Massive C*-algebras, Winter 2021, I. Farah, Lecture 22

Today:

- 1. Completing the proof that OCA_T implies all automorphisms of $\mathcal{Q}(H)$ are inner.
- 2. Generalizations.

Recall the following definitions (throughout §17.6–§17.7, $\mathcal{B}(H)_{\leq 1}$ is considered with respect to the WOT.)

Def 17.6.1 A subset \mathcal{Z} of $\mathcal{B}(H)^2_{\leq 1}$ is <u>narrow</u> if for all (a, b) and (a, c) in \mathcal{Z} we have $b \approx^{\mathcal{K}} c$.

It is $\underline{\varepsilon}$ -narrow if for all (a,b) and (a,c) in $\mathcal Z$ we have $b \approx_{\varepsilon}^{\mathcal K} c$.

A function $f: \mathcal{B}(H)_{\leq 1} \to \mathcal{B}(H)_{\leq 1}$ is $\underline{\sigma}$ -narrow if its graph can be covered by a countable family of narrow Borel sets.

It is σ - ε -narrow if its graph can be covered by a countable family of ε -narrow Borel sets.

An endomorphism Φ of $\mathcal{Q}(H)$ has a σ -narrow lifting if its restriction to the unit ball has a lifting which is σ -narrow. It has a σ -narrow ε -approximation if there is a σ - ε -narrow function Θ such that every $a \in \mathcal{B}(H)_{\leq 1}$ satisfies $\Phi_*(a) \approx_{\varepsilon}^{\mathcal{K}} \Theta(a)$.

A σ -narrow lifting on $\mathcal{D}[\mathsf{E}]$ or $\mathsf{D}[\mathsf{E}]$ and a σ -narrow ε -approximation on $\mathcal{D}[\mathsf{E}]$ or $\mathsf{D}[\mathsf{E}]$ are defined analogously.

We'll need another result from the classical descriptive set theory.

Thm B.2.14 (Novikov) If X and Y are Polish spaces and $A \subseteq X \times Y$ is analytic, then the set $\{x \in X : A_x \text{ is nonmeager}\}$ is analytic. $\{x \in X : A_x \text{ is nonmeager}\}$ if

Lemma 17.7.1 Suppose Φ is an endomorphism of $\mathcal{Q}(H)$, $d \geq 1$, $E \in \mathsf{Part}_{\mathbb{N}}$, and there exists a 1/d-narrow analytic set $\mathcal{Z} \subseteq \mathsf{D}_{\tilde{\mathsf{X}}} \times \mathcal{B}(H)_{\leq 1}$. Then for every $\mathsf{A} \subseteq \tilde{\mathsf{X}}$ such that both A and $\tilde{\mathsf{X}} \setminus \mathsf{A}$ are infinite at least one of the following applies.

- —1. There is a C-measurable 3/d-approximation of Φ on D_A .
 - 2. There are $B \subseteq \tilde{X} \setminus A$, $a \in D_A$, and $b \in D_B$ such that both B and $\tilde{X} \setminus (A \cup B)$ are infinite and every uniformization Ξ of \mathcal{Z} and $c \in D_{\tilde{X} \setminus (A \cup B)}$ such that $a + b + c \in \text{dom}(\Xi)$ satisfy

$$\Xi(a+b+c)q_{A} \not\approx_{1/d}^{\mathcal{K}} \Phi_{*}(a). \quad (\text{otherws.}, \\
a \mapsto \Xi(c+b+c) \not\in_{A}$$

$$a \mapsto \Xi(c+b+c) \mapsto_{A}$$

Lemma 17.7.1 Suppose Φ is an endomorphism of $\mathcal{Q}(H)$, $d \geq 1$, $\mathsf{E} \in \mathsf{Part}_{\mathbb{N}}$, and there exists a 1/d-narrow analytic set $(\mathcal{Z})\subseteq \mathsf{D}_{ ilde{\mathsf{X}}} imes \mathcal{B}(\mathsf{H})_{\leq 1}.$ Then for every $\mathsf{A}\subseteq ilde{\mathsf{X}}$ such that both A and $oldsymbol{\widetilde{\mathsf{X}}}\setminus\mathsf{A}$ are infinite at least one of the following applies.

- 1. There is a C-measurable 3/d-approximation of Φ on D_A .
- 2. There are $B \subseteq \tilde{X} \setminus A$, $a \in D_A$, and $b \in D_B$ such that both B and $\tilde{X} \setminus (A \cup B)$ are infinite and every uniformization Ξ of \mathcal{Z} and $c \in D_{\tilde{X} \setminus (A \cup B)}$ such that $a + b + c \in dom(\Xi)$ satisfy $\Xi(a+b+c)q_{\mathsf{A}} \not\approx^{\mathcal{K}}_{1/d} \Phi_*(a).$

roof: Let
$$\mathcal{V} := \{(a,b,c) \in \mathsf{D}_\mathsf{A} \times \mathsf{D}_{\tilde{\mathsf{X}} \backslash \mathsf{A}} \times \mathcal{B}(\mathsf{H})_{\leq 1} : \\ (\exists c' \in \underline{\mathcal{B}}(\mathsf{H})_{\leq 1})(a+b,c') \in \mathcal{Z}, c \approx_{1/\sigma}^{\mathcal{K}} c'q_\mathsf{A}\}.$$

$$\mathcal{W}(a) := \{b \in \mathsf{D}_{\widetilde{\mathsf{X}} \setminus \mathsf{A}} : (a, b, \Phi_*(a)) \in \mathcal{V}\}, \ \text{for } a \in \mathsf{D}_\mathsf{A}.$$

Gualific > (a,4,c,c') (a+4,c') et, (~) (sA) Circ 1 Ha Elly W(0) Is reloting come ojer in DaiA. y= ((0, c) el x B(H/=1) (BE) 2 (c,6,c) eV)
15 velotively comeoner in DXIA y is analytic. Let of he a committee or able The, ta e don(4) Fbew(a) 011 (c, 4, 6(6)) EV. Then the, , , (0+4, c') & 7 A(a) 2x c'Ez, olso fc' (a+4, c') et \$\psi_{\chi}(0) \pmi_{\chi}(\chi) \

6 -1 0(0) is 3-0/1/0x C-mio, vyelde. Cose 2 Fa el, Walas is het come oges. so there is a hosic ore- U, wholh U is relatively use eyer in U. $(w(a), v \in \mathcal{V}_{X\setminus A}).$ Then I Ju CC X /A disjoin, 7 s(u) e D, & + 4d] u 4/74 = S(41) UnggeDxIA $\Lambda W(0) = \emptyset.$ $(U = [J, t], J \subset X \setminus A)$ J. (7) L = \(\S(24) \) B = () J2.

Lemma 17.7.2 Suppose Φ is an endomorphism of $\mathcal{Q}(H)$, $d \geq 1$, $E \in \mathsf{Part}_{\mathbb{N}}$, and Φ has a σ -narrow 1/d-approximation on $\mathsf{D}_{\tilde{\mathsf{X}}}[\mathsf{E}]$. Then the following holds.

- 1. There are an infinite $A \subseteq \tilde{X}$ and a C-measurable 3/d-approximation to Φ on $D_A[E]$.
- 2. There is a C-measurable 3/d-approximation of Φ on D[F] for all $F \in \mathsf{Part}_{\mathbb{N}}$.

Lemma 17.7.2 Suppose Φ is an endomorphism of $\mathcal{Q}(H)$, $d \geq 1$, $\mathsf{E} \in \mathsf{Part}_{\mathbb{N}}$, and Φ has a σ -narrow 1/d-approximation on $\mathsf{D}_{\tilde{\mathsf{x}}}[\mathsf{E}]$. Then the following holds.

- There are an infinite $A \subseteq \tilde{X}$ and a C-measurable 3/d-approximation to Φ on $D_A[E]$.
 - 2. There is a C-measurable 3/d-approximation of Φ on D[F] for

all $F \in Part_{\mathbb{N}}$. So, $\#A \subseteq X \not\vdash h \downarrow A \rightarrow P(H) \in I$ Proof:
Assume otherwise. Fix $1/d_{7}$ narrow analytic sets (\mathcal{Z}_{n}) that cover $\mathcal{Z}_{n} = \mathcal{Z}_{n}$.

the graph of a 1/d-approximation of Φ on $D_{\tilde{X}}$. Fix a C-measurable uniformization Ξ_n of \mathcal{Z}_n . We will find $\tilde{X} = \prod_n A(n) \sqcup [\mid_n B(n),$ $a(n) \in D_{A(n)}$, and $b(n) \in D_{B(n)}$, so that $a := \sum_{n} a(n)$ and $b := \sum_{n} b(n)$ satisfy $\Xi_m(a+b) \not\approx_{1/d}^{\mathcal{K}} \Phi_*(a+b)$ for all m.

OCA_T implies all automorphisms of Q(H) are inner

We have finally proved that OCA_T implies that for every $E \in Part_{\mathbb{N}}$ and every $\varepsilon > 0$, Φ has a C-measurable ε -approximation on $\mathcal{D}_X[E]$ for some infinite X. Let's quickly take a look at the remaining part of the proof

OCA_T implies all automorphisms of Q(H) are inner

We have finally proved that OCA_T implies that for every $E \in Part_{\mathbb{N}}$ and every $\varepsilon > 0$, Φ has a C-measurable ε -approximation on $\mathcal{D}_X[E]$ for some infinite X. Let's quickly take a look at the remaining part of the proof

- 1. Lemma 17.5.3 (3): \forall E, Φ has a C-measurable ε -approximation on D[E] for all $\varepsilon > 0$.
- 2. Lemma 17.4.5: \forall E, Φ has a continuous lifting on D_Y[E] for some infinite Y.
- 3. Proposition 17.5.4: \forall E, Φ has a product type lifting Ξ on $\mathcal{D}[E]$ such that each Ξ_n is a unital 1/n-approximate *-homomorphism.
- 4. Theorem 17.2.6 (Corollary 17.5.5): \forall E, Φ has a lifting on $\mathcal{D}[E]$ that is a *-homomorphism.
- 5. Proposition 17.5.7: \forall E, Φ has a lifting on $\mathcal{D}[E]$ of the form $a \mapsto vav^*$.
- 6. Lemma 17.5.8: For some Fredholm partial isometry w, \forall E, Ad $w \circ \Phi$ has a lifting on $\mathcal{D}[E]$ of the form $a \mapsto uau^*$ for a unitary u.

7. Theorem 17.8.2 the 'coherent family of unitaries' implementing Ad $w \circ \Phi$ can be uniformized by a single unitary.

Thm (McKenney, McKenney–Vignati, Vignati) $OCA_T + MA$ imply that every isomorphism between coronas of separable C^* -algebras has a Borel-measurable lifting.

McKenney, P. and Vignati, A. Forcing axioms and coronas of nuclear C^* -algebras. J. Math. Logic, to appear.

Vignati, Rigidity conjectures. Ann. Inst. Fourier, to appear.

Thm (McKenney, McKenney-Vignati, Vignati) $OCA_T + MA$ imply that every isomorphism between coronas of separable C^* -algebras has a Borel-measurable lifting.

McKenney, P. and Vignati, A. Forcing axioms and coronas of nuclear C^* -algebras. J. Math. Logic, to appear.

Vignati, Rigidity conjectures. Ann. Inst. Fourier, to appear.

In order to improve the conclusion to 'every isomorphism between coronas of separable C^* -algebras is trivial' we need

- (1) A stronger Ulam-stability result (cf. Kadison–Kastler stability)
- (2) The right definition of 'trivial'.

Thm (McKenney, McKenney-Vignati, Vignati) $OCA_T + MA$ imply that every isomorphism between coronas of separable C^* -algebras has a Borel-measurable lifting.

McKenney, P. and Vignati, A. Forcing axioms and coronas of nuclear C*-algebras. J. Math. Logic, to appear.

Vignati, Rigidity conjectures. Ann. Inst. Fourier, to appear.

In order to improve the conclusion to 'every isomorphism between coronas of separable C*-algebras is trivial' we need

- (1) A stronger Ulam-stability result (cf. Kadison–Kastler stability)
 - (2) The right definition of 'trivial'.

Vignati did both in the abelian case (using results of Šemrl for (1)).

Thm (Vignati) Assume OCA_T and MA If X and Y are locally compact, noncompact, Polish spaces and

 $\Phi: C_b(X)/C_0(X) \to C_b(Y)/C_0(Y)$ is an isomorphism, then there are co-compact $X_0 \subseteq X$ and $Y_0 \subseteq Y$ and a homeomorphism.

 $f: Y_0 \to X_0$ such that $a \mapsto a \circ f$ lifts Φ .

CH: If X is attale locally

CHI, then $C_{1}(X)/C_{1}(X) \cong C_{2}(X)/C_{3}(X)$ $C_{1}(X)/C_{3}(X)$

Thm (Vignati) OCA_T implies $Q(H) \not\cong \mathcal{M}(\mathcal{O}_{\infty} \otimes \mathcal{K})/\mathcal{O}_{\infty} \otimes \mathcal{K}$.

Thm (Vignati) OCA_T implies $\mathcal{Q}(H) \not\cong \mathcal{M}(\mathcal{O}_{\infty} \otimes \mathcal{K})/\mathcal{O}_{\infty} \otimes \mathcal{K}$.

Fact

 $\mathcal{M}(\mathcal{O}_{\infty}\otimes\mathcal{K})/\mathcal{O}_{\infty}\otimes\mathcal{K}$ has a K-theory reversing automorphism.

Thm (Vignati) OCA_T implies $\mathcal{Q}(H) \not\cong \mathcal{M}(\mathcal{O}_{\infty} \otimes \mathcal{K})/\mathcal{O}_{\infty} \otimes \mathcal{K}$.

Fact

 $\mathcal{M}(\mathcal{O}_{\infty} \otimes \mathcal{K})/\mathcal{O}_{\infty} \otimes \mathcal{K}$ has a K-theory reversing automorphism.

Question Are there examples of simple separable C^* -algebras A and B such that the assertion $\mathcal{M}(A)/A \cong \mathcal{M}(B)/B$ is independent from ZFC?

Endomorphisms

OCAT +MA

Conjecture (F., 1997) PFA implies that every endomorphism of ℓ_{∞}/c_0 lifts to an endomorphism (not necessarily w*-continuous) of

 ℓ_{∞} .

 $l \sim - > l \sim$ $l \sim - > l \sim$ $l \sim / c \sim$

Endomorphisms

Conjecture (F., 1997) PFA implies that every endomorphism of ℓ_{∞}/c_0 lifts to an endomorphism (not necessarily w*-continuous) of ℓ_{∞} .

Thm (Dow) There is an endomorphism of ℓ_{∞}/c_0 that does not lift to an endomorphism of ℓ_{∞} .

Dow, A. A non-trivial copy of $\beta \mathbb{N} \setminus \mathbb{N}$, Proc. AMS 142.8 (2014): 2907-2913.

Fix an isomorphism
$$\Phi_n \colon \underline{\mathcal{Q}(H) \otimes M_n(\mathbb{C})} \to \underline{\mathcal{Q}(H)}$$
, for every $n \ge 1$.
$$\underline{\mathcal{M}_n(\mathcal{Q}(H))} \cong \mathcal{Q}(H)$$

Fix an isomorphism $\Phi_n \colon \mathcal{Q}(H) \otimes M_n(\mathbb{C}) \to \mathcal{Q}(H)$, for every $n \geq 1$.

Thm (Vaccaro, 2019) OCA_T implies that every endomorphism of $\mathcal{Q}(H)$ is unitarily equivalent to $\Phi_n \circ (\operatorname{id}_{\mathcal{Q}(H)} \otimes 1_n)$ for some $n \geq 1$. Therefore OCA_T implies $\operatorname{End}(\mathcal{Q}(H), \circ) / \sim_u \cong (\mathbb{N} \setminus \{0\}, \cdot)$.

Vaccaro, A. Trivial Endomorphisms of the Calkin Algebra. arXiv:1910.07230 (2019).

Fix an isomorphism $\Phi_n \colon \mathcal{Q}(H) \otimes M_n(\mathbb{C}) \to \mathcal{Q}(H)$, for every $n \geq 1$.

Thm (Vaccaro, 2019) OCA_T implies that every endomorphism of $\mathcal{Q}(H)$ is unitarily equivalent to $\Phi_n \circ (\operatorname{id}_{\mathcal{Q}(H)} \otimes 1_n)$ for some $n \geq 1$. Therefore OCA_T implies $\operatorname{End}(\mathcal{Q}(H), \circ) / \sim_u \cong (\mathbb{N} \setminus \{0\}, \cdot)$.

Vaccaro, A. Trivial Endomorphisms of the Calkin Algebra. arXiv:1910.07230 (2019).

Coro There are C*-algebras A and B such that $A \hookrightarrow \mathcal{Q}(H)$,

 $B \hookrightarrow \mathcal{Q}(H)$, but $A \otimes_{\alpha} B \not\hookrightarrow \overline{\mathcal{Q}}(H)$ for any tensor product \otimes_{α} .

There is a countable inductive system (A_n) such that $A_n \hookrightarrow \mathcal{Q}(H)$

for all n, but $\lim_n A_n \not\hookrightarrow \mathcal{Q}(H)$.

$$\begin{cases} A & A_n \neq Q(H). \\ A & C_n & Q(H) \end{cases} \qquad \begin{cases} Q(H) \otimes Q(H) \\ \neq Q(H) \end{cases}$$

Fix an isomorphism $\Phi_n \colon \mathcal{Q}(H) \otimes M_n(\mathbb{C}) \to \mathcal{Q}(H)$, for every $n \geq 1$.

Thm (Vaccaro, 2019) OCA_T implies that every endomorphism of $\mathcal{Q}(H)$ is unitarily equivalent to $\Phi_n \circ (\mathrm{id}_{\mathcal{Q}(H)} \otimes 1_n)$ for some $n \geq 1$. Therefore OCA_T implies $End(\mathcal{Q}(H), \circ)/\sim_{\mu} \cong (\mathbb{N} \setminus \{0\}, \cdot).$

Vaccaro, A. Trivial Endomorphisms of the Calkin Algebra. arXiv:1910.07230 (2019).

There are C^* -algebras A and B such that $A \hookrightarrow \mathcal{Q}(H)$, $B \hookrightarrow \mathcal{Q}(H)$, but $A \otimes_{\alpha} B \not\hookrightarrow \mathcal{Q}(H)$ for any tensor product \otimes_{α} . There is a countable inductive system (A_n) such that $A_n \hookrightarrow \mathcal{Q}(H)$ for all n, but $\lim_{n} A_n \not\hookrightarrow \mathcal{Q}(H)$.

F.-Hirshberg-Vignati: CH implies the negation of the conclusions of the Corollary. and Thuk.

Farah, I., Hirshberg, I. and Vignati, A. The Calkin algebra is ℵ₁-universal. Israel J. (A) A C) Q(H) = (A (X(M=1))

Math. 237 (2020): 287-309.

Embedding separable C*-algebras into massive C*-algebras

Two *-homomorphisms Φ , Ψ from A into B are Ψ

- 1. unitarily equivalent if there is $u \in U(B)$ such that $Ad u \circ \Psi = \Phi$.
- 2. approximately unitarily equivalent if there is a net $u_{\lambda} \in U(B)$ such that Ad $u_{\lambda} \circ \Psi(a) \to \Phi(a)$ for all $a \in A$.

Embedding separable C^* -algebras into massive C^* -algebras

Two *-homomorphisms Φ , Ψ from A into B are

approximately unitarily equivalent if there is a net $u_{\lambda} \in \mathsf{U}(B)$ such that $\mathsf{Ad}\ u_{\lambda} \circ \Psi(a) \to \Phi(a)$ for all $a \in A$.

Exercise. If B is countably (quantifier-free) saturated and A is separable, then $\Phi: A \to B$ and $\Psi: A \to B$ are unitarily equivalent if and only if they are approximately unitarily equivalent.

Embedding separable C^* -algebras into massive C^* -algebras

Two *-homomorphisms Φ , Ψ from A into B are

- 1. unitarily equivalent if there is $u \in U(B)$ such that $Ad u \circ \Psi = \Phi$.
- 2. approximately unitarily equivalent if there is a net $u_{\lambda} \in \mathsf{U}(B)$ such that $\mathsf{Ad}\ u_{\lambda} \circ \Psi(a) \to \Phi(a)$ for all $a \in A$.

Exercise. If B is countably (quantifier-free) saturated and A is separable, then $\Phi \colon A \to B$ and $\Psi \colon A \to B$ are unitarily equivalent if and only if they are approximately unitarily equivalent.

Degree-1 saturation does not suffice; the conclusion is false for $A = M_{2^{\infty}}$ and $B = \mathcal{Q}(H)$.

Recall that $B_{\infty} := \ell_{\infty}(B)/c_0(B)$.

If $f: \mathbb{N} \to \mathbb{N}$ is an injection, define $f_*: B_\infty \to B_\infty$ by its action on the representing sequences

$$f_*((b_n)) = (b_{f(n)}).$$

$$1*((D_n)) = (D_f(n)).$$

$$1*((D_n)) = (D_f(n)).$$

$$1*((D_n)) = (D_f(n)).$$

Recall that $B_{\infty}:=\ell_{\infty}(B)/c_0(B)$. If $f:\mathbb{N}\to\mathbb{N}$ is an injection, define $f_*\colon B_{\infty}\to B_{\infty}$ by its action on the representing sequences

$$f_*((b_n))=(b_{f(n)}).$$

Exercise. If \mathcal{U} is an ultrafilter, $f: \mathbb{N} \to \mathbb{N}$ is an injection, then the f_* defines an endomorphism of $B_{\mathcal{U}}$ iff f(n) = n for \mathcal{U} -many n.

Thm (Kirchberg, Phillips, Gabe) Suppose that A is separable and $\Phi: A \to B_{\infty}$ is a *-homomorphism. TFAE

- 1. $\Phi \sim_u \Psi$ for some $\Psi \colon A \to B$ (the diagonal copy of B in B_{∞}).
- 2. For every injection $f: \mathbb{N} \to \mathbb{N}$, $f_* \circ \Phi \sim_u \Phi$.

1) =1 2) ASSUM. O. FIX UE UBS/ Y=Adu. p. h., Y[1] SB. Then $4f:N\rightarrow N$, ins. $f_{*}\circ \Psi=\Psi$. Fix f. Then f, op =f, o Aduo Y = Adfx(u*). Y = Adfx(u*). Al u. p = Ad fx (u*u) o p. ◆ロ > ◆昼 > ◆ き > ◆ き * り へ ○

my (b) of ran y set wrotel).

Page 4

D=1 1 A Sume "...

Fix a loft of P, Ox A - los (B) $\phi_{\star}(a) = (\mathcal{C}_{u}(a))_{u \in \mathcal{N}}, \mathcal{C}_{u}: I \rightarrow B$ clain & FCEA, HEZ., JMEN tuzm Juev (B) 11 Pu(a) - UPu(a) U* 1/28 + CEF. 14 Assume otherwise. Fix F. E. Hu $\exists f(u) > h$, $(> f(i), \forall i < h)$ $s.t. \neq \sigma \in U(B)$ $|| \varphi_{u}(o) - \sigma \varphi_{u}(o) \sigma^{*} || < s$ $\forall u \in F$. The f: N-N injector. fx o b ~ u b. (47 D/. Fix u e U (Box), then u \in U(B) N $\forall a \in A$ $\phi(a) = Adu \circ f_{x} \cdot \phi(0)$. Therefore, tack

// (a) - Un (f(m) a) Wen // ->0 1 Um + Pu (0/ Um - PF(w) (0/1/1). write A = UF, Fa GA, $\mathcal{E}_{3} = 2^{-6}$ fixe Find M. < M. < M. < ... and 50, 5,... in (18) s that ti, taeti, $\| \int_{S} f_{w_{i}}(a) \int_{S}^{t} - f_{w_{i-1}}(a) \| < 2^{-1}$ Then ld Un = Ja Ja. ... Vo. lien ut lu (9) Un exists tacA. (follows (von +) 4(a):= lim un 9 9 (a) un

is a $A - h_n m_n$, $Y : A \rightarrow B$.

If $f(n) = h m_n$, then $U := (U n)_n \in U(b_\infty)$ sives

Ad $U \circ V = f_{\star} \circ P$, and $f_{\star} \circ P_n P$, $G = (U n)_n \circ V = f_{\star} \circ P$, and $f_{\star} \circ P_n P$, $G = (U n)_n \circ V = f_{\star} \circ P$, and $f_{\star} \circ P_n P$,