcal{O}_{\infty} \otimes \mathcal{K}.$

Thm (Vignati) OCA_T implies $\mathcal{Q}(H) \ncong \mathcal{M}(\mathcal{O}_{\infty} \otimes \mathcal{K}) / \mathcal{O}_{\infty} \otimes \mathcal{K}$.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の Q @

Fact

 $\mathcal{M}(\mathcal{O}_{\infty} \otimes \mathcal{K})/\mathcal{O}_{\infty} \otimes \mathcal{K}$ has a K-theory reversing automorphism.

Thm (Vignati) OCA_T implies $\mathcal{Q}(H) \ncong \mathcal{M}(\mathcal{O}_{\infty} \otimes \mathcal{K}) / \mathcal{O}_{\infty} \otimes \mathcal{K}$.

Fact $\mathcal{M}(\mathcal{O}_{\infty} \otimes \mathcal{K})/\mathcal{O}_{\infty} \otimes \mathcal{K}$ has a K-theory reversing automorphism.

Question Are there examples of simple separable C^* -algebras A and B such that the assertion $(\mathcal{M}(A)/A \cong \mathcal{M}(B)/B)$ is independent from ZFC?

XSN

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

A.B. - UM. (C)

Endomorphisms

OCAT +MA

Conjecture (F., 1997) PFA implies that every endomorphism of ℓ_∞/c_0 lifts to an endomorphism (not necessarily w*-continuous) of ℓ_{∞} .

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● のへで

Endomorphisms

Conjecture (F., 1997) PFA implies that every endomorphism of ℓ_{∞}/c_0 lifts to an endomorphism (not necessarily w*-continuous) of ℓ_{∞} .

Thm (Dow) There is an endomorphism of ℓ_{∞}/c_0 that does not lift to an endomorphism of ℓ_{∞} .

< ロ > < 同 > < E > < E > E の < C</p>

Dow, A. A non-trivial copy of $\beta \mathbb{N} \setminus \mathbb{N}$, Proc. AMS 142.8 (2014): 2907-2913.

Fix an isomorphism $\Phi_n : \mathcal{Q}(H) \otimes M_n(\mathbb{C}) \to \mathcal{Q}(H)$, for every $n \ge 1$.

(ロ) (型) (E) (E) (E) (O)

Fix an isomorphism $\Phi_n \colon \mathcal{Q}(H) \otimes M_n(\mathbb{C}) \to \mathcal{Q}(H)$, for every $n \ge 1$.

Thm (Vaccaro, 2019) OCA_T implies that every endomorphism of $\mathcal{Q}(H)$ is unitarily equivalent to $\Phi_n \circ (id_{\mathcal{Q}(H)} \otimes 1_n)$ for some $n \ge 1$. Therefore OCA_T implies $End(\mathcal{Q}(H), \circ) / \sim_u \cong (\mathbb{N} \setminus \{0\}, \cdot)$.

Vaccaro, A. Trivial Endomorphisms of the Calkin Algebra. arXiv:1910.07230 (2019).

Fix an isomorphism $\Phi_n \colon \mathcal{Q}(H) \otimes M_n(\mathbb{C}) \to \mathcal{Q}(H)$, for every $n \ge 1$.

Thm (Vaccaro, 2019) OCA_T implies that every endomorphism of $\mathcal{Q}(H)$ is unitarily equivalent to $\Phi_n \circ (id_{\mathcal{Q}(H)} \otimes 1_n)$ for some $n \ge 1$. Therefore OCA_T implies $End(\mathcal{Q}(H), \circ) / \sim_u \cong (\mathbb{N} \setminus \{0\}, \cdot)$.

Vaccaro, A. Trivial Endomorphisms of the Calkin Algebra. arXiv:1910.07230 (2019). Coro There are C*-algebras A and B such that $A \hookrightarrow Q(H)$, $B \hookrightarrow Q(H)$, but $A \otimes_{\alpha} B \nleftrightarrow Q(H)$ for any tensor product \otimes_{α} . There is a countable inductive system (A_n) such that $A_n \hookrightarrow Q(H)$ for all n, but $\lim_n A_n \nleftrightarrow Q(H)$. $A \qquad A \qquad Q(H) \qquad Q(H) \qquad Q(H) \qquad Q(H) \qquad Q(H) \qquad Q(H)$

Fix an isomorphism $\Phi_n \colon \mathcal{Q}(H) \otimes M_n(\mathbb{C}) \to \mathcal{Q}(H)$, for every $n \ge 1$.

Thm (Vaccaro, 2019) OCA_T implies that every endomorphism of $\mathcal{Q}(H)$ is unitarily equivalent to $\Phi_n \circ (id_{\mathcal{Q}(H)} \otimes 1_n)$ for some $n \ge 1$. Therefore OCA_T implies $End(\mathcal{Q}(H), \circ) / \sim_u \cong (\mathbb{N} \setminus \{0\}, \cdot)$.

Vaccaro, A. Trivial Endomorphisms of the Calkin Algebra. arXiv:1910.07230 (2019).

Coro There are C*-algebras A and B such that $A \hookrightarrow Q(H)$, $B \hookrightarrow Q(H)$, but $A \otimes_{\alpha} B \not\hookrightarrow Q(H)$ for any tensor product \otimes_{α} . There is a countable inductive system (A_n) such that $A_n \hookrightarrow Q(H)$ for all n, but $\lim_n A_n \not\hookrightarrow Q(H)$.

F.-Hirshberg-Vignati: CH implies the negation of the conclusions of the Corollary. Ond The L. Farah, I., Hirshberg, I. and Vignati, A. The Calkin algebra is \aleph_1 -universal. Israel J. Math. 237 (2020): 287-309. $A \models A \bigcirc Q(H) = \{A \mid \chi(H \models h)\}$

Embedding separable $\mathrm{C}^*\text{-}\mathsf{algebras}$ into massive $\mathrm{C}^*\text{-}\mathsf{algebras}$

Two *-homomorphisms Φ, Ψ from A into B are Ψ Ad u 1. unitarily equivalent if the

- 1. unitarily equivalent if there is $u \in U(B)$ such that Ad $u \circ \Psi = \Phi$.
- 2. approximately unitarily equivalent if there is a net $u_{\lambda} \in U(B)$ such that Ad $u_{\lambda} \circ \Psi(a) \rightarrow \Phi(a)$ for all $a \in A$.

A JAdun

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ の�?

Embedding separable C^* -algebras into massive C^* -algebras

Two *-homomorphisms Φ, Ψ from A into \underline{B} are unitarily equivalent if there is $u \in U(B)$ such that Ad $u \circ \Psi = \Phi$. 2 approximately unitarily equivalent if there is a net $u_{\lambda} \in U(B)$ such that Ad $u_{\lambda} \circ \Psi(a) \rightarrow \Phi(a)$ for all $a \in A$.

Exercise. If B is countably (quantifier-free) saturated and A is separable, then $\Phi: A \rightarrow B$ and $\Psi: A \rightarrow B$ are unitarily equivalent if and only if they are approximately unitarily equivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Embedding separable C^* -algebras into massive C^* -algebras

Two *-homomorphisms Φ, Ψ from A into B are

- 1. unitarily equivalent if there is $u \in U(B)$ such that Ad $u \circ \Psi = \Phi$.
- 2. approximately unitarily equivalent if there is a net $u_{\lambda} \in U(B)$ such that Ad $u_{\lambda} \circ \Psi(a) \rightarrow \Phi(a)$ for all $a \in A$.

Exercise. If B is countably (quantifier-free) saturated and A is separable, then $\Phi: A \to B$ and $\Psi: A \to B$ are unitarily equivalent if and only if they are approximately unitarily equivalent.

Degree-1 saturation does not suffice; the conclusion is false for $A = M_{2^{\infty}}$ and B = Q(H).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Recall that $B_{\infty} := \ell_{\infty}(B)/c_0(B)$. If $f : \mathbb{N} \to \mathbb{N}$ is an injection, define $f_* : B_{\infty} \to B_{\infty}$ by its action on the representing sequences $f_* : \ell_{\infty}(I) \to \ell_{\infty}(I)$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● ○ < ○

 $f_*((b_n)) = (b_{f(n)}).$

Recall that $B_{\infty} := \ell_{\infty}(B)/c_0(B)$. If $f : \mathbb{N} \to \mathbb{N}$ is an injection, define $f_* : B_{\infty} \to B_{\infty}$ by its action on the representing sequences

$$f_*((b_n)) = (b_{f(n)}).$$

Exercise. If \mathcal{U} is an ultrafilter, $f : \mathbb{N} \to \mathbb{N}$ is an injection, then the f_* defines an endomorphism of $\mathcal{B}_{\mathcal{U}}$ iff f(n) = n for \mathcal{U} -many n.

Thm (Kirchberg, Phillips, Gabe) Suppose that A is separable and $\Phi: A \to \underline{B}_{\infty}$ is a *-homomorphism. TFAE 1. $\Phi \sim_{u} \Psi$ for some $\Psi: A \to B$ (the diagonal copy of <u>B</u> in B_{∞}). 2. For every injection $f: \mathbb{N} \to \mathbb{N}$, $f_* \circ \Phi \sim_{u} \Phi$.

Not, for P, Y: A -1 Boos

(Bos 1) ctly sot wrotel). P~ 4 () =1 (2) ASJULY. (). Fix UE (B) $\psi = A d u \cdot \phi$, $h \cdot , \psi (I) \leq B$. Then $\#f: N \to N$, inj. $f_* \circ \Psi = \Psi$. Fix f. Then f, op = f, & Aduo 4 = Ad $f_{x}(u^{*}) \cdot \psi = Ad f_{x}(u^{*}) \cdot A - h \cdot \phi$ $= A \delta f_*(u^*u) \circ p.$ ◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

D=10 Asume "... Fix a loft of Pr ØK $A \rightarrow l_{ob}(B)$ cloin & FCEA, BEZ., JMEN HUZM JUEU(B) 11 Qu(G) - JQu (G) JLE #CEF. It Assume otherwise. Fix F.E. Then f: N-1N, injector. fx° \$ ~ u \$. (47 @/. Fix u e U (Box), then u E U (Box) $\forall a \in A$ $\phi(a) = A d u \circ f_x \cdot \phi(a)$. Therefore, Hack

 $\| \mathcal{Y}_{\mu}(a) - \mathcal{U}_{\mu} \mathcal{Y}_{f(m)}(a) \mathcal{U}_{\mu} \| \rightarrow 0$ "Um Pue (0/Um - Pf(u) (0/11 →. Write A = UFm, Fm GA, $\xi_{y} = 2^{-5}$ Fixe Find $M_0 < M_1 < M_2 < \cdots$ and Jo, J. in U(B) S that ti, tAEF. $\| U_{3} Y_{m_{j}}(a) U_{j}^{*} - Y_{m_{j-1}}(a) \| < 2^{-1}$ Then let Un = Va Var. ... Vo. lim ut lu (G) Un exist, tat A. (tolows from t) $\Psi(a) := \lim_{n \to \infty} u_n^* \Psi_n(a) u_n$

is a $A - h_{nms}$, $\forall i A \rightarrow B$. IF $f(n) = M_{n}$, then $U:= (U_n)_n \in U(h_{\infty})$ since $Ad = v \circ \psi = f_{\neq} \circ \psi$ and $f_{\neq} \cdot \psi_n \psi$, $\subseteq O$ follows. D